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Abstract

in this paper, we consider a gossiping problem in which individuals in a network exchange information
periodically according to a fixed schedule. In particular, a proper edge-coloring can be considered as a
schedule for the calls of a gossiping scheme. We have investigated the time required to complete
gossiping in graphs under various colorings. In particular, we have determined the minimum time to
compiete gossiping under any proper edge-coloring of a path and given bounds on the time required to

complete gossiping in cycles and in trees with bounded degree.
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1. Definitions

Gossiping is the process in which each member of a set of individuals knows a unique piece of
information initially and must learn all of the information of the group through some set of communications
(cails). This process is modeied as a problem on graphs in which the vertices represent individuais and
edges represent allowed communication links. Several variations of this problem have been considered
(see [2]). We are interested in a particular situation in which specific calls are made periodically
according to a predetermined schedule. In practical terms, such a schedule allows efficient

communication while avoiding the possibiiity of message collisions or congestion.

Let G be any connected graph on n vertices and iet C be a proper k edge-coloring of G which assigns
the colors 1,2, ...,k to the edges of G such that no vertex is incident on more than one edge of any
color i. (Henceforth, all edge-colorings will be assumed to be proper and we will omit the word.) I all k
colors are used in the edge-coloring, we say that it is a strict kx edge-coloring. At time 0, every vertex
has a unique piece of information known only to itself. At each time t, {=1,2,3, ..., each pair of
vertices which are joined by an edge colored i= H{mod k} exchange all of the information they know at
that time. Note that operations on colors are performed modulo k adopting the convention that color kis
used in place of color §. Let f, denote the earliest time t at which every vertex has learned all n pieces of
information given the edge-coloring C. We say that G completes gossiping under edge-coloring C at
time t,. The k gossip time of G , denoted Ek(G), is defined to be the minimum {, over ail k edge-
colorings C of G. The strict k gossip time of G, denoted g, { G), is defined 1o be the minimum f. over

all strict k edge-colorings C of G. It follows from the definitions that g, ( G) > §k( G).

2. Gossiping on Paths

Let P,=(vy,vy, ..., V,) denote the path consisting of n edges and n+1 vertices. It is convenient to
use an n character k-ary string ¢, ¢, .. . C,, where ;e {1,2, ... Kk} for all /, to denote a particular k
edge-coloring of P,. In particular, a (proper) k edge-coloring corresponds o such a string in which
c;#¢, ¢ for 1si<n. A strict k edge-coloring has the additional property that for each je {1,.. . k}

there is at least one i, 1 < i< n, such that Ci=f.

The foliowing simple observations, stated without proof, will be useful below.
1. For a given k edge-coloring C of P, let t,, denote the time required for a message to

travel from v, to v, and let 1,4 denote the time required for a message to travel from v, to



v,. The k gossip time of P, under edge-coloring Cis the maximum of these two times, that

i8, to=max {tg,, ol

2. The k edge-coloring ¢, ¢, ... ¢, and is reverse, ¢,C,_, ... Cy, Complete gossiping at the
same time.
Lemma 1: Given any k edge-coloring Cot P, with ¢, > 1, there is another k edge-coloring C°
of P, suchthatc’ =1 and I,. < .
Proof: Since the k edge-coloring C and its reverse C’ complete gossiping at the same time, if ¢, = 1

then C’=¢,C,_y ... ¢y issuch a k edge-coloring.

We can now restrict our attention to k edge-colorings C of P, with ¢, > 1 and ¢,>1. Without loss of
generality, we can assume that ¢,<c,. From such a C , we construct a new k edge-coloring
C'=c¢'y¢’, ... ¢, by shifting the numbers corresponding to the colors by ¢, modulo k. For each /, let
¢’;= (e-¢q+1){mod k), recalling that 0 is represented by color k. in particutar, this means that ¢’y = 1.
Messages traveling through any interior node of P encounter the same delays with either coloring since
the difference between two consecutive labels remains the same modulo k. Furthermore, the endpoints
send their own messages ¢’y~1 time units eartier than under the previous edge-coloring. Thus, in this

case lp < tp. O

Note that the edge-coloring constructed in the proof of Lemma 1 is strict if and only if the initial edge-
coloring is strict.
Corollary 2: There is a strict k edge-coloring C of P, with ¢; =1 which completes gossip in
time g,(P,) and a k edge-coloring C' of P, with ¢’y =1 which completes gossip in time
9l Py).

Proof: This follows immediately from Lemma 1. O

Thus, in searching for ( strict ) k edge-colorings of paths that compiete gossiping in the minimum time,
we need only consider those in which the first edge is colored 1.
k{n-1)

— 2
Theorem 3: g,(F,) 2 g,(FP,) 2 { kn

—+1, neven, nzkz2

+1, nodd,n=z k=2

Proof: The first inequality follows from the definitions of g, { G} and §k( G). Note that the requirement
that n> k is due to the definition of strict k edge-coloring. The same bound actually holds for Ek( P} for

any nz 2.



We begin by considering the simple case k=2. Clearly, 52( P,)2 n (and hence g,(P,} > n) since
the information can trave! over at most one edge per time unit and the two endpoints v, and v, are at
distance n from each other. For even n, the only 2 edge-coloring with ¢, =1, 12121..212, is strict and
has ¢,=2. The information from v, leaves v,, at time 2 and is thereby delayed by one time unit. Thus,

:c}z( P,)z n+1 (and g,(P,)} 2 n+1) for even n. (In fact, we have shown equality for even n.)

an-1

- 3
s~ forodd n>2 and that gy(P,) 2 55+ 1

Next, we consider k= 3, that is, we show that g (P,) 2

for even nz 2. We will then generalize this argument for larger k.

in any 3 edge-coloring of P, with adjacent edges (u, v} and {v,w) colored i and j, respectively, we can
assume that j= i+ 1, without loss of generality. Any information traveling in the direction from v to wis
forwarded by v immediately so that the information is known 1o w exactly 2 time units after it is sent by v
However, any information traveling from w to v is delayed for one time unit at v and it is known to v
exactly 3 time units after it is sent by w. Thus, any intermediate vertex in the path P, adds one unit of
delay to a message traveling through it in one direction and no delay to a message traveling through it in

the opposite direction.

In grder to complete gossiping in a given edge-coloring of £, , the two endpoints must each iearn each
other's information. In particular, this means that one message must travel from v, to v, and another
must travet from v, 10 v,. The time required for either of these messages to arrive at is destination is a
lower bound on the time required to complete gossiping. Each of these messages passes over 1 edges
and encounters n-1 intermediate vertices. Each message requires exactly one unit of time to travel

over each edge and each intermediate vertex delays exactly one of the messages by one time unit.

3n—1]

Thus, the sum of the times taken by these two messages is 3n-1 and g;(P,)) 2 [ 5

We can improve this lower bound slightly for the case of even n. In particutar, let n=2p while k=3,

Let us assume, by way of contradiction, that gossip can be completed in £, under some 3 edge-coloring

3n-1

5 -Im3p. As above we will restrict our attention to the messages sent between the

Cin time [

endpoints. Since we can also assume that ¢, = 1, the endpoint v, must learn v, 's information at some
time t=1(mod 3). Since < 3p, this must occur no later than at time 3p-2=1(mod3). Thus, the
message from v, 10 v, encountered at most 3p-2-n=p-2 delays at intermediate vertices. Since the

total number of delays incurred by the two messages sent between the endpoints is n—1, the message



from v, to v, must encounter at least (n-1)-(p~2) = p+1 delays and can arrive at v, no sooner than

time n+p+1 =3p+1, contradicting the assumption.

This argument is easily generalized for arbitrary k. in any k edge-coloring of P, with adjacent edges
{u,v) and (v,w) colored /i and j, respectively, we can assume that /> /, without loss of generality. Any
information traveling from v to wis delayed j—/-1 time units at vertex v whereas any information traveling
from wto uis delayed k-~ (j-i)~1 time units at vertex v. Each of the messages traveling between v, and
v, passes over 11 edges and encounters n-1 intermediate vertices. Each message requires exactly one
unit of time o travel over each edge while each intermediate vertex introduces a total of k-2 units of
delay to the two messages. Thus, the sum of the times taken by these iwo messages is
2n+(n-1)(k-2) = (n-1)k+2 and g,(P,) 2 Fiﬂ;fé?-'-‘iﬂ

As before, we can improve this bound slightly for the case of even n. In particular, let n=2p. We
assume, by way of contradiction, that gossip can be completed in P, under some k edge-coioring C in

time -gk. Since ¢, = 1, v, must learn v,'s information at some time f< -g-k = pk where = 1(mod k). So,

in fact, v, must learn v,'s information at some time t< (p-1)k+1. Since the path contains n edges, each
of which requires one unit of time to cross, the message from v, 1o v, incurred at most
(p~1)k+1-n=p(k-2)-k+1 delays at the intermediate vertices. Since a total of (n—-1)(k-2) delays are
incurred by the two messages sent between the endpoints, the message from v, to v, must encounter at
least (n-1){k-2)-(p(k-2)—k+1)=plk-2)+1 delays and can arrive at v, no sooner than time

plk-2)+1+2p=pk+1. O

Before stating general upper bounds for g, (P,) and ?jk( P.), we consider the special case = Kk under

strict edge-coloring.

| MhDi2,  odd k>3
lemmad; P.)= 2
9t Pl L even k= 4,

k(k2—1)+2 and

Proof: For odd k=3, the strict edge-coloring 135 .. k{k-1}{(k-3)...2 has t,,=

to = k{kz' i1, inthis case, the lower bound from Theorem 3 ¢an be improved. The edge-coloring must

be a permutation of 1,2, ... k. In particular, if we assume that the edge from v, to v, is colored 1,
then the edge from v, to v,_, must be colored i for some /> 1. This means that a delay of i-1 > 1 time

units is introduced at v,. The sum of the delays incurred by the two messages sent between the



endpoints is at least k{k-1)+1. Since every edge must be traversed by each of these two messages,

the sum of the times taken by the two messages s 2k+(k-2)(k-1}+1, S0

2k+ (k=2) (k=1)+17 _ k{k=1)
Pzl S 1=25"y2.

9k

2
For even k= 4, the strict edge-coloring 135...(k—-1}k{k-2)(k-4)...2 has 10n=ff§-—k+2 and

2 _
tho = -’fé-nn . The lower bound comes directly from Theorem 3. O

k{n-1)

5 +1, nodd,nz kz2

Theorem 5: g, (P,) =
il Fn) {%"—H, n even,nz k2.
k(n—1)

Proof: For odd n, the non-strict 2 edge-coloring 12121...21 has tg, = { g =~

+1. For even n,

kn

5 and I, = %’144 . The matching lower bounds come

the non-strict edge-coloring 1212..12 has ¢, =

directly from Theorem 3. O
k(n-1)

5
Theorem 6: g,(P,) = { “n
2

+1, nodd,n>kz2

+1, neven, nxKk>2

Proot: We will prove the following claim from which the resuit follows. "There exist colorings with the

foltowing properties: For even n, ¢, =2, t0n=-{'§'1-k+2 and tnom%'lﬂ. For odd n, ¢,=1 and

We prove this claim by induction. Regardiess of the parity of &, the basis of the induction is for even n.
When k is even, the basis is given in the proof of Lemma 4. Wnen k is odd, the sequence

k+ 1 k+t
L)kik=1) .. (=

123 . .( +1)2 with n= k+1 provides the basis.

Note that if a color sequence ends with a 2, then appending a 1 causes the leftward time ({p,) to
increase by k—1 while the rightward time (t ,) stays the same. Further, if a color sequence ends with a

1, then appending a 2 causes the leftward time to increase by 1 and the rightward time to increase by k.

Using these observations it is easy to show that if the claim is true for an even (odd) n then it follows for

the next odd {even) n+1 . In the even case a 2 is appended and in the odd case a 1 is appended. For

example, suppose the leftward time for an odd nis k("; " +1 and the final coloris 1. Ifa2is appended,
the leftward time for the even n+1 is ( k("z"” +1)+1 = k(”2+”wk+2.



The lower bounds come directi'y from Theorem 3. O
Lemma 7: Given any { strict ) k edge-coloring Cof P, 1,5 k+(k=1)(n-1).

Proof: We construct a specific coloring strict k edge-coloring C of P, which maximizes the time
required for a message to travel from v, 10 v,. In order to delay the starting time of the message from v,
as long as possible, let ¢, = k. For any intermediate vertex v;, the message can be delayed by at most
k-1 time units. By setting ¢;,; to ¢;+({k~1){mod k) tor each i, the message is delayed as much as
possible and arrives at v, at time k+(k—-1)(n-1). Thus, to=k+{k-1){(n-1). It is clear from the

construction that no other k édge-co!oring of P, could require more time to complete gossiping. !

3. Gossiping in Trees of Bounded Degree

Let T denote a tree on n vertices. We use dy o denote the diameter of T and A4 to denote the
maximum degree of any vertex in T. The subscripts may be omitted when the meaning is clear from
context. Clearly, any proper edge-coloring of 7 must use at least Ay colors.

Lemma 8: Given a tree T of diameter d and maximum degree A, g,(T)=2 ak(T) 2 g (Py)
forany k= A,

Prootf: The first inequality follows from the definitions of g, and Ek. The second follows from the

observation that information must travet between two vertices which are at a distance A apart and the fact

that between any such pair of vertices there is a unique pathin T,

Let us consider the special case of trees Twhere Ay=3. For a fixed diameter d, consider the largest

(most vertices) tree with diameter d and maximum degree 3 which we will call 7;. 7 has 1 +BZ,?'=21 2r-1
vertices if dis even and 2 £19+1/2 271 vertices if d'is odd (see [1]). We can draw T, (as an example, T

is shown in Figure 3-1) as two full regular binary trees T, and T, rooted at adjacent vertices 4 and b,

respectively, where the height of T, is r«;n and the height of T, is L;J.

Since every tree T with diameter d and maximum degree 3 is a subtree of T, any proper edge-coioring
of T4 (when restricted to the edges of T) is a proper edge-coloring of T. Thus, any upper bound on the
gossip time of T, is an upper bound on the gossip time of T.

Theorem 9: If 7 is a tree with diameter ¢ and maximum degree 3, then
95T € Go(T) S 2041,
Proof: Consider any proper 3 edge-coloring of T,. The length of the longest path between any two

leaves of T, say vand v, is d. Consider the edge fabels on the path from v to v. The information must



Figure 3-1: largest tree with diameter 7 and maximum degree 3
leave v no later than at time 3 and then travel over d-1 other edges before arriving at v. In addition to
the time taken to trave! over these edges, the message may be delayed by no more than 1 time unit at
any of the d-1 intermediate vertices. Thus, it must arrive at v no later than time
3+{d~1)+{d-1)=2d+1, s0 g3(Ty) < 2d+1. The same edge-coloring restricted to the edges of T

yields a coloring of T which completes gossiping at time no later than 2d+1, 50 g5(7) < 2d+1. 11

An improved lower bound can been shown for the tree 7.
Theorem 10: 2d-1<g,(T,) < g3(T,).

Proof: Consider all of the messages travelling from a bottom leaf to a top leaf of the tree T, (where
bottom and top are as depicted in Figure 3-1). Let cbe an internal node in the lower subtree rooted at b.
Ali messages coming up to ¢ either from its left subtree or from its right subtree must be delayed for one
unit at ¢. Let dbe an internal node in the upper subtree rooted at a. Messages coming up to any such
node d and bound for leaves in the upper subtree rooted at d may be delayed at d. In particuiar, all such
messages destined for nodes in either the left upper subtree or the right upper subtree rooted at d will be
delayed for one unit at node d. Hence, at least one message from a bottorn leaf to a top leaf will
encounter delays at every intermediate step. The total time taken by this message (if there is no initial

delay) is d+{d~-1)=2d-1. ©

The proof of Theorem 8 is easily generalized to produce an upper bound on the gossip time in trees
with diameter o and maximum degree A.

Theorem 11: i T is a tree of diameter d and maximum degree A, then



AN £ go(N s (A-1)d+1.

Proof: Consider any proper A edge-coloring of T, 4, the largest tree with diameter d and maximum
degree A. The length of the longest path between any two leaves of T, 4, say vand v, is d. Consider the
edge labels on the path from v to v. The information must leave v no later than at time A and then travel
over d-1 other edges before arriving at v. In addition to the time taken to travel over these edges, the
message may be delayed by no more than A-2 time units at any of the d-1 intermediate vertices. Thus,
it must arrive at v no later than time A+(d-1)+{A-2)(d-1) =(A-1)d+1, 50 g,(T, J) < (A-1)d+1.
The same edge-coloring restricted to the edges of T yields a coloring of T which completes gossiping at

time no later than (A-1)d+1,80 ga(T) € (A-1)d+1. O

4. Gossiping in Cycles

Let C, denote the cycle on n vertices labelled vy, v,, .. .,v,. We can use an n character k-ary string
¢, ¢, ... €, to denote a particular k edge-coloring of C,. In this case, notice that for the edge-coloring to
be proper, it is necessary that ¢, #¢,. ‘As with paths, any edge-coloring and its reverse complete

gossiping at the same time. Furthermore, any edge-coloring ¢,c, ...C, and its circular shifts

n
Cy...CaCy,Cq-..CaCCp, ... aNd ¢, 0y ... C,_, all complete gossiping at the same time.
Lemma 12: Given any k edge-coloring C of C, with ¢, > 1, there is another & edge-coloring
Cof C,suchthatc’y =1 and t,. < 5.
Proot: Since the k edge-coloring C and its circular shifts all complete gossiping at the same time, if

ci=1then C'=¢,¢;,1 ...CoC ... C_y iSSUCHh A k edge-coloring.

We can now restrict our attention to k edge-colorings C of P with ¢,> 1 for all 1< i< n. Choose i
such that ¢; < ¢; for all j# /. Consider the edge-coloring C"=1¢;, 4 ... C,C; .. . ¢;_q, thatis, the kedge-
coloring obtained from C by shifting ¢; into the first position and replacing it with 1. It is easy to see that
the time to complete gossip in C’is no more than that in C. By our choice of i, we know that the
neighboring edges had larger labels in C. Any message arrives at an endpoint of the relabelled edge at
the same time in C'as in C. The message is transmitted over the relabelled edge exactly ¢~1 time units
earlier than in C. The message is then forwarded from the other endpoint at the same time as in C.

~ Thus, lorStp.

Note that if the initial edge-coloring is strict, then the edge-coloring constructed in the proof of Lemma

12 is a circular shift of the original and thus also strict,



Coroiiary 13: There is a strict k edge-coloring C of C, with ¢, = 1 which compietes gossip in
time g,(C,) and a k edge-coloring C' of C, with ¢’y =1 which completes gossip in time
9(Cp)-

Proof: This follows immediately from Lemma 12. ©

Thus, in searching for ( strict ) k edge-colorings of cycles that complete gossiping in the minimum time,
we need only consider those in which the first edge is colored 1.

{h— *)n {k~ 1)n

{(k—1}{(k-2)

Theorem 14: gk(C 1z o

+— 2 and g,(C,) = %—24-
Proof: Under any edge-coloring C, the information originating at vertex a must arrive at distinct and
adjacent vertices b (following a path counterclockwise from a ) and ¢ (following a path clockwise from a )
intime < t,. Let [, be the number of edges in the (counterclockwise) path from a to b and l,c De the
number of edges in the (clockwise) path from ato ¢. Note that 4/, .= n-1. Similarly, let d o and d,

be the number of delays encountered by the messages on these paths. It follows that o2 lp+d,, and

te2 e+ e

Suppose the Theorem is false, i.e, under some edge-coloring C gossip completes in time

{k-1in

tc< "

+ x, where x depends on whether or not strict edge-coloring is required. Then, for every a,

/

ab>-'1—x—1 otherwise it must be the case that !/ (k-1

[ ac® K
S (k-1)n

n
Iac>7~—x-¥. 8=, (Ly+dyp+lyotdyy) then =<2

(k )
2n K

+x. Similarly, we can argue that

+x must also hold. We show that

+ X.

Let S= S+ Sy, where §;=2 (/,+/,0) = n(n-1) and §y=Z_ (d,,+d,,). Consider a fixed vertex

p as avaries. Recall that at any p, the sum of the delay incurred by a message traveling clockwise and

the delay incurred by a message traveling counterciockwise is k—2. For %—w x -2 choices of g the
counterclockwise delay of p must contribute to d,,, and for % - x - 2 choices of a the clockwise delay of p

must contribute to d,.. Hence 5,2 (k—2)n(%-—x~2)+sd’ where Sd" is the sum of the delays

encountered at the beginning for each a that are not counted in the above argument.

For the non-strict case, we know that at each a one of the incident edges is > 1, so there is a delay of
at least 1 in that direction. Hence, 82 n. For the strict case, we know that there are choices of a which

must have incident edges labelled with 2, 3, .., k.t follows that Sy 2 (n—k) + k(k-1).
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{k-1)n
k

Using the above inequalities it follow that, in both cases, 2—‘1 b +x. 0

Lemma 15: Foreven nz 4, g,(C,) = 4,(C,) =

Ml

we know that g,(C,) 2 5 and g,(C,) =5 from Theorem 14.

Proof: Since the diameter of C, is 5 5

"2’ +
The strict 2 edge-coloring 1212...12 completes gossiping in g time units.

3+ 1
4 'I

Lemma 16: For nz 4, g,(C,) <1

Proof: The edge-colorings 1212...123 and 1212...1213 for odd and even 1, respectively, complete

gossip in I_-?"T“-J time units. O

1.

Proof: The edge-colorings 1212..123 and 1212...12 for odd and even n , respectively, complete

Lemma 17: For n> 4, gy(C,) < [ 714+ [23

gossip in r-g—.] + I’-’l.;-ﬂ time units. =

< {(k-1)m + (2k—j- 1) {k-1) '

Theorem 18: For n= ik+ such that 1 < j< k, g,(C,) £ g(C,) - -

Proof: For n=ik+f where 2 < j< k, consider the strict edge-coloring 123. . . k... 123 .. .k123 .../,
that is, ¢; is set to be imod k. Under this particular edge-coloring, information travels much more quickiy
in gne direction (say clockwise) than in the opposite direction {counter-ciockwise). The information
beginning at any vertex must be received by all the other vertices before gossip is completed. The last
vertices to send their information are those vertices v; where /=0mod &, that is, those vertices incident
on edges with labels k-1 and k& Such a vertex, say u, begins by sending its information counter-
clockwise at time k-1 and then sends its message clockwise at time k. The number-of-verticesitformed———
t

by time ¢ along a counter-clockwise path from u is roughly L] for t> k-1. When proceeding counter-

clockwise from v,, ¢, =1 is foliowed by ¢,=/. For some starting vertices, this pair of edges will be
traversed counter-ciockwise during the gossiping scheme, informing vertices more quickly. Thus, the

number of vertices informed by time ! along a counter-clockwise path from v is 2 Lu,;{-;_! for t= k-1. In

the clockwise direction, ¢, = is followed by ¢, = 1, s0 a message traveiling over this pair of edges is
delayed by k—j time units at v, . The number of vertices informed by time  along a clockwise path from v
is 2 t~-{k-1)-{k-j) for t= k-1. Thus, all n vertices will know u's information and gossip will be
completed at time no fater than t such that n=1+ (1- (k~1) ~ (k- j}) +L7(-_‘T_]. Solving for ¢t we get,

(kD0 (2R (k1)

! K K
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When n=ik+1, the above edge-coloring is not proper. In this case, we consider the strict edge-

coloring 123 .. .k ... 123 .. .k2, that is, ¢; is set to be imod k for i<n and ¢, =2 and can show that

(k=T 2{k-1) (k-1
f< T+ p N

i

5. Remarks
The following simple bounds on the gossip time of an arbitrary connected graph on n vertices follow

from the definition of diameter and Lemma 7.

Lemma 19: Given any n vertex connected graph G with diameter d,

ds Ek(G) £ K+ (k-1H{d-1) and d< g (G) < k+{k-1)(d-1).
Except for these trivial bounds, the problem is open for arbitrary connected graphs.

Similar bounds for arbitrary trees may be derived from the definition of diameter and Theorem 11.

Otherwise, the problem is open for arbitrary trees.

We believe that the upper bounds of Lemmas 16 and 17 are, in fact, equalities. In particular, equality

hoids for4 < n< 16.
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