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Abstract 

The Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph 
containing a given subset of the vertices (terminals). We present a new polynomial-time 
heuristic with an approximation ratio approaching 1 + 1~___33 ~ 1.55, which improves upon 
the previously best-known approximation algorithm of [10] with performance ratio ~ 1.59. 
In quasi-bipartite graphs (i.e., in graphs where all non-terminals are pairwise disjoint), our 
algorithm achieves an approximation ratio of ~ 1.28, whereas the previously best method 
achieves an approximation ratio approachiug 1.5 [19]. For complete graphs with edge weights 
1 and 2, we show that our heuristic has an approximation ratio approaching ~ 1.28, which 

4 improves upon the previously best-known ratio of ~ [4]. Our method is considerably simpler 
and easier to implement than previous approaches. Our techniques can also be used to 
prove that the Iterated 1-Steiner heuristic [14] achieves an approximation ratio of 1.5 in 
quasi-blpartite graphs, thus providing the first known non-trivial performance ratio of this 
well-known method. 

1 I n t r o d u c t i o n  

Given an arbi t rary  weighted graph with a distinguished vertex subset, the  Steiner Tree Problem 

asks for a minimum-cost  subtree spanning the distinguished vertices. Steiner trees are important  
in various applications such as VLSI routing [14], wirelength es t imat ion [6], phylogenetic tree 
reconstruction in biology [11], and network routing [12]. The  Steiner Tree Problem is N P - h a r d  
even in the Euclidean or rectilinear metrics [8]. 

Arora established tha t  Euclidean and rectilinear minimum-cost  Steiner  trees can be efficiently 
approximated arbitrari ly close to optimal [1]. On the other hand,  unless P = N P ,  the Steiner 
Tree Problem in general graphs c~.nnot be approximated within a factor of 1 + e for sufficiently 
small e > 0 [4, 7]. For arbi t rary  weighted graphs, the best Steiner approximat ion ratio achievable 
within polynomial t ime was gradually decreased from 2 to 1.59 in a series of works [20, 21, 2, 22, 
18, 15, 10]. 

In this paper we present a polynomial- t ime approximation scheme with a performance ratio 
approaching 1 + ~ ~ 1.55 which improves upon the previously best -known ratio of 1.59 due to 
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Hougardy and PrSmel [10]. We apply our heuristic to the Steiner Tree Problem in quasi-bipartite 
graphs (i.e., where all non-terminals are palrwise disjoint). In quasi-bipartite graphs our heuristic 
achieves an approximation ratio of ~ 1.28 within t ime O(mn2), where m and n are the numbers of 
terminals and non-terminals in the graph, respectively. This is an improvement over the primal- 
dual algorithm by Rajagopalan and Vazirani [19] where the bound is more than  1.5. We also 
show that  a well-known Iterated 1-Steiner heuristic [13, 9, 14] achieves an approximation ratio 
of 1.5 for quasi-bipartite graphs; previously, no non-trivial bounds were known for the Iterated 
1-Steiner heuristic. Finally, we improve the approximation ratio achievable for the Steiner Tree 
Problem in complete graphs with edge weights 1 and 2, by decreasing it from the previously 
known } [4] to less than 1.28 for our algorithm. 

The remainder of the paper is organized as follows. In the next section we introduce basic 
definitions, notation and properties. In Section 3 we present our main  algorithm (called k-LCA) 
and formulate the basic approximation result. In Sections 4 and 5 we prove the approximation 
ratio of the algorithm k-LCA in general graphs and estimate the performance of the Iterated 
1-Steiner heuristic and k-LCA in quasi-bipartite graphs and in complete graphs with weights 1 
and 2. We conclude by proving in Section 6 the basic approximation result for k-LCA. 

2 Definitions, Notations and Basic Properties 

Let G = (V, E, cost) be a graph with a non-negative cost function on its edges. Any tree in G 
spanning a given set of terminals S G V is called a Steiner tree, and the cost of a tree is defined 
to be the sum of its edge costs. The Steiner Tree Problem (STP) seeks a minimum-cost Steiner 
tree. Note that  a Steiner tree may contain non-terminal vertices and these are referred to as 
Steiner points. We can assume that  the cost function over G = (V, E, cost) is metric (i.e., the 
triangle inequality holds) since we can replace any edge e E E with the  shortest path  connecting 
the ends of e. Henceforth we will therefore assume that  G is a complete graph. Similarly, for the 
subgraph Gs induced by the terminal set S, Gs is a complete graph with vertex set S. 

Let MST(Gs) be the minimum spanning tree of Gs. For any graph H, cost(H) is the sum 
of the costs of all edges in H. We thus denote the cost of a min imum spanning tree of H by 
mst(H), e.g., cost(MST(Gs)) = mst(Gs). For brevity, we use rest to denote mst(Gs). In order 
to simplify our analyses, we further assume that  all edge costs in G are unique (this ensures that  
the optimal Steiner tree and minimum spanning tree are unique). 

A Steiner tree over a subset of the terminals S' C S in which all terminals S' are leaves is called 
a full component (see Figure l(a)). Any Steiner tree can be decomposed into full components 
by splitting all the non-leaf terminals. Our algorithm will proceed by adding full components 
to a growing solution, based on their "relative cost savings" (this notion will be made precise 
below). We ass,,me that  any full component has its own copy of each Steiner point so that  full 
components chosen by our algorithm do not share Steiner points. 

A Steiner tree which does not contain any Steiner points (i.e., where each full component  
consists of a single edge), will be henceforth called a terminal-spanning tree. Our algorithm 
will compute relative cost savings with respect to the "shrinking" terminal-spanning tree which 
initially coincides with MST(Gs).  

The relative cost savings of full components are represented by a ratio of how much a full 
component decreases the cost of the current terminal-spanning tree over the cost of connecting 
its Steiner points to terminals. The cost savings of an arbitrary graph H with respect to a 
terminal-spanning tree T is the difference between the cost of T and the cost of the Steiner tree 
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Figure 1: (a) A full component K: filled circles denote terminals and empty circles denote Steiner 
points. (b) Connected components of Loss(K) to be collapsed, dashed edges belong to Loss(K). 
(c) The corresponding terminal-spanning tree C[K] with the contracted Loss(K). 

obtained by augmenting H with the edges of T. Formally, let T[H] be the minimum cost graph 
in H U T which Contains H and spans all the terminals of S (see Figure 2). The gain of H 
with respect to T is defined as 9ainT(H) = cost(T) - cost(T[H]). If H is a Steiner tree, then 
gainT(H) = cost(T) - cost(H). Note that  gainT(H) < cost(T) - mst(T U H) because T[H] 
cannot cost less than MST(TUH) .  We will use the following property of gain proved in [21, 2]. 

H 
~ T[H] " Q  

(a) (b) 

Figure 2: (a) A graph H (dashed edges) and a terminal-spanning tree T (solid edges). (b) The 
corresponding graph T[H] contains H and spans all the terminals. 

L e m m a  1 For any terminal-spanning tree T and graphs H and H r, 

gainT(H U H') < gainT(H) + gainT(H') 

The minimum-cost connection of Steiner points of a full component K to its terminals is 
denoted Loss(K). Formally, Loss(K) is a mlnimum-cost forest spanning the Steiner nodes of a 
full component K such that each connected component contains at least one terminal (see Figure 
l(b)). Intuitively, Loss will serve as an upper bound on the optimal solution cost increase during 
our algorithm's execution (as will be elaborated below). We will denote the cost of Loss(K) by 
loss(K). The loss of a union of full components is the sum of their individual losses. 

As soon as our algorithm accepts a full component K it contracts its Loss (K), i.e. "collapses" 
each connected component of Loss into a single node (see Figure l(c)). Formally, a loss-contracted 
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full component  C[K] is a terminal-spanning tree over terminals of K in which two terminals 
are comaected if there is an edge between the corresponding two connected components  in the 
forest Loss(K). The cost of any edge in C[K] coincides with the cost of the corresponding 
edge in K.  The  1-to-1 correspondence between edges of K \ Loss(K) and C[K] implies that 
cost(H)-loss(H) = cost(C[H]). Similarly, for any Steiner tree H, C[H] is the terminal-spanning 
tree in which the losses of all full components of H are contracted. 

Our algorithm constructs a k-restricted Steiner tree, i.e., a Steiner tree in which each full 
component has at  most  k terminals. Let Optk be an optimal k-restricted Steiner tree, and let 
optk and lossk be the cost and loss of Optk, respectively. Let opt and loss be the cost and loss 
of the optimal Steiner tree, respectively. 

We now prove the following lower bound on the cost of the optimal k-restricted Steiner tree. 

L e m m a  2 Let H be a Steiner tree; if gainc[n](K) <__ 0 for any k-restricted j~all component K, 
then 

cost(H) - loss(H) = cost(C[H]) < optk 

P r o o f .  Let K 1 , . . . ,  Kp beful l  components of Optk. 

cost( C[H]) - optk = gainc[~(Optk) 

= gainc[~(K1 U . . .  t9 Kp) 

< gainc[H](K1 ) + . . .  +gainc[~(Kp) 
< 0 

[] 

An approximation ratio of an algorithm is an upper bound on the ratio of the cost of the 
found solution over the cost of the optimal solution. In the next section we will propose a new 
algorithm for the Steiner Tree Problem, and then prove a (best-to-date) approximation ratio for 
it. 

3 The Algorithm 

All previous heuristics (except Berman and Ramayer's [2] approach) with provably good approx- 
imation ratios choose appropriate full components and then contract them in order to keep them 
for the overall solution. This does not allow us to give up an already-accepted full component 
even if later we would find out that  a better full component disagrees with a previously accepted 
(two components disagree if they share at least two terminals). 

The main idea behind the Loss-Contracting Algorithm (see Figure 3) is to contract as little as 
possible so that  (i) a chosen full component may still participate into the  overall solution but (ii) 
not many other full components would be rejected. In particular, if we contract Loss(K), i.e., 
replace a full component  K with C[K], then (i) it will not cost anything to add a full component 
K in the overall solution and (ii) we decrease the gain of full components  which disagree with K 
by a small value (e.g., less than in the Berman-Ramayer algorithm for large k, and much smaller 
than in [15] for any k). 

Our algorithm iteratively modifies a terrninal-spanniug tree T, which is originally MST(Gs),  
by incorporating into T loss-contracted full components greedily chosen from G. The intuition 
behind the gain-over-loss objective ratio is as follows. The cost of the  approximate solution lies 
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between rest = mst(Gs) and oPtk. If we accept a component K,  then it increases (by a gain 
of K)  the gap between rest and the cost of the approximation. Thus the gain of K is our clear 
profit. On the other hand, if K does not belong to OPTk, then after accepting K we would 
no longer be able to reach Optk because we would need to pay for the connection of incorrectly 
chosen Steiner points. Therefore, the value of loss(K), which is the connection cost of Steiner 
points of K to terminals, is an upper bound on the increase in the cost gap between optk and 
the best achievable solution after accepting K.  Thus loss(K) is an estimate of our connection 
expense. Finally, maximizing the ratio of gain over loss is equiwalent to maximizing the profit 
per unit  expense. 

Loss-Contracting Algorithm (k-LCA) for Steiner Trees in Graphs 
Input: A complete graph G = (V, E, cost) with edge costs satisfying the triangle inequality, 

a set of terminals S C V, and an integer k < ]S I 
Output: A k-restricted Steiner tree in G connecting all the terminals in S 

T = MST(Gs)  
H = G s  

Repeat forever 
Find a k-restricted full component K with the maximum r = gainT(K)/loss(K) 
I f  r < 0 then exit repeat 
H = H U K  
T =  M S T ( T U C [ K  D 

Output the tree MST(H)  

Figure 3: The k-restricted Loss-Contracting Al- 
gorithm (k-LCA). 

In Section 6 we will show that cost(T) - mst(T U K) = gainT(K). Therefore, each time the 
algorithm chooses a full component K,  the cost of T decreases by 9ainT(K) + loss(K). This will 
imply the basic approximation result proved in Section 6. 

Theorem 1 For any instance of the Steiner Tree Problem, the cost Approx of the Steiner tree 
produced by algorithm k-L CA is at most: 

( mst - optk ) 
Approx < lossk . in 1 + -[ossk + optk (1) 

4 Per formance  of k-LCA in General  Graphs  

Our estimate of the performance ratio of algorithm k-LCA in arbitrary graphs is based on the 
estimates of optimal k-restricted Steiner trees. Let Pk be the worst-case ratio of ovtk It was opt" 

shown in [5] that pk < 1 + ([log 2 k] + 1) -1. We will show below that  the approximation ratio of 
k-LCA is at most pk(1 + ½ l n ( ~  - 1)). Therefore, the approximation ratio of k-LCA converges 

to 1 + _~__~3 < 1.55 when k -+ c¢. This is an improvement over the algorithm given by Hougrady 
and Prommel [10], where the approximation ratio approaches 1.59. 
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T h e o r e m  2 The k-LCA algorithm has an approximation ratio of at most (1 + ½ h(pA~ - 1))pk 

Proof .  Since rest <_ 2opt (see [20]), the inequality (1) yields the following upper bound on the 
output tree cost of k-LCA. 

( 2 t-opt   
Approx <_ loss~ . lu 1 + 1-ossk ] + opt~ 

It was proved in [15] that for any Steiner tree T, loss(T) < ½cost(T). Therefore, lossk <_ 
~optk. 

The partial derivative (lossk. ln(1 + 2opt-optk ~v is always positive; therefore, the the upper lossk )lloss~ 
1 obtai~ bound on Approx achieves maximum when lossk = ~optk. Thus, we 

Appr°------~x < °pt--~ " ( l + h ( ~ -  -- opt 2 

Since the upper bound above grows when optk increases, we can replace ~ with the maximum opt 
value of Pk. [] 

5 Steiner Trees in Quasi-Bipartite Graphs and Complete Graphs 
with Edge Weights 1 and 2 

Recently Rajagopalan and Vazirani [19] suggested a primal-dual -based algorithm for approxi- 
mating Steiner trees. They show that their algorithm has an approximation ratio of 1.5 + c for 
quasi-bipartite graphs, i.e., the graphs where all non-terminals are palrwise disjoint. We first 
show that the well-known Iterated 1-Steiner heuristic [13, 9, 14] has an approximation ratio of 
1.5. Next, we apply algorithm k-LCA to quasi-bipartite graphs and estimate its runtime. Finally 
we prove that the performance ratio of k-LCA for quasi-bipartite graphs is below 1.28. We also 
apply k-LCA to the Steiner Tree Problem in complete graphs with edge weights 1 and 2. Bern 
and Plassmann [4] proved that this problem is MAX SNP-hard and gave a ~-approximation 
algorithm. Applying Lovasz's algorithm for the parity matroid problem (see [16]), an 1.2875- 
approximation algorithm was given in [3]. We will show that the performance ratio of algorithm 
k-LCA approaches 1.28 for such graphs, improving on previously achievable bounds. 

T h e  I t e r a t e d  1-Steiner  heur is t ic .  The Iterated 1-Steiner heuristic (I1S) (see [13, 9, 14]) 
repeatedly (while it is possible) adds Steiner points to the terminal set, which decreases the cost 
of the minimum spanning tree over terminals. Accepted Steiner nodes are deleted if they become 
useless, i.e., i / their  degree become 1 or 2 in the MST over the terminals. Although I1S decreases 
the MST cost by the maximum possible value at each iteration, we will estimate the cost of the 
output Steiner tree regardless of how it was obtained. The following theorem will also enable us 
to estimate the performance ratio of a faster Batched variant of the Iterated 1-Steiner heuristic 
[13, 9, 14]. 

T h e o r e m  3 Given an instance o] the Steiner Tree Problem in a quasi-bipartite graph G, let H 
be a Steiner tree in G such that (4) any Steiner point has degree at least 3 and (ii) H cannot be 
improved by adding any other Steiner point, i.e., mst (H O v) > cost(H) for any vertex v in G. 
Then the cost of H is at most 1.5 times the optimal. 
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P r o o f .  Any full component in quasi-bipartite graphs has a single Steiner point. Therefore, the 
loss of any full component equals the cost of the least-cost edge connecting its single Steiner point 
to a terminal. Since any Steiner point has degree at least 3 (condition (i)), the loss of any full 
component  in H is at most one third of its cost. Thus, loss(H) < ~cost(H). 

We now show that  gaing[H] (K) <_ 0 for any full component  K.  Indeed, condition (ii) implies 
tha t  mst(H U K) >_ cost(H). If we contract the loss of H,  then we can decrease M S T ( H  U K) 
by at most loss(H) since reduction by loss(H) happens only if all edges of Loss(H) belong to 
M S T ( H  U g) .  Therefore, mst(C[H] U K) >_ mst(H U K) - loss(H) and mst(C[H] U K) > 
cost(H) - loss(H) = cost(C[H]). Thus, gainc[l~](K) <_ cost(C[H]) - mst(C[H] U K) <_ O. By 
Lemma 2, cost(H)-Ioss(H) <_ opt and since loss(H) <_ ½cost(H), we obtain cost(H) <_ 3 opt. [] 

The above result helps explain why the Iterated 1-Steiner and Rajagopalan-Vazirani heuris- 
tics perform similarly when applied to instances of the Steiner Tree Problem restricted to the 
rectilinear plane (see [17]). 

l%unt ime  o f  the algorithm k - L C A  in q u a s i - b i p a r t i t e  g r a p h s .  For a given Steiner point v, 
algorithm k-LCA adds only a full component with the largest gain since the loss is determined 
by v. We can find a full tree with the maximllm gain with respect to a terminal-spanning tree T 
among all possible full components with Steiner point v by merely finding all neighbors of v in 
M S T ( T  O v). Therefore a full component  maximizing the gain-over-loss ratio over all k can be 
found within polynomial time. 

We estimate the runtime of k-LCA for quasi-bipartite graphs as follows. Let m and n be the 
number  of terminals and non-terminals, respectively. The  number of iterations is O(n) since a 
Steiner point can be added only once to H. Each iteration consists of O(n) gain evaluations, each 
of which can be computed within O(m) time. Finally, using the appropriate data  structures, the 
k-LCA algorithm can be implemented within a total runtime of O(n2m), where m is the number 
of terminals. 

Performance of the algorithm k-LCA.  We first estimate the loss of a Steiner tree in the 
cases of quasi-bipartite graphs and complete graphs with edge weights 1 and 2. 

Lemma 3 For the Steiner Tree Problem in quasi-bipartite graphs and complete graphs with edge 
weights i and 2, 

rest <_ 2(optk - lossk) (2) 

P r o o f .  For quasi-bipartite graphs, let K be an arbitrary full component  of a Steiner tree T with 
p terminals connected by a single Steiner point with edges of lengths do, d l , - . . ,  dp-1. Assume 
tha t  loss(K) = do = min{di}. Let rest(K) be the cost of the min imum spanning tree of Gs,, 
where S' is the set of terminals in K.  By the triangle inequality, 

p-1  

rest(K) <_ ~-~(do + di) = p" do + cost(K) - 2d0 _< 2cost(K) - 2loss(K) 
i=1 

The  bound (2) follows from the fact that  mst, the minimum spanning tree cost of S, does not 
exceed the sum of rest-costs for terminals in each of the full components in Optk. 

Now we prove the lemma for the case of complete graphs with edge weights 1 and 2. Let m and 
n respectively be the number of terminals and Steiner points in the optimal k-restricted Steiner 
tree Optk. Then  rest <_ 2m - 2 since all edge weights are at most 2 and optk >_ m + n - 1 since 
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Optk contains  m + n nodes. We may  assume tha t  full componen t s  of Optk contain only edges of 
weight 1, and  therefore lossk = n. Thus,  rest g 2m - 2 = 2 (m + n - 1 - n) _< 2(optk - lossk). [] 

T h e o r e m  4 Algorithm k-LCA has an approximation ratio of at most ,~ 1.279 for  quasi-bipartite 
graphs and an approximation ratio approaching ~ 1.279 for complete graphs with edge weights 1 
and 2. 

P r o o f .  After  subst i tu t ing the  MST bound  (2) into inequali ty (1), we obtain 

Approx < lossk . In ( opt~ 1) + optk (3) 
- \lossk 

Taking the  part ial  derivative of (loss optk 1 • ln(tos,k - ))toe.k, we see t ha t  the  single m a y i m u m  of the 
lossk upper  b o u n d  (3) occurs when  x = optk-lo,,~ is the root  of the  equat ion 1 + l ~ x  + x = 0. Solving 

this equat ion  numerical ly we obtain x ~ 0.279. Finally, we subs t i tu te  x into (3) 

m l_ 
x • optk- + optk = (x + 1) - optk ,-~ 1.279. optk Approx g 1 + x x 

The  bound  above is valid for the ou tpu t  of a lgor i thm k-LCA for quasi-bipart i te  graphs if we 
set k = IS[, i.e., if we omit  the  index k. For complete  graphs  with edge weights 1 and 2, optk 
converges to  opt, and  the  approximat ion  ratio of a lgor i thm k-LCA therefore converges to 1.279 
when k --~ oo. [] 

6 A p p r o x i m a t i o n  Rat io  of  A l g o r i t h m  k-LCA 

This  section is devoted to the  proof  of the  Theorem 1. Let K 1 , . . . ,  Klast be full components  
chosen by k-LCA. Let To = MST(Gs) and let Ti, i = 1 , . . . ,  last be the  tree T produced by 
k-LCA after i i terations. Let  cos t (R)  be the  cost of Ti after the i - th  i terat ion of k-LCA. 

L e m m a  4 gain~_l (Ki ) = cost(Ti_l) - mst(Ti_l U Ki) 

P r o o f .  I t  is sufficient to show tha t  7~_1[K/] = MST(Ti_I U Ki). Assume tha t  MST(Ti_I U Ki) 
does not  contain some edge e E Ki and let A and B be two connected components  of Ki - {e}. 
We will show tha t  either A or B has a larger gain-over-loss ratio, which contradicts  the choice of 
Ki. 

Since e does not  belong to MST(Ti-1 U Ki), we have cost(Ti_l[A U B]) < cost(Ti_l[Ki]). 
By L e m m a  1, gainT~_~(Ki) < gainT,_~(A U B) < gainT~_~(A) + gainT~_t(B). Note tha t  e is 
the longest  edge on a K i -pa th  between some pair of terminals ,  and therefore cannot  belong to 
Loss(Ki). Thus  Loss(Ki) ---- Loss(A) U Loss(B) and loss(Ki) = loss(A) + loss(B)• Finally, 

gainTi_.(Ki) gainTi_~(A) + gaina~_,(B) I gainTi-'(A) gainTi_,(B) 
loss(Ki) < loss(A) + loss(B) <_ m a x .  loss(A) ' lo~s(B) j 

[] 

We define the  supergain of a graph H with respect to a Steiner tree T as super9ainy(H) = 
gainT(H) + loss(H). By L e m m a  4, the supergain of Ki wi th  respect to TiLl is 

supergainTi_, (Ki) = gainTi_, (gi) + loss(Ki) 
= cost(Ti_l) - mst(Ti_l U gi )  + mst(Ti_l tO Ki) - cost(Ti) 

= cost(Ti_z) - cost(Ti) (4) 
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Let Gi = supergainT~ (OPTk) be the supergain of the optimal k-restricted Steiner tree OPTk 
with respect to Ti i = 0, 1 , . . . ,  last. Let loss(n) be the loss of the first n accepted full trees 
K 1 , . . . ,  Kn. We will show that  the loss of full components  accepted by k-LCA does not grow too 
fast. 

L e m m a  5 If  Gn is positive, then toss(n) < in -~ 
l o s s k  - -  

P r o o f .  Let li = loss(Ki) and gi = supergain~_~ (Ki) be respectively the loss mad supergain of 
the i- th full Steiner tree accepted by algorithm k-LCA. Let Optk consist of full components Xj.  
By Lemma 1, 

Go < ~x~eoptk supergainTo(XJ) 
loss----~ - -  ~XsEOptk loss(Xj) < 1 + maxx~eoptk 

G~_I < ~ Therefore, Inductively, for i = 1, 2, . . . .  , n, ~ _ t~" 

li 
gi >_ losskGi-1 

{ gaiWro(Xj) } gainTo(K1) _ 91 
loss(Xj) <__ 1 + loss(K1) ll 

(5) 

Each t ime k-LCA accepts a full tree Ki, it decreases the cost of 7"/ by the supergain of Ki, 
which results in decrease of the supergain of Optk by the same value. The  equality (4) yields 
Gi = cost(Ti) - cost(OPTk) + lossk. Therefore, Gi-1 - Gi = cost(Ti_l) - cost(Ti) = gi. 

The that  Gi-1 __h_ Since G ,  inequality (5) implies G~-- Gi -1 -  gi < (1- ,o-k)" > 0, unraveling 
the last inequality yields 

a o  - lo s  
i=1 

Taking the natltrM logarithms of both  sides and using inequality x > In(1 + z) we finally obtain 

Go ~ li___£_ _ toss(n) (6) 
In ~ >- ioss~ loss~ 

i=1 

[] 

By Lemma 2, after all iterations terminate, the  cost of the last tree Tzast will be at most 
optk. We stop iterating when cost(Tn+l) < optk < cost(Tn) for some n. It can be show that we 
can "partially" perform the ( n +  1)-st iteration so that  cost(Tn+l) will coincide with optk. Then 
Go = rest - optk + lossk and Gn+l = optk - optk + lossk = lossk.  Finally, 

Approx < cost(Tn+l) q- loss(n + 1) < optk + oPtk. In 
rest - optk + lossk 

Iossk 
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