
770

I m p r o v e d S te iner Tree A p p r o x i m a t i o n in Graphs*

Gabriel Robins t and Alexander Zelikovsky t

tDepartment of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
robius@cs.virginia.edu, www.cs.virginia, edu/robins

tDepartment of Computer Science, Georgia State University, Atlanta, GA 30303
alexz@cs.gsu.edu, www.cs.gsu.edu/- matazz

Abstract

The Steiner tree problem in weighted graphs seeks a minimum weight connected subgraph
containing a given subset of the vertices (terminals). We present a new polynomial-time
heuristic with an approximation ratio approaching 1 + 1~___33 ~ 1.55, which improves upon
the previously best-known approximation algorithm of [10] with performance ratio ~ 1.59.
In quasi-bipartite graphs (i.e., in graphs where all non-terminals are pairwise disjoint), our
algorithm achieves an approximation ratio of ~ 1.28, whereas the previously best method
achieves an approximation ratio approachiug 1.5 [19]. For complete graphs with edge weights
1 and 2, we show that our heuristic has an approximation ratio approaching ~ 1.28, which

4 improves upon the previously best-known ratio of ~ [4]. Our method is considerably simpler
and easier to implement than previous approaches. Our techniques can also be used to
prove that the Iterated 1-Steiner heuristic [14] achieves an approximation ratio of 1.5 in
quasi-blpartite graphs, thus providing the first known non-trivial performance ratio of this
well-known method.

1 I n t r o d u c t i o n

Given an arbi t rary weighted graph with a distinguished vertex subset, the Steiner Tree Problem

asks for a minimum-cost subtree spanning the distinguished vertices. Steiner trees are important
in various applications such as VLSI routing [14], wirelength es t imat ion [6], phylogenetic tree
reconstruction in biology [11], and network routing [12]. The Steiner Tree Problem is N P - h a r d
even in the Euclidean or rectilinear metrics [8].

Arora established tha t Euclidean and rectilinear minimum-cost Steiner trees can be efficiently
approximated arbitrari ly close to optimal [1]. On the other hand, unless P = N P , the Steiner
Tree Problem in general graphs c~.nnot be approximated within a factor of 1 + e for sufficiently
small e > 0 [4, 7]. For arbi t rary weighted graphs, the best Steiner approximat ion ratio achievable
within polynomial t ime was gradually decreased from 2 to 1.59 in a series of works [20, 21, 2, 22,
18, 15, 10].

In this paper we present a polynomial- t ime approximation scheme with a performance ratio
approaching 1 + ~ ~ 1.55 which improves upon the previously best -known ratio of 1.59 due to

"This work was supported by a Packard Foundation Fellowship, by a National Science Foundation Young
Investigator Award (MIP-9457412), and by a GSU Research Initiation Grant.

771

Hougardy and PrSmel [10]. We apply our heuristic to the Steiner Tree Problem in quasi-bipartite
graphs (i.e., where all non-terminals are palrwise disjoint). In quasi-bipartite graphs our heuristic
achieves an approximation ratio of ~ 1.28 within t ime O(mn2), where m and n are the numbers of
terminals and non-terminals in the graph, respectively. This is an improvement over the primal-
dual algorithm by Rajagopalan and Vazirani [19] where the bound is more than 1.5. We also
show that a well-known Iterated 1-Steiner heuristic [13, 9, 14] achieves an approximation ratio
of 1.5 for quasi-bipartite graphs; previously, no non-trivial bounds were known for the Iterated
1-Steiner heuristic. Finally, we improve the approximation ratio achievable for the Steiner Tree
Problem in complete graphs with edge weights 1 and 2, by decreasing it from the previously
known } [4] to less than 1.28 for our algorithm.

The remainder of the paper is organized as follows. In the next section we introduce basic
definitions, notation and properties. In Section 3 we present our main algorithm (called k-LCA)
and formulate the basic approximation result. In Sections 4 and 5 we prove the approximation
ratio of the algorithm k-LCA in general graphs and estimate the performance of the Iterated
1-Steiner heuristic and k-LCA in quasi-bipartite graphs and in complete graphs with weights 1
and 2. We conclude by proving in Section 6 the basic approximation result for k-LCA.

2 Definitions, Notations and Basic Properties

Let G = (V, E, cost) be a graph with a non-negative cost function on its edges. Any tree in G
spanning a given set of terminals S G V is called a Steiner tree, and the cost of a tree is defined
to be the sum of its edge costs. The Steiner Tree Problem (STP) seeks a minimum-cost Steiner
tree. Note that a Steiner tree may contain non-terminal vertices and these are referred to as
Steiner points. We can assume that the cost function over G = (V, E, cost) is metric (i.e., the
triangle inequality holds) since we can replace any edge e E E with the shortest path connecting
the ends of e. Henceforth we will therefore assume that G is a complete graph. Similarly, for the
subgraph Gs induced by the terminal set S, Gs is a complete graph with vertex set S.

Let MST(Gs) be the minimum spanning tree of Gs. For any graph H, cost(H) is the sum
of the costs of all edges in H. We thus denote the cost of a min imum spanning tree of H by
mst(H), e.g., cost(MST(Gs)) = mst(Gs). For brevity, we use rest to denote mst(Gs). In order
to simplify our analyses, we further assume that all edge costs in G are unique (this ensures that
the optimal Steiner tree and minimum spanning tree are unique).

A Steiner tree over a subset of the terminals S' C S in which all terminals S' are leaves is called
a full component (see Figure l(a)). Any Steiner tree can be decomposed into full components
by splitting all the non-leaf terminals. Our algorithm will proceed by adding full components
to a growing solution, based on their "relative cost savings" (this notion will be made precise
below). We ass,,me that any full component has its own copy of each Steiner point so that full
components chosen by our algorithm do not share Steiner points.

A Steiner tree which does not contain any Steiner points (i.e., where each full component
consists of a single edge), will be henceforth called a terminal-spanning tree. Our algorithm
will compute relative cost savings with respect to the "shrinking" terminal-spanning tree which
initially coincides with MST(Gs).

The relative cost savings of full components are represented by a ratio of how much a full
component decreases the cost of the current terminal-spanning tree over the cost of connecting
its Steiner points to terminals. The cost savings of an arbitrary graph H with respect to a
terminal-spanning tree T is the difference between the cost of T and the cost of the Steiner tree

772

~ ~ ~ , , ~._ ~_ ~ a c C

(a) (b) (c)

Figure 1: (a) A full component K: filled circles denote terminals and empty circles denote Steiner
points. (b) Connected components of Loss(K) to be collapsed, dashed edges belong to Loss(K).
(c) The corresponding terminal-spanning tree C[K] with the contracted Loss(K).

obtained by augmenting H with the edges of T. Formally, let T[H] be the minimum cost graph
in H U T which Contains H and spans all the terminals of S (see Figure 2). The gain of H
with respect to T is defined as 9ainT(H) = cost(T) - cost(T[H]). If H is a Steiner tree, then
gainT(H) = cost(T) - cost(H). Note that gainT(H) < cost(T) - mst(T U H) because T[H]
cannot cost less than MST(TUH) . We will use the following property of gain proved in [21, 2].

H
~ T[H] " Q

(a) (b)

Figure 2: (a) A graph H (dashed edges) and a terminal-spanning tree T (solid edges). (b) The
corresponding graph T[H] contains H and spans all the terminals.

L e m m a 1 For any terminal-spanning tree T and graphs H and H r,

gainT(H U H') < gainT(H) + gainT(H')

The minimum-cost connection of Steiner points of a full component K to its terminals is
denoted Loss(K). Formally, Loss(K) is a mlnimum-cost forest spanning the Steiner nodes of a
full component K such that each connected component contains at least one terminal (see Figure
l(b)). Intuitively, Loss will serve as an upper bound on the optimal solution cost increase during
our algorithm's execution (as will be elaborated below). We will denote the cost of Loss(K) by
loss(K). The loss of a union of full components is the sum of their individual losses.

As soon as our algorithm accepts a full component K it contracts its Loss (K), i.e. "collapses"
each connected component of Loss into a single node (see Figure l(c)). Formally, a loss-contracted

773

full component C[K] is a terminal-spanning tree over terminals of K in which two terminals
are comaected if there is an edge between the corresponding two connected components in the
forest Loss(K). The cost of any edge in C[K] coincides with the cost of the corresponding
edge in K. The 1-to-1 correspondence between edges of K \ Loss(K) and C[K] implies that
cost(H)-loss(H) = cost(C[H]). Similarly, for any Steiner tree H, C[H] is the terminal-spanning
tree in which the losses of all full components of H are contracted.

Our algorithm constructs a k-restricted Steiner tree, i.e., a Steiner tree in which each full
component has at most k terminals. Let Optk be an optimal k-restricted Steiner tree, and let
optk and lossk be the cost and loss of Optk, respectively. Let opt and loss be the cost and loss
of the optimal Steiner tree, respectively.

We now prove the following lower bound on the cost of the optimal k-restricted Steiner tree.

L e m m a 2 Let H be a Steiner tree; if gainc[n](K) <__ 0 for any k-restricted j~all component K,
then

cost(H) - loss(H) = cost(C[H]) < optk

P r o o f . Let K 1 , . . . , Kp beful l components of Optk.

cost(C[H]) - optk = gainc[~(Optk)

= gainc[~(K1 U . . . t9 Kp)

< gainc[H](K1) + . . . +gainc[~(Kp)
< 0

[]

An approximation ratio of an algorithm is an upper bound on the ratio of the cost of the
found solution over the cost of the optimal solution. In the next section we will propose a new
algorithm for the Steiner Tree Problem, and then prove a (best-to-date) approximation ratio for
it.

3 The Algorithm

All previous heuristics (except Berman and Ramayer's [2] approach) with provably good approx-
imation ratios choose appropriate full components and then contract them in order to keep them
for the overall solution. This does not allow us to give up an already-accepted full component
even if later we would find out that a better full component disagrees with a previously accepted
(two components disagree if they share at least two terminals).

The main idea behind the Loss-Contracting Algorithm (see Figure 3) is to contract as little as
possible so that (i) a chosen full component may still participate into the overall solution but (ii)
not many other full components would be rejected. In particular, if we contract Loss(K), i.e.,
replace a full component K with C[K], then (i) it will not cost anything to add a full component
K in the overall solution and (ii) we decrease the gain of full components which disagree with K
by a small value (e.g., less than in the Berman-Ramayer algorithm for large k, and much smaller
than in [15] for any k).

Our algorithm iteratively modifies a terrninal-spanniug tree T, which is originally MST(Gs),
by incorporating into T loss-contracted full components greedily chosen from G. The intuition
behind the gain-over-loss objective ratio is as follows. The cost of the approximate solution lies

774

between rest = mst(Gs) and oPtk. If we accept a component K, then it increases (by a gain
of K) the gap between rest and the cost of the approximation. Thus the gain of K is our clear
profit. On the other hand, if K does not belong to OPTk, then after accepting K we would
no longer be able to reach Optk because we would need to pay for the connection of incorrectly
chosen Steiner points. Therefore, the value of loss(K), which is the connection cost of Steiner
points of K to terminals, is an upper bound on the increase in the cost gap between optk and
the best achievable solution after accepting K. Thus loss(K) is an estimate of our connection
expense. Finally, maximizing the ratio of gain over loss is equiwalent to maximizing the profit
per unit expense.

Loss-Contracting Algorithm (k-LCA) for Steiner Trees in Graphs
Input: A complete graph G = (V, E, cost) with edge costs satisfying the triangle inequality,

a set of terminals S C V, and an integer k <]S I
Output: A k-restricted Steiner tree in G connecting all the terminals in S

T = MST(Gs)
H = G s

Repeat forever
Find a k-restricted full component K with the maximum r = gainT(K)/loss(K)
I f r < 0 then exit repeat
H = H U K
T = M S T (T U C [K D

Output the tree MST(H)

Figure 3: The k-restricted Loss-Contracting Al-
gorithm (k-LCA).

In Section 6 we will show that cost(T) - mst(T U K) = gainT(K). Therefore, each time the
algorithm chooses a full component K, the cost of T decreases by 9ainT(K) + loss(K). This will
imply the basic approximation result proved in Section 6.

Theorem 1 For any instance of the Steiner Tree Problem, the cost Approx of the Steiner tree
produced by algorithm k-L CA is at most:

(mst - optk)
Approx < lossk . in 1 + -[ossk + optk (1)

4 Per formance of k-LCA in General Graphs

Our estimate of the performance ratio of algorithm k-LCA in arbitrary graphs is based on the
estimates of optimal k-restricted Steiner trees. Let Pk be the worst-case ratio of ovtk It was opt"

shown in [5] that pk < 1 + ([log 2 k] + 1) -1. We will show below that the approximation ratio of
k-LCA is at most pk(1 + ½ l n (~ - 1)). Therefore, the approximation ratio of k-LCA converges

to 1 + _~__~3 < 1.55 when k -+ c¢. This is an improvement over the algorithm given by Hougrady
and Prommel [10], where the approximation ratio approaches 1.59.

775

T h e o r e m 2 The k-LCA algorithm has an approximation ratio of at most (1 + ½ h(pA~ - 1))pk

Proof . Since rest <_ 2opt (see [20]), the inequality (1) yields the following upper bound on the
output tree cost of k-LCA.

(2 t-opt
Approx <_ loss~ . lu 1 + 1-ossk] + opt~

It was proved in [15] that for any Steiner tree T, loss(T) < ½cost(T). Therefore, lossk <_
~optk.

The partial derivative (lossk. ln(1 + 2opt-optk ~v is always positive; therefore, the the upper lossk)lloss~
1 obtai~ bound on Approx achieves maximum when lossk = ~optk. Thus, we

Appr°------~x < °pt--~ " (l + h (~ - -- opt 2

Since the upper bound above grows when optk increases, we can replace ~ with the maximum opt
value of Pk. []

5 Steiner Trees in Quasi-Bipartite Graphs and Complete Graphs
with Edge Weights 1 and 2

Recently Rajagopalan and Vazirani [19] suggested a primal-dual -based algorithm for approxi-
mating Steiner trees. They show that their algorithm has an approximation ratio of 1.5 + c for
quasi-bipartite graphs, i.e., the graphs where all non-terminals are palrwise disjoint. We first
show that the well-known Iterated 1-Steiner heuristic [13, 9, 14] has an approximation ratio of
1.5. Next, we apply algorithm k-LCA to quasi-bipartite graphs and estimate its runtime. Finally
we prove that the performance ratio of k-LCA for quasi-bipartite graphs is below 1.28. We also
apply k-LCA to the Steiner Tree Problem in complete graphs with edge weights 1 and 2. Bern
and Plassmann [4] proved that this problem is MAX SNP-hard and gave a ~-approximation
algorithm. Applying Lovasz's algorithm for the parity matroid problem (see [16]), an 1.2875-
approximation algorithm was given in [3]. We will show that the performance ratio of algorithm
k-LCA approaches 1.28 for such graphs, improving on previously achievable bounds.

T h e I t e r a t e d 1-Steiner heur is t ic . The Iterated 1-Steiner heuristic (I1S) (see [13, 9, 14])
repeatedly (while it is possible) adds Steiner points to the terminal set, which decreases the cost
of the minimum spanning tree over terminals. Accepted Steiner nodes are deleted if they become
useless, i.e., i / their degree become 1 or 2 in the MST over the terminals. Although I1S decreases
the MST cost by the maximum possible value at each iteration, we will estimate the cost of the
output Steiner tree regardless of how it was obtained. The following theorem will also enable us
to estimate the performance ratio of a faster Batched variant of the Iterated 1-Steiner heuristic
[13, 9, 14].

T h e o r e m 3 Given an instance o] the Steiner Tree Problem in a quasi-bipartite graph G, let H
be a Steiner tree in G such that (4) any Steiner point has degree at least 3 and (ii) H cannot be
improved by adding any other Steiner point, i.e., mst (H O v) > cost(H) for any vertex v in G.
Then the cost of H is at most 1.5 times the optimal.

776

P r o o f . Any full component in quasi-bipartite graphs has a single Steiner point. Therefore, the
loss of any full component equals the cost of the least-cost edge connecting its single Steiner point
to a terminal. Since any Steiner point has degree at least 3 (condition (i)), the loss of any full
component in H is at most one third of its cost. Thus, loss(H) < ~cost(H).

We now show that gaing[H] (K) <_ 0 for any full component K. Indeed, condition (ii) implies
tha t mst(H U K) >_ cost(H). If we contract the loss of H, then we can decrease M S T (H U K)
by at most loss(H) since reduction by loss(H) happens only if all edges of Loss(H) belong to
M S T (H U g) . Therefore, mst(C[H] U K) >_ mst(H U K) - loss(H) and mst(C[H] U K) >
cost(H) - loss(H) = cost(C[H]). Thus, gainc[l~](K) <_ cost(C[H]) - mst(C[H] U K) <_ O. By
Lemma 2, cost(H)-Ioss(H) <_ opt and since loss(H) <_ ½cost(H), we obtain cost(H) <_ 3 opt. []

The above result helps explain why the Iterated 1-Steiner and Rajagopalan-Vazirani heuris-
tics perform similarly when applied to instances of the Steiner Tree Problem restricted to the
rectilinear plane (see [17]).

l%unt ime o f the algorithm k - L C A in q u a s i - b i p a r t i t e g r a p h s . For a given Steiner point v,
algorithm k-LCA adds only a full component with the largest gain since the loss is determined
by v. We can find a full tree with the maximllm gain with respect to a terminal-spanning tree T
among all possible full components with Steiner point v by merely finding all neighbors of v in
M S T (T O v). Therefore a full component maximizing the gain-over-loss ratio over all k can be
found within polynomial time.

We estimate the runtime of k-LCA for quasi-bipartite graphs as follows. Let m and n be the
number of terminals and non-terminals, respectively. The number of iterations is O(n) since a
Steiner point can be added only once to H. Each iteration consists of O(n) gain evaluations, each
of which can be computed within O(m) time. Finally, using the appropriate data structures, the
k-LCA algorithm can be implemented within a total runtime of O(n2m), where m is the number
of terminals.

Performance of the algorithm k-LCA. We first estimate the loss of a Steiner tree in the
cases of quasi-bipartite graphs and complete graphs with edge weights 1 and 2.

Lemma 3 For the Steiner Tree Problem in quasi-bipartite graphs and complete graphs with edge
weights i and 2,

rest <_ 2(optk - lossk) (2)

P r o o f . For quasi-bipartite graphs, let K be an arbitrary full component of a Steiner tree T with
p terminals connected by a single Steiner point with edges of lengths do, d l , - . . , dp-1. Assume
tha t loss(K) = do = min{di}. Let rest(K) be the cost of the min imum spanning tree of Gs,,
where S' is the set of terminals in K. By the triangle inequality,

p-1

rest(K) <_ ~-~(do + di) = p" do + cost(K) - 2d0 _< 2cost(K) - 2loss(K)
i=1

The bound (2) follows from the fact that mst, the minimum spanning tree cost of S, does not
exceed the sum of rest-costs for terminals in each of the full components in Optk.

Now we prove the lemma for the case of complete graphs with edge weights 1 and 2. Let m and
n respectively be the number of terminals and Steiner points in the optimal k-restricted Steiner
tree Optk. Then rest <_ 2m - 2 since all edge weights are at most 2 and optk >_ m + n - 1 since

777

Optk contains m + n nodes. We may assume tha t full componen t s of Optk contain only edges of
weight 1, and therefore lossk = n. Thus, rest g 2m - 2 = 2 (m + n - 1 - n) _< 2(optk - lossk). []

T h e o r e m 4 Algorithm k-LCA has an approximation ratio of at most ,~ 1.279 for quasi-bipartite
graphs and an approximation ratio approaching ~ 1.279 for complete graphs with edge weights 1
and 2.

P r o o f . After subst i tu t ing the MST bound (2) into inequali ty (1), we obtain

Approx < lossk . In (opt~ 1) + optk (3)
- \lossk

Taking the part ial derivative of (loss optk 1 • ln(tos,k -))toe.k, we see t ha t the single m a y i m u m of the
lossk upper b o u n d (3) occurs when x = optk-lo,,~ is the root of the equat ion 1 + l ~ x + x = 0. Solving

this equat ion numerical ly we obtain x ~ 0.279. Finally, we subs t i tu te x into (3)

m l_
x • optk- + optk = (x + 1) - optk ,-~ 1.279. optk Approx g 1 + x x

The bound above is valid for the ou tpu t of a lgor i thm k-LCA for quasi-bipart i te graphs if we
set k = IS[, i.e., if we omit the index k. For complete graphs with edge weights 1 and 2, optk
converges to opt, and the approximat ion ratio of a lgor i thm k-LCA therefore converges to 1.279
when k --~ oo. []

6 A p p r o x i m a t i o n Rat io of A l g o r i t h m k-LCA

This section is devoted to the proof of the Theorem 1. Let K 1 , . . . , Klast be full components
chosen by k-LCA. Let To = MST(Gs) and let Ti, i = 1 , . . . , last be the tree T produced by
k-LCA after i i terations. Let cos t (R) be the cost of Ti after the i - th i terat ion of k-LCA.

L e m m a 4 gain~_l (Ki) = cost(Ti_l) - mst(Ti_l U Ki)

P r o o f . I t is sufficient to show tha t 7~_1[K/] = MST(Ti_I U Ki). Assume tha t MST(Ti_I U Ki)
does not contain some edge e E Ki and let A and B be two connected components of Ki - {e}.
We will show tha t either A or B has a larger gain-over-loss ratio, which contradicts the choice of
Ki.

Since e does not belong to MST(Ti-1 U Ki), we have cost(Ti_l[A U B]) < cost(Ti_l[Ki]).
By L e m m a 1, gainT~_~(Ki) < gainT,_~(A U B) < gainT~_~(A) + gainT~_t(B). Note tha t e is
the longest edge on a K i -pa th between some pair of terminals , and therefore cannot belong to
Loss(Ki). Thus Loss(Ki) ---- Loss(A) U Loss(B) and loss(Ki) = loss(A) + loss(B)• Finally,

gainTi_.(Ki) gainTi_~(A) + gaina~_,(B) I gainTi-'(A) gainTi_,(B)
loss(Ki) < loss(A) + loss(B) <_ m a x . loss(A) ' lo~s(B) j

[]

We define the supergain of a graph H with respect to a Steiner tree T as super9ainy(H) =
gainT(H) + loss(H). By L e m m a 4, the supergain of Ki wi th respect to TiLl is

supergainTi_, (Ki) = gainTi_, (gi) + loss(Ki)
= cost(Ti_l) - mst(Ti_l U gi) + mst(Ti_l tO Ki) - cost(Ti)

= cost(Ti_z) - cost(Ti) (4)

778

Let Gi = supergainT~ (OPTk) be the supergain of the optimal k-restricted Steiner tree OPTk
with respect to Ti i = 0, 1 , . . . , last. Let loss(n) be the loss of the first n accepted full trees
K 1 , . . . , Kn. We will show that the loss of full components accepted by k-LCA does not grow too
fast.

L e m m a 5 If Gn is positive, then toss(n) < in -~
l o s s k - -

P r o o f . Let li = loss(Ki) and gi = supergain~_~ (Ki) be respectively the loss mad supergain of
the i- th full Steiner tree accepted by algorithm k-LCA. Let Optk consist of full components Xj.
By Lemma 1,

Go < ~x~eoptk supergainTo(XJ)
loss----~ - - ~XsEOptk loss(Xj) < 1 + maxx~eoptk

G~_I < ~ Therefore, Inductively, for i = 1, 2, , n, ~ _ t~"

li
gi >_ losskGi-1

{ gaiWro(Xj) } gainTo(K1) _ 91
loss(Xj) <__ 1 + loss(K1) ll

(5)

Each t ime k-LCA accepts a full tree Ki, it decreases the cost of 7"/ by the supergain of Ki,
which results in decrease of the supergain of Optk by the same value. The equality (4) yields
Gi = cost(Ti) - cost(OPTk) + lossk. Therefore, Gi-1 - Gi = cost(Ti_l) - cost(Ti) = gi.

The that Gi-1 __h_ Since G , inequality (5) implies G~-- Gi -1 - gi < (1- ,o-k)" > 0, unraveling
the last inequality yields

a o - lo s
i=1

Taking the natltrM logarithms of both sides and using inequality x > In(1 + z) we finally obtain

Go ~ li___£_ _ toss(n) (6)
In ~ >- ioss~ loss~

i=1

[]

By Lemma 2, after all iterations terminate, the cost of the last tree Tzast will be at most
optk. We stop iterating when cost(Tn+l) < optk < cost(Tn) for some n. It can be show that we
can "partially" perform the (n + 1)-st iteration so that cost(Tn+l) will coincide with optk. Then
Go = rest - optk + lossk and Gn+l = optk - optk + lossk = lossk. Finally,

Approx < cost(Tn+l) q- loss(n + 1) < optk + oPtk. In
rest - optk + lossk

Iossk

A c k n o w l e d g m e n t s

We thank Gruia Calinescu for reading earlier drafts of this paper and giving numerous helpful
suggestions.

779

R e f e r e n c e s
[1]

[2]

[3]

[4]

[5]
[6]

S. ARORA, "Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Problems",
Proceedings 37th Annual Symposium on Foundations of Computer Science (1996), 2-11.

P. BERMAN AND V.]:~AMAIYER, "Improved Approximations for the Steiner Tree Problem", J. of Algorithms,
17 (1994), 381-408.

P. BERMAN, M. FUP~R AND A. ZELIKGVSKY, "Applications of the Matroid Parity Problem to Approximating
Steiner Trees", Teeh. Rep. 980021, Computer Science Dept., UCLA, Los Angeles, 1998.

M. BERN AND P. PLASSMANN, "The Steiner Tree Problem with Edge Lengths 1 and 2", Information Pro-
eessin 9 letters 32 (1989), 171-176.

A. BORCHERS AND D.-Z. Du, "The k-Steiner Ratio in Graphs", SIAM J. Computing 26 (1997), 857-869.

A. CALDWELL, A. KAHNG, S. MANTIK, I. MARKOV AND A. ZELIKOVSKY, "On Wirelength Estimations for
Row-Based Placement", Proceedings of the International Symposium on Physical Design, Monterey, Califor-
nia (1998), pp. 4-11.

[7] A. E. F. CLEMENTI AND L. TREVISAN, "Improved Non-Approximability Results for Minimum Vertex Cover
with Density Constraints", Electronic Colloquium on Computational Complezity, TR96-016 (1996).

[8] M. R. Garey, D. S. Johnson. '°The Rectilinear Steiner Problem is NP-Complete' , SIAM J. Appl. Math., 32,
826-834, 1977.

[9] J. GRIFFITH, G. I~OBINS, J. S. SALOVCE, AND T. ZHANG, ~"~OSing the Gap: Near-Optimal Steiner Trees
in Polynomial Time, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13
(1994), pp. 1351-1365.

[10] S. HOUGARDY AND H. J. PRS~M~.L, "A 1.598 Approximation Algorithm for the Steiner Problem in Graphs",
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (1999), 448-453.

[11] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, North-Holland, 1992.

[12] B. Korte, H. J. PrBmel, A. Steger. "Steiner Trees in VLSI-Layouts', In Korte et al.: Paths, Flows and
VLSI-Layout, Springer, 1990.

[13] A. B. KAHNG AND G. ROBL~S, "A New Class of Iterative Steiner Tree Heuristics With Good Performance",
IEEE Transactions on Computer-Aided Design, 11 (7), 1992, pp. 893-902.

[14] A. B. KAHNG AND G. ROBL~S, On Optimal Intereonneetions for VLSI, Kluwer Publishers, 1995.

[15] M. KAPJ'INSKX AND A. ZELIKOVSK¥, "New Approximation Algorithms for the Steiner Tree Problem", Journal
of Combinatorial Optimization, 1 (1997), 47-65.

[16] L. LOVASZ AND M. D. PLUMMER, Matching Theory. Elsevier Science, Amsterdam, 1986.

[17] I. I. MANDOIU, V. V. VAZma~NI AND J. L. GANLmY, "A New Heuristic for P~eetilincar Steiner Trees",
manuscript.

[18] H. J. PR6MMmL AND A. STmGER, "RNC-Approximation Algorithms for the Steiner Problem", Proceedings
14th Annual Symposium on Theoretical Aspects of Computer Science (1997), 559--570.

[19] S. RAJAGOPALAN AND V. V. VAZII~NI, "On the Bidireeted Cut Relaxation for Metric Steiner Problem",
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (1999), 742-757.

[20] H. TAKAHASm AND A. MATSUYA~tA, "An Approximate Solution for the Steiner Problem in Graphs", Math.
Jap. ~4 (1980), 573-577.

[21] A. ZELIKOVSKY, "An ll/6-Approximation Algorithm for the Network Steiner Problem", Algorithmica 9
(1993), 463-470.

[22] A. ZELIKOVSK'Y, "Better Approximation Bounds for the Network and Euclidean Steiner Tree Problems",

Technical report CS-96-06, University of Virginia, 1996.

