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Abstract
The Ppcess Intospection poject is a design and implementatiofoef
the main goal of whitis to construct agnerl purposeflexible, eficient
chedkpoint/restart mebanism appopriate for use in high performance
hetengeneous distribted systems. Thishedkpoint/restart mebanism
has the primary constint that it must be platform independent; that is,
chedkpoints poduced on one ahitectule or opeating system platform
must be estartable on a digérent achitectue or opeating system plat-
form. The Pocess Intospection mdwanism is based on a design pattern
for constructing intesperable dhedpointable modules. Application of the
design pattern is automated by twedbs of softwar tools: a libary of
support putines that facilitate the use of the design pattern, and asour
code tanslator that automatically applies the pattern to platform inde-
pendent modules. A giptype implementation of liary has been con-
structed and used to demorade that the design pattern can be applied
effectively to construct platform independemedpointable pograms
that opeate eficiently.

1 Introduction

This document details the design, prototype implementation, and ingialagion of a flgible, efi-
cient mechanism for checkpointing and restarting processes in a heterogeneousedigiunivonment. A
checkpoint/restart mechanism is a significant element of a digttilsystem as it is required to implement
a number of basiatlt tolerance and load balancing schemes. The current trgacd®heterogeneity in
high performance distnlied systems haswgin rise to the necessity that the checkpoint/restart mechanism
employed be platform independent. This requirement greatly increases the xioynpilehe checkpoint/
restart problem, since it requires that the state of a running process be capturable in a form that can be rein-
stantiated on a completely f@ifent architecture and operating system platform withfardift instruction
set, data format, address space layout, etc. The mechanism to perform platform independent checkpoint/
restart described here is based on the notiqmrarfess intospection the fundamentalatct that ap pro-
gram can be modified tox@mine and capture itsvm internal dynamic state in a form that can later be



recovered by an equalent program running on a f#ifent architecture. In particulghe design discussed
utilizes support in language translation systems and runtime libraries to pradoatable programs with
the ability to capture and restore theivrointernal state in a platform independent form. In ynezases,
this scheme requires little or nawk on the part of the programmer

Current systems or designs for platform independent checkpoint/restart and migration mechanisms
suffer a number of significant limitations, including serious performangeadation, lack of portability
and lack of support for user optimization or specification of special module checkpoint mechanisms. The
mechanism described here is based onxabfee abstract design pattern for constructing checkpointable
programs, the application of which is supported by a set of atiwols to automate much of therkw
that would otherwise be performed by the programiibe design described here constitutes the first fle
ible, portable, etensible, truly platform independent checkpoint/restart mechanism appropriate for high
performance heterogeneous digitdd enironments. It addresses the major problems and limitations of
existing approaches, and when fully implemented willvide a much neededubmissing element of
functionality in high performance heterogeneous distet) systems.

1.1 Background

Recent deelopments in softare systems and the grimg availability of higher performance com-
puting and netarking hardvare hae made the use of natvks of workstations, personal computers, and
supercomputers as virtual distited memory parallel machines commonplace for solving computation-
ally demanding problems[15,17]. Furthermoreyalepments in distrilted systems technologyyeamade
routine the use of heterogeneous collections of computing systems by a single application. These trends
have combined to produce the emiag field of high performance, heterogeneous distieith computing.

The combination of heterogeneous architecture and operating system platforms to produce a usable high
performance distrilted meta-system\gs rise to a number of problems not present in homogenous sys-
tems. Br example, the compiety of varying architectural features such as data representation and instruc-
tion sets, and arying operating system features such as process management and communication
interfaces must be mastt from the useFurthermore, heterogeneity complicateisting problems in par-

allel and distribted systems.df example, the ability to create a good schedule for a parallel computation

is complicated by the presence of processors and interconnectiarkgebinarying speeds and capabili-

ties. Despite the added comxyity and challenges wolved in heterogeneous distiied computing, the
promise of increased performancéoeded by a lager hardvare base, along with the concept of “super-
concurreny,’[13] the ability to increase performance by mapping sub-tasks of a computation to the most
appropriate aailable hardware, mak heterogeneous computing an\aetind promising area of research.

A problem that is significantly complicated by the presence of heterogeneous computing systems is
the design of a checkpoint/restart mechanisraciitfy to automatically capture the state of a running pro-
gram in some stable form, and then restart the program from the point of capture at some later time. This
feature is conspicuously absent kisting heterogeneous distuted systems although ikists in some
form in a number of distrilted systems running on homogeneous sets of processors. The uses of a check-
point/restart mechanism v&been the subject of a great deal of reseamhedample, a number of pro-
cess or object migration policies to support load balancingt folerance, or both require an automatic
checkpointing &cility. Other &ult tolerance schemes such as distadd checkpoint/restart methods are
further kamples. An automatic checkpointing scheme can be used to implement the semantics of certain
programming evironments such asime Warp[18] and other optimistic processing systems that rely on
the ability to “roll back” a local computation to mide causal guarantees about the order of message
delivery at a process. Some systems require the ability to checkpouet actities to support scheduling
and load balancing aetiies. For example, if the number of ag# entities in a system becomes greater
than can be &tiently supported, the system might benefit from the ability to temporarily preempiethe e
cution of some processes by checkpointing and dastrahem, then later restarting them from check-
points. Bgond these xasting uses, manother uses for an automatic platform independent checkpoint



mechanism can be imaginedrFexample, the ability to spontaneously replicate a running process might
be useful for performance enhancement or for augmentigging replication basedatlt tolerance
schemes[3]. Another possibility is platform independentudgimg through techniques such as using
checkpoints to replay a process from&egipoint in &ecution or statically>amining the state of a pro-
cess as captured in a checkpoint.

An automatic checkpoint/restart mechaniswuild be useful in heterogeneous systems for the same
reasons it has been found awmaluable tool in homogeneous systems. The basic reason that no adequate
design for such aatility has been deloped to date is the rebai difficulty due to the inherent additional
complity introduced by heterogeneitin the homogeneous case, the state of a process can be manipu-
lated simply and directly without being analyzed by the checkpoint/restart mechaarserafaple, the
state of a Unix process is simply the contents of its address space, plus its process controgisisek (re
values, file table, intra-process communicatiafidss, etc.). These entities are alreadyeaiently aail-
able to the Unix &rnel, making the internal state of a Unix procesgatrio checkpoint. As long as the
process is restarted on the same kind of Unix system on the same kind of processor on which the check-
point was produced, the contents of the address space need not be interpretedebyethie brder to
restore the process. Unfortunatellye address space anerkel process control informationowld be
meaningless if used to restart the process orferatit Unix implementation running on afdifent archi-
tecture. The data representation might biedsht, thereby making grdata in the address space meaning-
less. The code gment of the address spaceuld be unintelligible gien the diferent instruction set. The
address space may iact be of a dferent size (e.g. 32 vs. 64 bit addressing), and may be laid out in an
entirely incompatible manner (e.gxtedata, bss locations,gment and page sizes, etc.).

Clearly, the state of the process cannot be captured using treemathanism which dides in the
homogeneous caseoa checkpoint mechanism to operate in a heterogenegusnenent, it must xam-
ine and capture the logical structure and meaning of the process address space contents, ag/well as an
operating system specific information (e.g. open file tables, intra-process communicdfiéos and
information). This prospect is somikat daunting - the logical point ix&cution and the call stacks of all
threads of control, compledata structures including those legwkby pointers, thealues and logical struc-
ture of heap allocated memeostc. all must be analyzed and checkpointed in a platform independent for-
mat, masking data format thfences, addressing fdifences, instruction set flifences and so on. ladt,
this problem is not automatically sale in the fully general case; a program carags be constructed to
have inherent architecture or operating system dependencies. This does not mean that the situation is hope-
less, lit we must restrict the problem somfet to arve at a useful solution from an engineering perspec-
tive. Mary problems can be sa@d using programs that ardigently checkpointable in an architecture
independent format. The issues of interegolke around ha automatic, general, #éble, and dicient
the mechanism can be made in order for it to be useful for checkpointing real programs running in real sys-
tems with performance constraints and limited programmer ability and time.

2 Problem Statement

2.1 Context

Many different approaches to the heterogeneous checkpoint problem are possiekaniple, one
straightforvard approach is to use an interpreted language, as in [5]. This reduces the problem of check-
pointing arbitrary programs in an architecture independent format to the problem of checkpointing a single
program - the interpretemhis solution is attraate for its simplicity but is bound todil to meet may
applications’ performance constraints. donstrain the possible solution space to the problem that we will
state in this section, we must first describe the gbimeavhich the solution is to operate.

The ewironment of interest is a distrited system consisting of anety of node computing systems.
These nodes may be of féifent processor types, architectures, and configurations, and may run operating
systems of dferent types, capabilities, andrgions. Processes as defined by the local node operating sys-



tems run on the nodes, typicallyeeuting as nate code if this is permitted by the node operating systems
in order to support high performance, computation interepplications. Processes in the system will typ-
ically cooperate using a netvk. The taget application domain includesufiis not limited to) high perfor-
mance distribted memory parallelized scientific applicationdibiting medium to course granularity
Distributed systems of primary interest wikhébit node &ilures as well as inherent load imbalance due to
resource sharing.

2.2 Problem Definition

We assume that the follaing are gven:

» A set ofmodules that can be combined to construct aveatiode representation of a process-
ing entity on all platforms of interest in somegeardistrituted system.

» Some modules are kwo to beplatformindependent, i.e. their correctness does not depend on
ary implementation details of awgn underlying architecture or operating system. These
modules arexpected to be praded as code in some highvé language. The tget applica-
tion area is high performance scientific computing, thus the languages of interest include C,
C++, and Brtran. In principle, heever, ary high level language which can be translated to
executable instructions on the platforms of interest should be adequate.

» Other modules he eitherinherent platform dependencies (such as special operating system
requirements - e.g. a file intade or netwrk communication inteafce module) operceived
platform dependencies (such as programmer use of algorithmic optimizations basedailn a
able architectural features that may not be performed automaticallyaidgbde optimizing
compilers, e.g. blockingersus ector implementations).

We wish to design a mechanism to compose thenginodules into a complete program that can be auto-
matically checkpointed and later restarted from the checkpoint, perhaps ferentifype of node from

the one on which the checkpoinasvproduced. The most fundamental constraint on the mechanism is that
it should generatplatform independent checkpoints (i.e. checkpoints should be restartable praail-

able operating system or architecture platform of interest in thettdistrituted system).

2.3 Solution Quality Metrics

Any checkpoint/restart mechanism that is intended for use in #r@ement described in Section 2.1
and that soles the problem described in Section 2.2 carvhkiated by xamining the dgree to which it
satisfies the follving quality metrics:

» Ideally, little or no programmer &frt should be required in order to checkpoint and restart
architecture independent modules. Consequemblyprogrammer &rt should be required to
automatically checkpoint and restart programs consisting of only architecture independent
modules. It should be noted that most problems of interest for high performance computing
can be soled using platform independent programs; considendamele the lage number of
numerical lernels that are written inoRran and that are basically portable across standard
Fortran implementations.

* A corvenient programmer intexte should be pvided for modifying architecture dependent
modules in order to render them checkpointable in a manner that is interoperable with com-
piler modified modules. The programming iné&é should ge the programmer a high
degree of flaibility to customize and tune a modudetheckpoint/restart mechanism; at the
same time, it should fafrd enough paer to male it easy to use.

* The mechanism should pide lowv checkpoint request service latgnrd.e. the time between
a checkpoint request being delied to a process and that proceggirveng to service the
request should be significantly less than the time required to write the checkpoint. This pre-
cludes techniques such asiting for the program to reach a kmo, simple, consistent state
(e.g. waiting for a comple call stack to finish and return to the main function, checkpointing



some “iteration numbérand then proceeding with thextieomple “iteration”).

* The run-time werhead introduced by the mechanism should @e lio particulay if check-
points are not performed duringeeution, the checkpointablension of the code should not
run significantly slaer than an optimized, non-checkpointabéesion of the code. This met-
ric might be stated simply as, “Ddnpay if you dort play”

» The checkpoint/restart mechanism should perform with a comparable cost to a homogeneous
environment checkpoint mechanisnmorexample, on a Unix system, the checkpoint of a run-
ning process should not &kignificantly longer than producing a core dump of the process.

» The checkpoints produced by the mechanism should not be unreasongdlyClantinuing
the abwe example, the checkpoint of a Unix process should not be significarglgrlirtan a
core image of the process.

» The mechanism should be general in nature. That is, it should be appropriate for use with a
wide variety of programs, written in axety of languages, and solving a wide range of prob-
lems. This precludes special purpose toolkits such as those appropriate only for scientific
problems of a certain nature (e.g. stencil codes).

» The mechanism should be demonstrablygrable (without heroic &rt) into eisting hetero-
geneous distrilted systems that are used to run “real” production quality applications.

3 Design Overview

We wish to design a softwe system solving the problem described in Section 2, and to analyze the
degree to which the system meets each of the design goals enumerated in Section 2.3. The design solution
described in this paper is based on the idgaraufess introspection - the ability of a process txamine
and describe itsven internal state in a logical, platform independent format. In some senses, all processes
that emply a custom programmed checkpoint/restart implementation utilize the concept of process intro-
spection. The system described heterds this technique of hand coding checkpoint/restart functionality
for individual processes into an igrated approach in which thev@dopment of introspecte, check-
pointable program modules is completely automated when possible, or is at least rendered significantly
less comple through the use of library tools and a general design pattern when a handed coded checkpoint
facility for a module is still appropriate. The system design consists of theifalcomponents:

» The Process Introspection Design Pattern, a design template for writing checkpointable
codes. This design pattern describes the elements that must be added to a program in order for
it to support introspeate checkpointing, as well as the relationships and responsibilities of
these elements.

» Dynamic runtime support via throcess | ntrospection Library (PIL), a set of tools to auto-
mate or simplify may of the tasks wolved in implementing an architecture independent
introspectve checkpoint mechanism for a module.

» TheAutomatic Process Introspection Compiler (APrlL), a source code translator that can
transform architecture independent modules specified in a highldmguage into introspec-
tive checkpointable modules that utilize the PIL for interoperability

» A Standard Checkpoint Interface (SCI) specification mechanism for describing the check-
point/restart intedces to modules which will be liadl to produce an introspeaiprocess.

* A Central Checkpoint Coordinator (CCC) module interfce definition. The CCC is the part
of an introspectie process that coordinates the operation of the introgpeutdules in the
process at checkpoint/restart time. The CCC alswighes the public checkpoint intexde for
the introspectie process; that is, the intacke via which the process can beeakto produce a
checkpoint or to restart from avgn checkpoint.

In addition to these core elements of the proposed system design, a number of incidental elements will
eventually be designed and produced. In particidanumber of pre-prided checkpointable modules
must be constructed in order to allintrospectie processes to be a@miently intgrated into risting



distributed systems (e.g. a checkpointable message passing module). Furthermore, checkpointable mod-
ules implementing such typically needed tools as file access will be provided to enhance the usability of
the system.

This paper describes the design, implementation, and analysis issues involved in constructing a sys-
tem consisting of the components described above. In Section 4, we discuss the Process Introspection
Design pattern. In Section 5, we examine the interface and implementation issues related to the Process
Introspection Library runtime support system, a set of tools that facilitate the application of the Process
Introspection Design Pattern. In Section 6, we discuss the automated application of process introspection
through source compilation techniques via the APrIL compiler. In Section 7, we describe the Central
Checkpoint Coordinator and the Standard Checkpoint Interface. Section 8 describesinitial implementation
and application experiences with the Process Introspection Library and design pattern, and includes a dis-
cussion of preliminary performance results obtained with a prototype version of the system. Section 9 dis-
cusses related systems and theoretical results, and Section 10 offers concluding remarks and describes
current and future research directions.

4 The Process | ntrospection Design Pattern

The most concrete elements of the system design described in this paper are software toolsthat aid in
the implementation of platform independent checkpointable programs. However, the fundamental theoret-
ical basisfor thesetoolsisadesign pattern for constructing checkpointable programs appropriate for usein
the target environment. A Design Pattern consists of four elements[14]:

* A name, in this case, the Process Introspection Design Pattern.

» A target problem, in this case, the problem described in Section 2.

» A solution, consisting of elements that make up the design and the ways that they interact.

» A set of consequences, the trade-offs and implications of using the pattern.
In this section, we will describe the general solution and consequences associated with the Process Intro-
spection Design Pattern.

4.1 Process M odel

Before describing the Process Introspection Design Pattern (or the software tools designed to help
apply it), we must first define the process model assumed. Processes as viewed by the system are defined
asfollows:

» A process executes a program. Equivalent executable versions of the process's program are
available for all platforms of interest. Thisis a somewhat flexible constraint - not all architec-
ture specific binaries need to be available as long as the scheduling/migration policies can be
constrained to utilize feasible schedul es given the available set of binaries.

» The executable program associated with a process is built from a set of modules. Each module
contains a set of executable subprograms and data.

* A running process contains a set of active threads of control. The execution model for these
threads is based on the traditional procedural model with a stack based parameter and local
variable storage scheme. Thus, a thread of control in the system logically consists of a pro-
gram counter (i.e. alogical location in the executable code for the process) and a subprogram
activation stack containing the local variable and parameter storage for the thread's subpro-
gram call stack.

» A process contains data in the form of memory blocks. Every memory block contains some
structured layout of elements of basic data types (i.e. data types supported by the processor
and/or programming language systems used by the process). A process contains three basic
classes of memory blocks: statically sized global blocks, dynamically allocated blocks whose
size and structure are determined at run time, and automatically allocated stack blocks that are



local to some subprogram activation in athread of control within the process.

4.2 The Process | ntrospection Design Pattern

Given the definition of process discussed in Section 4.1, and the problem of checkpointing or restart-
ing the process as stated in Section 2, we can now describe agenera design pattern for modifying the mod-
ules that make up the processin order to support introspective checkpoint and restart. These general design
and implementation strategies can be applied by a programmer by hand to create the checkpoint/restart
mechanism for the process. Given the code for the process (i.e for the modules that make up its program),
the following two principles are applied:

1. The ability to save and restorethe call stacks of all threads must be added to the program.

To implement the checkpoint feature for threads, the code that the threads execute should be modified
to periodically poll for checkpoint requests; i.e. poll points should be placed throughout the code. As we
noted in Section 2.3, low checkpoint request service latency is a quality metric of the checkpoint mecha-
nism, so poll points ought to be placed in the code frequently enough to meet the performance needs of the
application. On the other hand, poll points constitute additional run time overhead, so excessive placement
of poll points would be un-wise.

If a checkpoint request is encountered at a poll point, the thread must immediately checkpoint any
datain its active call frame along with its logical point in execution, and returns to its calling subroutine
which must then save its call frame and return, and so on. In this way, the threads each checkpoint their
stacks using the native subroutine return mechanism to traverse the call frames.

Similarly, to implement the restart feature, the native subroutine call mechanism is employed. When
the process is asked to restart from a given checkpoint, it must call the initial subroutine for al threads
active at the checkpoint. Each initial subroutine restores its local variables from the checkpoint, uses con-
trol flow to advance to the correct logical point in execution (as reflected in the checkpoint), and then calls
the next subroutine in the checkpointed stack. The called subroutine then repeats the process, which con-
tinues until the final active subroutine is called and can proceed from its checkpointed logical point in exe-
cution.

2. Theability to save and restore all memory blocks must be added to the program.

The above mechanism requires that a means to save and restore the memory blocks in the stack be
added to the program. More generally, a mechanism must be added to the program to save all of the mem-
ory blocks in the process - global, dynamically allocated, as well as the stacks. The key attribute of this
mechanism is that it must be capable of masking al platform dependenciesin al kinds of program data.
For example, the checkpointed data should not depend on any particular low level data format (e.g. “little
endian” versus “big endian” integers). More generally, however, the checkpointed data must be made to
mask higher level dissimilarities in the format and interpretation of memory blocks on different platforms.
For example, a file interface on one operating system might represent an open file as an integer file
descriptor. This integer would be meaningless to the file interface module on some other platform. Thus,
the data (in this case, an open file description) would have to be checkpointed using a higher level descrip-
tion. In this example, the higher level description might include a file name and current location in thefile.
Another example in which higher level descriptions are needed isin the checkpointing of pointers. A mem-
ory address on one platform would need to be modified to reflect differences in address space layout and
dataformat on another platform. Thus, if pointers were to occur in a memory block, they would need to be
checkpointed using alogical description of the address they referred to instead of alow level memory loca-
tion.

The primary consequence of the above modifications to a program implementing a process as
described in Section 4.1 is that the process will be capable of introspective checkpoints and restarts. Fur-



thermore, the checkpoints produced by such a program will be platform independent. As mentioned, the
placement of poll pointsis critical to the application of the pattern; too few can result in high checkpoint
regquest service latency, while too many can result in high run-time overhead. Both of these risks must be
illuminated as potentially negative, but avoidable, consegquences of the pattern.

It is evident even from this general description that making the described modifications to a program
manually could be very complex, even for relatively ssmple programs containing a small number of mod-
ules and few platform dependencies. Increasingly complex codes would be correspondingly more difficult
to modify in order to support introspection. The difficulty involved in applying of the Process Introspec-
tion Design Pattern could be considered a negative consequence. Thisleads to the need to provide software
tools to automate as many of the tasks involved in making a program capable of introspective checkpoint/
restart as possible.

5 Process Introspection Library and I nterface

The Process Introspection Library (PIL) isthe most basic software layer intended to automate aspects
of the Process Introspection Design Pattern for checkpointable programs. The PIL presents an API that can
be used to deploy the coding strategies described in Section 4.2, which allow programs to be automatically
checkpointable. The API isintended to be used by programmers to facilitate the hand coding of checkpoint
algorithms, but it must also provide efficient access to runtime services suitable for use by a compiler
which can provide a higher level of automation. We now examine the design issues involved in the main
PIL modules.

5.1 Logical Program Counter Stack

The set of subroutine invocation stacks associated with a process define a logical point of execution
(called a Logical Program Counter (LPC) value) in each active call frame. Each thread of control in the
process has a stack of LPC values which defines its logical point in execution (i.e. its set of active subpro-
grams and the logical point in execution within each one). The LPC stack of each thread must be computed
at checkpoint time and stored with the checkpoint to restore the thread at restart time, using the native sub-
routine scheme described in Section 4.2. Similarly, at restore time, when the native subroutine call mecha-
nismis used to reinstantiate the call stacks, the logical program counter value for each stack frame must be
made available so that each stack frame will be able to determine the correct logical point at which to con-
tinue execution. The Logical Program Counter Stack module provides an interface for accomplishing these
tasks. Note, the LPC Stack module does not restore the call stacks automatically; the threads of control
owning the call stacks must restore the physical stacks themselves, but can use the LPC Stack module to
determine where in each frame to continue execution, thus ssmplifying the task.

5.2 Thread Management Module

To ensure that the appropriate threads of control can be restarted from the appropriate entry points, a
checkpoint must record a description of the threads that were active at the time the checkpoint was pro-
duced. Each thread of control in a process must be registered with the Thread Management Module which
is responsible for checkpointing information about the active threads of control. The Thread Management
module is also responsible for exporting a platform independent threads interface so that the semantics of
threads-related operations (such as synchronization and scheduling) can be made consistent across differ-
ent operating systems.

5.3 Data For mat Conversion Module

When checkpointing memory blocks using the PIL, a process includes a description of the data for-
mats used. Later, when the checkpoint is restored, the data format can be converted to the restarting pro-



cessor’'s representation, a protocol known as “receiver makes right”[36]. The PIL supports a set of routines
to perform data format conversion on buffered data using this “receiver makes right” strategy. Conse-
quently, this library module must contain routines to trandate a set of supported data types from every
available format to every other available format. This O(NZ) (where N is the number of different data for-
mats) requirement initially seems like a bad idea; why not instead use a single universal data format for
checkpoints, and require conversion routines only between native formats and the universal format (reduc-
ing the complexity to O(N) conversion routines for N formats)? In fact, the receiver makes right protocol
makes sense only in light of the very small number of data formats used by current and planned computer
systems. By not requiring data format conversion on checkpoint, the cost of format conversions is avoided
for the common case in which a checkpoint is restarted on asimilar type of machine to the one on which it
was created.

5.4 Type Table

To checkpoint or restore a memory block, the PIL must have a description of the basic data types
stored in that memory block. The PIL provides an interface to a table mapping type identifier numbers to
logical type descriptions. Every memory block savable through the PIL interface should be describable as
a linear vector of some number of elements of a type described by an entry in the type table. The Type
Table is not unlike a type description table that might be found in a standard compiler, except that it is
available and dynamically configurable at runtime.

5.5 Pointer AnalysisModule

Memory addresses (i.e. pointers) contained within memory blocks must be described using a logical
format in the checkpoint. Similarly, at restore time, logical pointer descriptions must be used to determine
the physical memory address values that should be restored into all memory blocks. A suitable mechanism
for this purpose is based on the assignment of a unique identification number to every heap, global, and
stack memory block. A logical pointer description then is atuple containing a memory block identification
tag, and an offset into the memory block. Offsets specified in a checkpoint may need to be adjusted due to
data format differences on the restarting processor; again, thisis areceiver makes right protocol. It should
be noted that instead of pointing into a heap, stack, or global memory block, amemory address might point
to some code location or might contain an invalid address although being typed to contain a pointer (e.g. a
nil value). These kinds of values must also be in the logical pointer description space.

The Pointer Analysis Module provides the mechanisms for describing the logical value of memory
locations (pointers) in a checkpoint, and for interpreting these logical values into actual memory addresses
at restart time. These mechanisms are based on simple case analysis; a pointer can be one of exactly five
types:

» A referenceinto a heap allocated memory block

» A referenceinto aglobal memory block

» A referenceinto alocal (stack) memory block

» A pointer to some code entry point

» A specia value which has meaning in the program (such asNULL in C).
The Pointer Analysis module examines physical addresses to determine which of these kinds the pointer is
of (assuming the final case if the first four fail). It produces logical descriptions of pointers each of which
contains a logical identification number (that can be used to determine its type and base location at restart
time) and an offset based on the checkpointer’s data format.

5.6 Global Variable Table

The memory addresses, type table indices, and vector sizes of all globally addressable memory blocks
must be registered with the PIL. The Global Variable Table provides an interface to accomplish this. It also



exports routines that can be used by the system to save the values of all global memory blocks to a check-
point buffer, and to restore those values using the type description table and data format conversion rou-
tines.

5.7 Heap Allocation Table

In addition to globals, the addresses, type table indices, and vector sizes of all active dynamically allo-
cated memory blocks must be registered with the PIL. To accomplish this, the Heap Allocation module
exports wrapper routines that should be used for typed memory block allocation and de-allocation. These
routines maintain a table of all active heap allocated memory blocks. As with the Global Variable Table,
the Heap Allocation Table must export routines to save and restore the state of all heap allocated blocks.

5.8 Code Location Table

To fully resolve the meaning of all pointers, the PIL must maintain a table that maps logical code
entry pointsto actual memory code locations. All subroutine entry points (and other addressable code loca-
tions) in a program are assigned a logical identification number via the Code Location Table interface.
During the program’s execution, code location pointers can be described logically in terms of code loca-
tion table indices.

5.9 Active Local Variable Table

Since pointers can refer to local variables, the addresses, type table indices, and vector sizes of some
local variable memory blocks must be registered with the PIL. Note, only those locals whose addresses can
ever be assigned to pointers (and whose address can consequently be found in some memory block) need
to be registered with the Active Local Variable Table. This leaves open the possibility that local variables
can be stored in registers.

A prototype of the PIL supporting most of the functionality described in this section has been imple-
mented and is operational. It demonstrates that the discussed design pattern can be applied without great
difficulty to implement checkpoint/restart mechanisms for actual programs. Implementation details and
preliminary performance results obtained using this prototype PIL are described in Section 8.

6 Automatic Process | ntrospection Compilation Techniques

The PIL makes hand coding introspective checkpoint/restart mechanisms for modules significantly
less complex, but in many cases a higher level of automation is possible. If amodule is specified in ahigh
level language (e.g. C or Fortran) and contains no platform dependencies, PIL calls can be automatically
inserted into transformed code, completely automating the coding of the checkpoint/restart mechanism in
the best case, and requiring very little programmer input at a high level in the worst case. It should be
immediately noted that this automated usage of the PIL will not be appropriate for some modules. For
example, the file interface module already mentioned will likely not be specifiable in a platform indepen-
dent manner since calls to alower level operating system will likely be needed. In cases such as this, the
programmer is left to design and implement the checkpoint/restart mechanism for the module using the
PIL. Fortunately, many modules such as the file interface example can be designed and coded once, and
then can be frequently reused by automatically trandated, platform independent modules.

In this section, we provide an overview of the design of the “Automated usage of the Process Intro-
spection Library” (APrIL) Compiler, asource code translator to automatically apply the Process Introspec-
tion Design Pattern. In particular, we will examine the general goals of the APrIL tranglator, and examine
the most fundamental APrIL code transformations in detail. Implementation of the APrIL compiler is the
subject of current ongoing work.
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6.1 Trandlation Goals

The “Automated usage of the Process Introspection Library” (APrIL) compiler will provide an auto-
matic, programmer transparent mechanism for employing the PIL library to render a module checkpoint-
able. Use of APrIL is predicated on the programmer providing a module implementation in a high level
language (e.g. C or Fortran) in an architecture independent form. The APrIL compiler translates this archi-
tecture independent high level language source code into alower level but architecture independent inter-
mediate representation. This intermediate representation is transformed to utilize the PIL runtime system
in a manner consistent with the Process I ntrospection Design pattern described in Section 4.2. The trans-
formed intermediate representation is then used to generate object code (which may be optimized) for all
platforms of interest. The APrIL code transformations on the intermediate representation are based on
three central goals:

1. The module must keep the PIL run-time tables consistent with the actual state of the process during
execution. Thisis accomplished by inserting code to update the tables at pointsin the code where state
changes must be reflected in the tables. The API presented by the PIL is designed to avoid frequent
updates to the run-time tables. As much of the work as possible is concentrated at process startup,
checkpoint, and restart times, in keeping with the “don’t pay if you don’'t play” philosophy. Examples
of runtime table maintenance routines that must be inserted by APrIL include:

» On process start-up, the type table, global variable table, and function entry point table must be
initialized.

» When a subroutine begins execution, it must register in the Active Local Variable Table the
memory addresses and type table indices of any local variables whose addresses can be
assigned to pointers.

2. According to the design pattern described in Section 4.2, threads executing code in the module must
periodically poll for checkpoint requests during execution. This requires that APriL place poll points
throughout the module code. In case the poll indicates that a checkpoint must be generated, the intro-
spective checkpoint mechanism must be dispatched (i.e. the memory blocks in the current call frame
must be saved and an immediate subroutine return must be performed). An open research issue is
where in the code and how frequently poll points should be inserted. The more poll points that are
placed in the code, the lower the latency between checkpoint request and service will be. On the other
hand, more poll points will lead to higher runtime overhead and more constraints on the back-end opti-
mizer.

3. When arestart is requested, the process must restore all threads of execution. Using the design pattern
described in Section 4.2, this requires subroutines to determine if arestart isin progress when it begins
executing, and to restore the state of the stack frame if arestart isin fact occurring.

6.2 I ntermediate Representation

Before developing specific code transformations that will be used to accomplish the goals described
above, the issue of which intermediate representation on which APrIL will operate must be addressed. A
large variety of intermediate code representations have been proposed and are in common use in produc-
tion and research compilers. For example, abstract syntax trees, program dependence graphs, and assembly
language-like virtual machine instructions (e.g. byte-codes) are common possibilities. The choice of an
intermediate representation for APrIL would preferably balance the following goals:

» Architecture independence

» High-level language independence

» Good existing tool support (e.g. front-ends for various languages, back-ends for various plat-
forms, optimizers, etc.)

The current APrIL design choicein this areaisto use source-to-source translation, making a subset of
ANSI C serve as the intermediate language. ANSI C meets the first requirement, architecture indepen-
dence, if certain platform dependent features (e.g. the “asm” directive) are excluded from the allowable
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subset. While seemingly counter-intuitive, ANSI C also meets the second requirement of high-level lan-
guage independence. For example, source-to-source tools exist to trandate C++, Fortran, and Pascal
(among others) to ANSI C. Finally, source-to-source translation based on ANSI C meets the third goal of a
rich existing tool set. Back-end technology is available via existing high quality optimizing compilers.
Front-end source-to-source trandlation tool-kits are also available; for example the Sage++ library[6] offers
an object-oriented interface to parsing, manipulating, and transforming C using a set of C++ object classes.

It should be noted that the assumption of a high-level language as the intermediate representation is
not fundamental to the APrIL design. If adifferent intermediate representation were used, equivalent trans-
formations to those which will be described in the remainder of this section could be used to implement the
automatic checkpoint code.

6.3 APrlL Transformations

We will now examine the most fundamental specific transformations employed by APrIL. The pri-
mary goals of these transformation are those discussed in Section 6.1.

6.3.1 Function Prologues

Function prologues are added to every function definition transformed by APrIL. If any local variable
addresses are assigned to pointers in the function body, APrIL generates calls to the PIL to register those
variables in the local variable table. APrIL then generates a check to determine if a stack restart is in
progress (recall, stack restarts using the PIL are implemented using the normal function call mechanism).
APrIL generates code to be executed in case of a restart which will restore values of local variables and
actual parameters, determine the Logical Program Counter location at which the checkpoint for this frame
was created, and jump to a label in the function body corresponding to the LPC. The following example
illustrates an APrIL function prologue. The function beginning:

voi d exanpl e(doubl e *A)
{ - .
int i;
doubl e tenp[ 100];
istransformed to include the prologue:

voi d exanpl e(doubl e *A)
{ . .
int i;
doubl e tenp[ 100];
Pl L_Regi st er St ackPoi nt er (t enp, Pl L_Doubl e, 100) ;
i f (PIL_Checkpoi nt St at us&PI L_St at usRest or eNow) {
int PIL_rst_pnt = PIL_PopLPCVval ue();
A = PIL_RestoreStackPointer();
i = PIL_RestoreStacklint();
Pl L_Rest oreSt ackDoubl es(t enp, 100) ;
switch(PIL_rst_pnt) {
case 1. PlL_DoneRestart(); goto _PIL_PollPt_1,
case 2: goto _PIL_PollPt_2;
case 3: PlIL_DoneRestart(); goto _PIL_PollPt_3;
}

}
This function has an array which is evidently later assigned to a pointer, hence the call to register the
address, size, and type of the “temp” array. The prologue then checks the value of the specia variable
“PIL_CheckpointStatus’ to determineif thisfunction call was made in the process of restoring acall stack.
If it was, the LPC value, actual parameter, and locals are restored using PIL routines. The correct point in
the function is then jumped to using a“goto” based on the LPC value.
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6.3.2 Poll Points

APrIL must insert poll points throughout the code it transforms. At each poll point, code must be gen-
erated to poll to see if acheckpoint isin progress. Code must be generated to be executed if acheckpoint is
in progress which will record the logical program counter value for the frame and jump to a function epi-
logue which will save the actual parameters and locals. APrIL generates two kinds of poll points: standard
and mandatory function call site poll points. Standard poll points can be inserted in the transformed code
between any two statements. A standard poll point has a single labeled LPC value and performs the poll
described above. An example of astandard poll point that might be found in the example function aboveis:

_PIL_Pol I Pt_1:
i f (Pl L_Checkpoi nt St at us&PI L_St at usCheckpoi nt Now) {
Pl L_PushLPCval ue(1);
Pl L_Checkpoi nt St at us| =PI L_St at usCheckpoi nt | nPr ogr ess;
goto _PlIL_save_frane_;

}

Mandatory function call point poll points are required to be inserted by APrIL after every function call
statement in the codel. Mandatory function call poll points are required in order to implement the stack
save mechanism based on the native function return mechanism. Every function return in APrIL trans-
formed code can be an actual return or areturn that is used to save the stack. The mandatory function call
point must catch and implement the latter case. This requires two LPC values for a mandatory poll point,
one before the call site (in the case that the checkpoint began in a higher call frame), and one after the call
site (in the event that the checkpoint should begin immediately following a normal function return). For
example, amandatory poll point that might occur in the transformed example codeiis:

_PIL_Pol | Pt_2:
i = function(A, tenp, 100);
_PIL_Pol | Pt_3:

i f (Pl L_Checkpoi nt St at us&PI L_St at usCheckpoi nt Now) {
i f (Pl L_Checkpoi nt St at us&PI L_St at usCheckpoi nt | nPr ogr ess)
Pl L_PushLPCval ue( 2);
el se {
Pl L_PushLPCval ue(3);
Pl L_Checkpoi nt St at us| =PI L_St at usCheckpoi nt | nPr ogr ess;

}

goto _PIL_save_frame_;
}
6.3.3 Function Epilogues

The poll points inserted by APrIL generate code to jump to a function epilogue in the event that a
checkpoint is found to be progress. Thus, APrIL generates an epilogue for each function it transforms
placed beyond the last return statement (the epilogue is accessible only by goto, and is not normally exe-
cuted by a standard function return). If the epilogue is executed (i.e. jumped to from a poll point), it saves
the stack frame variables and actual parameters, and returns to the next function activation leaving the
“Checkpoint in progress’ flag set so that the stack save will continue. The function epilogue for our exam-
ple function would be:

_PIL_save_frane_:
Pl L_SaveSt ackPoi nter (A);
Pl L_SaveSt acklnt (i);
Pl L_SaveSt ackDoubl es(t enp, 100) ;
return;

1. Of course, function calls can occur in expressions, in which case they must be extracted from the expression and
assigned to atemporary variable.
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6.3.4 Module I nitialization

The three types of transformations discussed thus far are primarily aimed at implementing the check-
point and restoration of function call stacks. A routine to register any types defined by the module with the
Type Table and insert any globals defined by the module in the Global Variable Tablesis aso generated by
APrIL. The generation of this function is a straightforward process based on any types, globals, and static
variables found in the module. The mechanism by which thisinitialization function is marked as a module
initializer to be called by the PIL on process startup is discussed in Section 7, which describes the Standard
Checkpoint Interface.

6.3.5 Heap Function Transfor mations

One of the more difficult transformations that APrIL must perform is the trandlation of all heap allo-
cation requests into calls to the typed allocation routines provided as part of the PIL. Since heap allocation
is not part of the C language definition, APrIL will need to perform a heuristic to determine when heap
alocation istaking place, and the type and size of the allocated memory. Of course, such aprocess will not
be accurate or even possible in all cases, and thus user input (or at least verification of results produced
using a heuristic) may be required at certain points during translation. For example, one possible heuristic
could find al callstothemal | oc() C library routine, use the parameter to nal | oc() to determine the
alocation size, and base the allocation type determination on the type of value the result is casted or
assigned to.

7 Checkpoint Coordination and Module I nterfaces

Assuming modules are automatically transformed or are hand coded to support introspective check-
points using the PIL interface and general design pattern, they must till be made to work together to pro-
duce checkpoints. In particular, it will certainly be desirable to combine separately developed and
compiled modules to construct complete applications; these separately developed and compiled modules
must be linkable and interoperable. The interoperation of modules to introspectively produce checkpoints
or restart processes is achieved by a combination of a Central Checkpoint Coordinator module and a Stan-
dard Checkpoint Interface for introspective modules.

The Standard Checkpoint Interface (SCI) is a functional interface that must be exported by all of the
modules that are linked together to construct an introspective process. The SCI essentially defines a set of
(possibly empty) function callbacks that are executed when certain key events relevant for checkpoint/
restart purposes occur. Thelist of SCI eventsincludes:

» A Process Sartup event is generated every time the process starts, either for the first time or at restart
time. The startup event handler for each module is responsible for registering any globals and/or data
type definitions included in the module.

» A Checkpoint Sart event is generated when a checkpoint has been requested. During the handling of
this event, a consistent description of the module suitable for writing to the checkpoint should be cre-
ated. The module should not discard any information that other modules might depend on at this point.
For example, if a heap allocated block owned by the module might be addressed by some other mod-
ule, it should not be freed at during the Checkpoint Start event handler.

» A Checkpoint End event is generated after the Checkpoint Start event has been handled (i.e. the check-
point has been constructed). During the handling of this event, any resources held by the module can
be freed.

» A Restart Start event is generated when arestart has been requested. At this point, the module should
attempt to restore its state from the checkpoint. A complete restoration may not be possible if heeded
information has not yet been restored by other modules. When this is the case, the module should
record the need to later restore some of its state during the Restart Done event handling.

* A Restart Done event is generated after all Restart Start event handlers have completed. During the
handling of this event, modules should restore any state dependent on information not available during
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the Restart Start event handling.
The SCI will be implemented as a separate “ meta-file” that must accompany a compiled module object or
library file naming the event handlers contained in the module. Linkage of SCI modules will be performed
by a special linker tool that will generate code to register all handlers for the appropriate events.

The SCl is utilized by a Central Checkpoint coordinator module. This module implements the public
interface to the program’s checkpoint/restart facility. It must export a mechanism by which checkpoints or
restarts can be requested, and must coordinate the service of these requests. Service coordination by the
CCCisessentidly the act of calling the registered event handlers of all modules whenever their associated
events occur.

8 Preliminary Experiments and Results

Prototype implementations of the PIL and a simple CCC module were recently constructed and used
as the basis for feasibility demonstrations and initial performance and cost analysis. In particular, three
sample applications were hand transformed using the proposed APrIL source-to-source compilation tech-
niques to examine typical runtime overheads, to gain an initial insight into the impact on back end optimi-
zations, and to determine checkpoint request service latencies (i.e. the time between checkpoint request
and service). Two numerical kernels (matrix multiplication and a sparse Gauss-Seidel solver) were
selected astypical target codes, and a quicksort kernel was selected as a potentially high run-time overhead
example.

Asan initial demonstration of the feasibility of the process introspection technique, each of the exam-
ple programs was compiled, run, and verified as checkpointable/restartable across Sun workstations run-
ning Solaris or SUNOS 4.x, SGI workstations running IRIX 5.x, IBM RS/6000 workstations running Al X,
DEC Alphaworkstations running OSF1, and PC compatibles running Linux, Microsoft Windows NT, and
Microsoft Windows 95. The interface selected for the simple CCC overloads the “ control-C” interrupt of a
process to checkpoint and exit the running program instead of simply terminating it. The CCC writes the
checkpoint to the process's current working directory using a well known file name. Later, when the pro-
gram isrun again, the CCC notes the presence of a checkpoint, and usesit to implement arestart instead of
allowing the process to start up normally.

In addition to these feasibility demonstrations, the programs were compiled with and without optimi-
zations, and run on arange of problem sizes. Each sample run was allowed to complete without performing
any checkpoints or restarts in order to measure the introduced run-time overhead and affects on the back-
end optimizer. Non-checkpointable versions of the codes were aso run as control cases. Since all of the
measured performance metrics of the sample programs depend on the placement of poll points, a simple
placement heuristic was selected; poll points were placed at basic block boundaries, except in the inner-
most loop of multiply nested loops. Of course, many different placement strategies are possible and could
produce different performance trade-offs. This simple heuristic was selected because it would be very sim-
ple to implement in the APrIL compiler (and thus will be at least one of the supported placement policies
for APrIL), and it leads to a reasonable balance between introduced run-time overheads and checkpoint
regquest latencies. In all test cases, the average checkpoint service latencies were measured and found to
range from 0.01 to 1.0 milliseconds, indicating the utilized poll point placement scheme results in check-
point latencies at |east an order of magnitude bel ow the time to save a checkpaint.

Representative performance results of these are presented below. In each table, “Normal” indicates
the execution time of the non-optimized, nontransformed (i.e. not checkpointable) code. “Transformed”
indicates the execution time of the transformed (checkpointable) code compiled with no optimizations.
“Optimized” indicates the execution time of the optimized, non-transformed code, while “Trans. Opt.”
indicates the execution time of the transformed code compiled with optimization. All times are listed in
seconds, and represent the best run time taken over 8 runs to reduce the affect of shared resource conten-
tion.
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Table 1. NxN Matrix multiplication, Ultrasparc, compiled with gcc

N 32 64 128 256 512
Normal 0.03 0.16 249 27.36 115.77
Transformed 0.11 0.33 2.92 27.76 121.42
Optimized 0.06 0.08 0.81 19.86 75.72
Trans. Opt. 0.10 0.14 1.00 19.88 76.41

Table 2: NxN Matrix multiplication, RS/6000, compiled with xlc

N 32 64 128 256 512
Normal 0.03 0.26 2.66 21.16 288.96
Transformed 0.03 0.27 2.66 21.17 288.99
Optimized 0.01 0.06 1.16 9.14 198.01
Trans. Opt. 0.01 0.07 1.16 9.18 199.95

Table 3: 2D Gauss-Seidel Solver, NxN grid, Ultrasparc, compiled with gcc

N 32 64 128 256
Normal 0.12 2.29 44.53 854.93
Transformed 0.12 2.29 46.78 859.35
Optimized 011 0.37 16.26 239.60
Trans. Opt. 0.11 0.39 16.72 267.50

Table 4: 2D Gauss-Seidel Solver, NxN grid, SGI, compiled with cc

N 32 64 128 256
Normal 0.22 2.27 40.87 670.96
Transformed 0.22 2.29 41.54 685.57
Optimized 0.12 0.86 17.40 268.75
Trans. Opt. 0.20 0.95 19.12 313.44

-16-



Table5: Quicksort, 2N keys, Ultrasparc, compiled with gcc

N 17 18 19 20 21
Normal 1.95 3.28 6.86 13.91 28.25
Transformed 1.96 3.68 7.54 1531 31.25
Optimized 0.83 1.20 2.48 4.92 9.85
Trans. Opt. 1.00 1.46 2.99 5.94 12.22

Table 6: Quicksort, 2N keys, SGI, compiled with cc

N 17 18 19 20 21
Normal 1.87 3.81 8.22 17.22 35.44
Transformed 2.20 4.55 9.73 20.41 42.15
Optimized 0.70 1.42 3.05 6.42 13.16
Trans. Opt. 1.04 212 4.26 8.96 18.50

The results of the performance tests demonstrate three general cases that can occur for a given place-
ment policy. The first test, matrix multiplication, exhibited little difference in the performance of the
checkpointable and non-checkpointable code, both for non-optimized and optimized versions. This indi-
cates that the utilized poll placement heuristic is a good choice for the matrix multiplication code, as it
results in low overhead and low checkpoint request latency, and also does not affect the operation of the
optimizer. The next case, gauss-seiddl, illustrates a case where the introduced overhead is low, but the opti-
mizer is somewhat constrained. While the non-optimized checkpointable and non-checkpointable codes
execute in roughly the same times, the optimized checkpointable code runs 10%-15% slower than the opti-
mized non-checkpointable code. This indicates that the extra work introduced in this example is minimal,
asitisinthe matrix multiply example, but the optimizer is less able to speed up the code due to the place-
ment of poll points. The fina example, quicksort, illustrates the case where poll points are too frequent
(10’s of microseconds apart), and overhead is introduced due to the extra work. In this case, the effect of
the added overhead rather than any constraints on the optimizer result again in a 10%-15% slowdown of
the application. These three cases illustrate the critical nature of the poll point placement algorithm. If the
poll points are well placed, the code will not suffer performance degradation and will exhibit low check-
point service latency. On the other hand, poor placement or too liberal placement of poll points can seri-
ously affect performance.

9 Related Work

The problem of checkpointing a process in a platform independent manner is closely related to work
in two key areas. process migration, and object/data structure marshalling and migration. We will now
examine related work in these areas.

9.1 Related Work in Homogeneous Process Migration

The area of process migration has been the subject of a great deal of research, both in terms of mech-
anisms and policies. The work most closely related to this proposal deals with migration mechanisms,
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which in general can be viewed as checkpoint mechanisms. A broad survey of migration mechanismsin
homogeneous environments is presented in [27]. Most homogeneous migration mechanisms are imple-
mented at the kernel level of distributed and network operating systems. Examples of such systemsinclude
Charlotte[ 1], Sprite[10], DEMOS/MP[25], and the V-System[33]. In al of these migration mechanisms,
the address space (i.e. the internal state) of the process is assumed migratable without modification, and the
focus of the work is generally on masking differencesin OS services (e.g. file system, intra-process com-
munication) from the migrated process. Besides the obvious difference of the assumption of a homoge-
neous environment, these systems differ from the introspective mechanism in that they require kernel
support. The argument for implementing process migration or checkpoint at the kernel level isbased on the
desire for efficiency and the availability of process resource usage information at the kernel level. In the
context of alarge scale, heterogeneous distributed system, these arguments become weaker. First, as the
number of different architecture and operating system platforms grows, the issue of mechanism portability
becomes important in addition to efficiency concerns. Furthermore, in meta-system approaches16], the
assumption that the operating system will have the needed intra-process communication information asso-
ciated with a process becomes false, and the design decision to modify the kernels of al included hosts
becomes impractical. These facts lead to the desire for a user-level checkpoint/migration mechanism.

User level process migration schemes have been implemented in some existing distributed sys-
tems]8,21,22,26]. For example, the Condor[21] load bal ancing system migrates processes in homogeneous
environments by transferring a core image of the process. Needed operating system specific information
associated with the process is maintained at the user level by tracking the parameters and return values of
all system calls. While this approach is typicaly somewhat less efficient than kernel level implementa-
tions, the Condor system is easily portable to any Unix-based platform. Common constraints on user level
migration schemes in network operating systems such as Condor and [22] are that the underlying operating
systems provide network transparent file access, and that migrated processes do not use intra-process com-
muni cation mechanisms. Some systems such as MIST[8] and Fail-safe PVM[19] have overcome many of
these limitations. The primary difference between existing user-level approaches and the introspective
mechanism is the lack of support for heterogeneity. In existing user level schemes (asin most existing ker-
nel-level schemes), the address space image of the process is assumed to be migratable without tranglation.
Again, the focusis on masking operating system service difference from migrated processes, rather than on
dealing with the internal structure of the process. Furthermore, the limitations placed on operating system
service usage in some of these systems are artifacts of the implementations, and do not reflect inherent lim-
itations on user-level migration schemes. The introspective mechanism offers the flexibility to implement
inherently operating system dependent interfaces such as message passing so they may be checkpointable.

9.2 Related Work in Heter ogeneous Process Migration

The theoretical basis for process migration in a heterogeneous environment is discussed in [35]. In
this work, the authors develop a formal definition of the points during execution at which a procedural
computation based on some high level specification can be transformed to continue execution on any other
Turing equivalent machine. They also introduce the idea that a compiler could place such pointsin atrans-
lated program, akey idea utilized by APrIL, which inserts poll points at which the PIL can correctly check-
point the running process. Furthermore, the authors identify the fundamental trade-off between consistency
point frequency and checkpoint request service latency discussed in Section 4.2. Thus, much of the theo-
retical foundation that demonstrates the feasibility of, and issues related to, a heterogeneous checkpoint
mechanism has begun to be examined. The key element not yet addressed is the design and implementa-
tion of aflexible, reasonably easy to use system for real heterogeneous computing environments.

There have been a number of notable previous attempts at designing a heterogeneous process check-
point or migration scheme. The first, an extension of the V migration mechanism, is presented in [11]. In
this scheme, compiler support is used to generate meta-information about a process describing the loca
tions and types of data itemsto be modified at migration time to mask data representation differences. For
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example, a map of the data area and type information about heap allocated blocks is maintained as in the
PIL mechanism. There are a number of key differences between the introspective checkpoint mechanism
and the heterogeneous V mechanism. First, the V mechanism requires kernel support for migration. This
has the drawbacks in a large scale heterogeneous system already described. Second, the V mechanism
requires that data be stored at the same address in al migrated versions of the process - a constraint that
may not be efficient or even possible to meet in some heterogeneous environments. The source of these
limitations of the V approach isits basisin atraditional process migration scheme, and its focus on simply
data-format converting and transferring the process address space to perform migration. The PIL focus on
logical program structure enablesit to operate at the user level, and without limitations on the actual mem-
ory image differences on different architectures.

Another approach to heterogeneous migration is presented by Theimer and Hayes in [34]. The basic
idea of their scheme isto construct an intermediate source code representation of a running process at the
point of migration, and to recompile this source at the migration target, continuing its execution in a
semantics preserving manner. The migration source code produced in this scheme is required to contain
code to reconstruct the migrated process to its state at the point of migration, as well as the normal code to
implement the future operation of the process. The scheme proposed to generate this migration code is
based on utilizing the debugger interface to examine all available process state information. The primary
differences between this approach and the introspective approach are portability and efficiency. To imple-
ment the Theimer-Hayes approach, the low-level, non-portable debugger interface must be utilized by an
process-external agent on each supported platform. Furthermore, the Theimer-Hayes approach requiresthe
use of compilation at run time, which can result in significant additional migration latency. This approach
was never implemented, and so actual performance and usability levels are difficult to evaluate.

A more recent approach to the heterogeneous process migration problem is the Tui system presented
in [28]. This system also utilizes compiler support, extending the scheme of utilizing the debugging inter-
face to examine or restore the state of a running process. While this system addresses some of the limita-
tions of the two previous proposals, and has been more fully implemented in a prototype system, it has
some drawbacks compared to the introspective approach. First, as with other schemes that modify back-
end compilers or utilize the debugging interface, the portability of the system can be limited, amajor draw-
back in atruly heterogeneous system. Furthermore, the Tui approach requires all checkpointable codeto be
tranglated by a special compiler, unlike the introspective approach, which supports a programmer accessi-
ble API. The Tui approach thus limits or precludes the checkpointability of inherently architecture or oper-
ating system dependent modules, and may preclude programmer optimization of the checkpoint
mechanism for some modules.

9.3 Work in Object Persistence and Migration

An additional source of related work deals with object and data structure marshalling and migration.
Perhaps the most basic, low level data marshalling interface is the External Data Representation (XDR)
library utilized by the Sun RPC mechanism[29]. This library provides routines to marshall atomic data
types (e.g. integers, floating point values, etc.) into a machine independent format.

A higher level object marshalling and migration environment is provided by the Distributed Object
Migration Environment system (Dome)[2]. Thislibrary is based on the C++ template mechanism, which it
uses to support automatically migratable objects and vectors. This system hides the low-level program-
ming details required to marshall and migrate distributed data structures, but it requires programmer decla-
ration of checkpointable data structures, and does not support arbitrary checkpointable data types (e.g. a
vector of floats is supported, but a linked list of records is not). Furthermore, this system constrains the
programmer to a single language (C++), limits the kinds of data structures that can be checkpointed, and
constrains the programming model to SPMD data-parallel codes.

A general framework for persistent objects was developed for the Arjuna[7,24] persistent object store.
All persistent abject classes in the system are required to define the mandatory member functions “save
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state” and “restore state.” These methods create and interpret objects of the class ObjectState which imple-
ments an object checkpoint/persistent representation. A limitation of this framework is that objects can
only be checkpointed at the well defined point of method invocation. Furthermore, the generation of the
checkpoint code is | eft to the programmer.

A more recent approach to object marshalling has been developed and released in prototype form for
the Java programming language[30]. This mechanism alows arbitrary Java objects (including active
objects, i.e. those that implement the “ Runnable” interface) to be communicated through Java l/O facilities
(i.e. over network connections, to and from files). The current primary limitation of this approach is that it
works only for interpreted byte code Java objects - native code compiled or “just-in-time” compiled
objects are not yet supported. This restriction makes the Java mechanism inappropriate for most high per-
formance computing applications. Of course, the other main drawback of this mechanismisthat it islim-
ited to programs written in the Java language.

A prototype scheme similar to the Java mechanism but with support for native code objects was
implemented for the Emerald distributed syqeml. This scheme, described in [31], requiresthat native-code
versions of Emerald objects be made to periodically reach pointsin execution (called “bus stops’) at which
they can be made consistent with their byte-code counterparts. These points are similar in some respects to
APrIL poll points. At these points, the existing mechanism for migrating byte-code Emerald objects can be
employed. A drawback of this approach is that it is only appropriate for programs written in the Emerald
language. A further drawback is the lack of support for programmer specified checkpoint mechanisms for
architecture dependent or hand optimized modules.

10 Summary and Future Work

The problem of providing a checkpoint/restart mechanism for use in a heterogeneous environment is
significantly complicated when compared to the same problem in a homogeneous environment. On the
other hand, the uses for such a mechanism in a heterogeneous environment are at least as important.
Although some work has been done to develop an automated mechanism for capturing the state of a pro-
cess in a platform independent, restartable form, no design has yet been devel oped that addresses the full
set of requirements inherent in a high performance, heterogeneous distributed system. This document pro-
poses a basic design strategy that is being employed to develop a general purpose, flexible, largely auto-
matic heterogeneous checkpoint/restart mechanism appropriate for high performance heterogeneous
computing: process introspection. Preliminary experiences in the design, implementation, and perfor-
mance evaluation of an introspective process checkpointing toolkit have demonstrated that the proposed
approach is promising in all respects.

Ongoing work on the Process Introspection project centers on four major elements. First, current
efforts are focused on the completion of the design and implementation of the prototype Process I ntrospec-
tion Library (PIL), the APrIL compiler, the Central Checkpoint Coordinator, and checkpointable utility
libraries for sequential codes. A significant amount of work in this area remains, including the design and
construction of an APrIL compiler to perform the code transformations described in Section 7. The second
major goal of ongoing research will be to continue to expand the empirical cost analysis of the checkpoint/
restart mechanism for sequential applications. This research is aimed at experimentally determining
answers to the following fundamental questions:

» What isthe run-time overhead of code transformed to used the PIL as compared to non-trans-
formed code?

» How much does APrIL affect the operation of back-end optimizers? In other words, how great
is the speedup of APrIL transformed code with back end optimization as compared to non-
transformed, non-checkpointable code?

1. The Emerald scheme actually pre-dates the Java mechanism. The presentation follows this order because the Emerald
native code mechanism builds on a general design for object migration of which the Java mechanism is one example.
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* What is the observed checkpoint request service latency for APrIL transformed codes? In
other words, how long on average and at worst does a process take to begin servicing a check-
point request given different poll point placement schemes?

» What isthe observed cost of performing a checkpoint for processes of different state complex-
ities and sizes?

» What isthe observed cost of performing arestart of checkpoints of different complexities and
sizes?

The third future research goal will be the integration of introspective checkpointing into at least one paral-
lel distributed system. The general problems associated with integration of the system are somewhat inde-
pendent of the distributed system targeted for integration. The anticipated integration issues include:

» Checkpointable versions of libraries needed to interact with the system (e.g. message passing)
must be constructed. These libraries will likely have inherent operating systems dependencies,
and will thus be candidates for hand coded checkpoint mechanisms.

* A version of the CCC based on the intra-process communication interface for the selected sys-
tem must be constructed.

The fourth mgjor item to be addressed by future work will be the evaluation of the checkpoint mechanism
for distributed programs. This evaluation will involve quantitative and qualitative aspects. First, the check-
point and restart costs of programs in the distributed environment must be measured. This performance
will indicate the degree to which using introspective checkpointing is a viable methodology for high per-
formance applicationsin areal distributed system. Next, some qualitative measurement of the usability of
the system in a working environment must be made. This may involve finding users with real programs
that need a checkpoint/restart mechanism. The degree to which they can automate the coding of their
checkpoint/restart mechanism using the PIL and APrIL will be a direct measure of the ease of use of the
system.
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