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Abstract
The Process Introspection project is a design and implementation effort,
the main goal of which is to construct a general purpose, flexible, efficient
checkpoint/restart mechanism appropriate for use in high performance
heterogeneous distributed systems. This checkpoint/restart mechanism
has the primary constraint that it must be platform independent; that is,
checkpoints produced on one architecture or operating system platform
must be restartable on a different architecture or operating system plat-
form. The Process Introspection mechanism is based on a design pattern
for constructing interoperable checkpointable modules. Application of the
design pattern is automated by two levels of software tools: a library of
support routines that facilitate the use of the design pattern, and a source
code translator that automatically applies the pattern to platform inde-
pendent modules. A prototype implementation of library has been con-
structed and used to demonstrate that the design pattern can be applied
effectively to construct platform independent checkpointable programs
that operate efficiently.

1 Introduction
This document details the design, prototype implementation, and initial evaluation of a flexible, effi-

cient mechanism for checkpointing and restarting processes in a heterogeneous distributed environment. A
checkpoint/restart mechanism is a significant element of a distributed system as it is required to implement
a number of basic fault tolerance and load balancing schemes. The current trend towards heterogeneity in
high performance distributed systems has given rise to the necessity that the checkpoint/restart mechanism
employed be platform independent. This requirement greatly increases the complexity of the checkpoint/
restart problem, since it requires that the state of a running process be capturable in a form that can be rein-
stantiated on a completely different architecture and operating system platform with a different instruction
set, data format, address space layout, etc. The mechanism to perform platform independent checkpoint/
restart described here is based on the notion ofprocess introspection, the fundamental fact that any pro-
gram can be modified to examine and capture its own internal dynamic state in a form that can later be
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recovered by an equivalent program running on a different architecture. In particular, the design discussed
utilizes support in language translation systems and runtime libraries to produce executable programs with
the ability to capture and restore their own internal state in a platform independent form. In many cases,
this scheme requires little or no work on the part of the programmer.

Current systems or designs for platform independent checkpoint/restart and migration mechanisms
suffer a number of significant limitations, including serious performance degradation, lack of portability,
and lack of support for user optimization or specification of special module checkpoint mechanisms. The
mechanism described here is based on a flexible abstract design pattern for constructing checkpointable
programs, the application of which is supported by a set of software tools to automate much of the work
that would otherwise be performed by the programmer. The design described here constitutes the first flex-
ible, portable, extensible, truly platform independent checkpoint/restart mechanism appropriate for high
performance heterogeneous distributed environments. It addresses the major problems and limitations of
existing approaches, and when fully implemented will provide a much needed but missing element of
functionality in high performance heterogeneous distributed systems.

1.1 Background
Recent developments in software systems and the growing availability of higher performance com-

puting and networking hardware have made the use of networks of workstations, personal computers, and
supercomputers as virtual distributed memory parallel machines commonplace for solving computation-
ally demanding problems[15,17]. Furthermore, developments in distributed systems technology have made
routine the use of heterogeneous collections of computing systems by a single application. These trends
have combined to produce the emerging field of high performance, heterogeneous distributed computing.
The combination of heterogeneous architecture and operating system platforms to produce a usable high
performance distributed meta-system gives rise to a number of problems not present in homogenous sys-
tems. For example, the complexity of varying architectural features such as data representation and instruc-
tion sets, and varying operating system features such as process management and communication
interfaces must be masked from the user. Furthermore, heterogeneity complicates existing problems in par-
allel and distributed systems. For example, the ability to create a good schedule for a parallel computation
is complicated by the presence of processors and interconnection networks of varying speeds and capabili-
ties. Despite the added complexity and challenges involved in heterogeneous distributed computing, the
promise of increased performance afforded by a larger hardware base, along with the concept of “super-
concurrency,”[13] the ability to increase performance by mapping sub-tasks of a computation to the most
appropriate available hardware, make heterogeneous computing an active and promising area of research.

A problem that is significantly complicated by the presence of heterogeneous computing systems is
the design of a checkpoint/restart mechanism, a facility to automatically capture the state of a running pro-
gram in some stable form, and then restart the program from the point of capture at some later time. This
feature is conspicuously absent in existing heterogeneous distributed systems although it exists in some
form in a number of distributed systems running on homogeneous sets of processors. The uses of a check-
point/restart mechanism have been the subject of a great deal of research. For example, a number of pro-
cess or object migration policies to support load balancing, fault tolerance, or both require an automatic
checkpointing facility. Other fault tolerance schemes such as distributed checkpoint/restart methods are
further examples. An automatic checkpointing scheme can be used to implement the semantics of certain
programming environments such as Time Warp[18] and other optimistic processing systems that rely on
the ability to “roll back” a local computation to provide causal guarantees about the order of message
delivery at a process. Some systems require the ability to checkpoint active entities to support scheduling
and load balancing activities. For example, if the number of active entities in a system becomes greater
than can be efficiently supported, the system might benefit from the ability to temporarily preempt the exe-
cution of some processes by checkpointing and destroying them, then later restarting them from check-
points. Beyond these existing uses, many other uses for an automatic platform independent checkpoint
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mechanism can be imagined. For example, the ability to spontaneously replicate a running process might
be useful for performance enhancement or for augmenting existing replication based fault tolerance
schemes[3]. Another possibility is platform independent debugging through techniques such as using
checkpoints to replay a process from a given point in execution or statically examining the state of a pro-
cess as captured in a checkpoint.

An automatic checkpoint/restart mechanism would be useful in heterogeneous systems for the same
reasons it has been found an invaluable tool in homogeneous systems. The basic reason that no adequate
design for such a facility has been developed to date is the relative difficulty due to the inherent additional
complexity introduced by heterogeneity. In the homogeneous case, the state of a process can be manipu-
lated simply and directly without being analyzed by the checkpoint/restart mechanism. For example, the
state of a Unix process is simply the contents of its address space, plus its process control block (register
values, file table, intra-process communication buffers, etc.). These entities are already conveniently avail-
able to the Unix kernel, making the internal state of a Unix process trivial to checkpoint. As long as the
process is restarted on the same kind of Unix system on the same kind of processor on which the check-
point was produced, the contents of the address space need not be interpreted by the kernel in order to
restore the process. Unfortunately, the address space and kernel process control information would be
meaningless if used to restart the process on a different Unix implementation running on a different archi-
tecture. The data representation might be different, thereby making any data in the address space meaning-
less. The code segment of the address space would be unintelligible given the different instruction set. The
address space may in fact be of a different size (e.g. 32 vs. 64 bit addressing), and may be laid out in an
entirely incompatible manner (e.g. text, data, bss locations, segment and page sizes, etc.).

Clearly, the state of the process cannot be captured using the naive mechanism which suffices in the
homogeneous case. For a checkpoint mechanism to operate in a heterogeneous environment, it must exam-
ine and capture the logical structure and meaning of the process address space contents, as well as any
operating system specific information (e.g. open file tables, intra-process communication buffers and
information). This prospect is somewhat daunting - the logical point in execution and the call stacks of all
threads of control, complex data structures including those linked by pointers, the values and logical struc-
ture of heap allocated memory, etc. all must be analyzed and checkpointed in a platform independent for-
mat, masking data format differences, addressing differences, instruction set differences and so on. In fact,
this problem is not automatically solvable in the fully general case; a program can always be constructed to
have inherent architecture or operating system dependencies. This does not mean that the situation is hope-
less, but we must restrict the problem somewhat to arrive at a useful solution from an engineering perspec-
tive. Many problems can be solved using programs that are efficiently checkpointable in an architecture
independent format. The issues of interest revolve around how automatic, general, flexible, and efficient
the mechanism can be made in order for it to be useful for checkpointing real programs running in real sys-
tems with performance constraints and limited programmer ability and time.

2 Problem Statement

2.1 Context
Many different approaches to the heterogeneous checkpoint problem are possible. For example, one

straightforward approach is to use an interpreted language, as in [5]. This reduces the problem of check-
pointing arbitrary programs in an architecture independent format to the problem of checkpointing a single
program - the interpreter. This solution is attractive for its simplicity, but is bound to fail to meet many
applications’ performance constraints. To constrain the possible solution space to the problem that we will
state in this section, we must first describe the context in which the solution is to operate.

The environment of interest is a distributed system consisting of a variety of node computing systems.
These nodes may be of different processor types, architectures, and configurations, and may run operating
systems of different types, capabilities, and versions. Processes as defined by the local node operating sys-
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tems run on the nodes, typically executing as native code if this is permitted by the node operating systems
in order to support high performance, computation intensive applications. Processes in the system will typ-
ically cooperate using a network. The target application domain includes (but is not limited to) high perfor-
mance distributed memory parallelized scientific applications exhibiting medium to course granularity.
Distributed systems of primary interest will exhibit node failures as well as inherent load imbalance due to
resource sharing.

2.2 Problem Definition
We assume that the following are given:

• A set ofmodules that can be combined to construct a native code representation of a process-
ing entity on all platforms of interest in some target distributed system.

• Some modules are known to beplatform independent, i.e. their correctness does not depend on
any implementation details of a given underlying architecture or operating system. These
modules are expected to be provided as code in some high level language. The target applica-
tion area is high performance scientific computing, thus the languages of interest include C,
C++, and Fortran. In principle, however, any high level language which can be translated to
executable instructions on the platforms of interest should be adequate.

• Other modules have eitherinherent platform dependencies (such as special operating system
requirements - e.g. a file interface or network communication interface module) orperceived
platform dependencies (such as programmer use of algorithmic optimizations based on avail-
able architectural features that may not be performed automatically by available optimizing
compilers, e.g. blocking versus vector implementations).

We wish to design a mechanism to compose the given modules into a complete program that can be auto-
matically checkpointed and later restarted from the checkpoint, perhaps on a different type of node from
the one on which the checkpoint was produced. The most fundamental constraint on the mechanism is that
it should generateplatform independent checkpoints (i.e. checkpoints should be restartable on any avail-
able operating system or architecture platform of interest in the target distributed system).

2.3 Solution Quality Metrics
Any checkpoint/restart mechanism that is intended for use in the environment described in Section 2.1

and that solves the problem described in Section 2.2 can be evaluated by examining the degree to which it
satisfies the following quality metrics:

• Ideally, little or no programmer effort should be required in order to checkpoint and restart
architecture independent modules. Consequently, no programmer effort should be required to
automatically checkpoint and restart programs consisting of only architecture independent
modules. It should be noted that most problems of interest for high performance computing
can be solved using platform independent programs; consider for example the large number of
numerical kernels that are written in Fortran and that are basically portable across standard
Fortran implementations.

• A convenient programmer interface should be provided for modifying architecture dependent
modules in order to render them checkpointable in a manner that is interoperable with com-
piler modified modules. The programming interface should give the programmer a high
degree of flexibility to customize and tune a module’s checkpoint/restart mechanism; at the
same time, it should afford enough power to make it easy to use.

• The mechanism should provide low checkpoint request service latency - i.e. the time between
a checkpoint request being delivered to a process and that process beginning to service the
request should be significantly less than the time required to write the checkpoint. This pre-
cludes techniques such as waiting for the program to reach a known, simple, consistent state
(e.g. waiting for a complex call stack to finish and return to the main function, checkpointing
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some “iteration number,” and then proceeding with the next complex “iteration”).
• The run-time overhead introduced by the mechanism should be low. In particular, if check-

points are not performed during execution, the checkpointable version of the code should not
run significantly slower than an optimized, non-checkpointable version of the code. This met-
ric might be stated simply as, “Don’t pay if you don’t play.”

• The checkpoint/restart mechanism should perform with a comparable cost to a homogeneous
environment checkpoint mechanism. For example, on a Unix system, the checkpoint of a run-
ning process should not take significantly longer than producing a core dump of the process.

• The checkpoints produced by the mechanism should not be unreasonably large. Continuing
the above example, the checkpoint of a Unix process should not be significantly larger than a
core image of the process.

• The mechanism should be general in nature. That is, it should be appropriate for use with a
wide variety of programs, written in a variety of languages, and solving a wide range of prob-
lems. This precludes special purpose toolkits such as those appropriate only for scientific
problems of a certain nature (e.g. stencil codes).

• The mechanism should be demonstrably integrable (without heroic effort) into existing hetero-
geneous distributed systems that are used to run “real” production quality applications.

3 Design Overview
We wish to design a software system solving the problem described in Section 2, and to analyze the

degree to which the system meets each of the design goals enumerated in Section 2.3. The design solution
described in this paper is based on the idea ofprocess introspection - the ability of a process to examine
and describe its own internal state in a logical, platform independent format. In some senses, all processes
that employ a custom programmed checkpoint/restart implementation utilize the concept of process intro-
spection. The system described here extends this technique of hand coding checkpoint/restart functionality
for individual processes into an integrated approach in which the development of introspective, check-
pointable program modules is completely automated when possible, or is at least rendered significantly
less complex through the use of library tools and a general design pattern when a handed coded checkpoint
facility for a module is still appropriate. The system design consists of the following components:

• The Process Introspection Design Pattern, a design template for writing checkpointable
codes. This design pattern describes the elements that must be added to a program in order for
it to support introspective checkpointing, as well as the relationships and responsibilities of
these elements.

• Dynamic runtime support via theProcess Introspection Library (PIL), a set of tools to auto-
mate or simplify many of the tasks involved in implementing an architecture independent
introspective checkpoint mechanism for a module.

• The Automatic Process Introspection Compiler (APrIL), a source code translator that can
transform architecture independent modules specified in a high level language into introspec-
tive checkpointable modules that utilize the PIL for interoperability.

• A Standard Checkpoint Interface (SCI) specification mechanism for describing the check-
point/restart interfaces to modules which will be linked to produce an introspective process.

• A Central Checkpoint Coordinator (CCC) module interface definition. The CCC is the part
of an introspective process that coordinates the operation of the introspective modules in the
process at checkpoint/restart time. The CCC also provides the public checkpoint interface for
the introspective process; that is, the interface via which the process can be asked to produce a
checkpoint or to restart from a given checkpoint.

In addition to these core elements of the proposed system design, a number of incidental elements will
eventually be designed and produced. In particular, a number of pre-provided checkpointable modules
must be constructed in order to allow introspective processes to be conveniently integrated into existing
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distributed systems (e.g. a checkpointable message passing module). Furthermore, checkpointable mod-
ules implementing such typically needed tools as file access will be provided to enhance the usability of
the system.

This paper describes the design, implementation, and analysis issues involved in constructing a sys-
tem consisting of the components described above. In Section 4, we discuss the Process Introspection
Design pattern. In Section 5, we examine the interface and implementation issues related to the Process
Introspection Library runtime support system, a set of tools that facilitate the application of the Process
Introspection Design Pattern. In Section 6, we discuss the automated application of process introspection
through source compilation techniques via the APrIL compiler. In Section 7, we describe the Central
Checkpoint Coordinator and the Standard Checkpoint Interface. Section 8 describes initial implementation
and application experiences with the Process Introspection Library and design pattern, and includes a dis-
cussion of preliminary performance results obtained with a prototype version of the system. Section 9 dis-
cusses related systems and theoretical results, and Section 10 offers concluding remarks and describes
current and future research directions.

4 The Process Introspection Design Pattern
The most concrete elements of the system design described in this paper are software tools that aid in

the implementation of platform independent checkpointable programs. However, the fundamental theoret-
ical basis for these tools is a design pattern for constructing checkpointable programs appropriate for use in
the target environment. A Design Pattern consists of four elements[14]:

• A name, in this case, the Process Introspection Design Pattern.
• A target problem, in this case, the problem described in Section 2.
• A solution, consisting of elements that make up the design and the ways that they interact.
• A set of consequences, the trade-offs and implications of using the pattern.

In this section, we will describe the general solution and consequences associated with the Process Intro-
spection Design Pattern.

4.1 Process Model
Before describing the Process Introspection Design Pattern (or the software tools designed to help

apply it), we must first define the process model assumed. Processes as viewed by the system are defined
as follows:

• A process executes a program. Equivalent executable versions of the process’s program are
available for all platforms of interest. This is a somewhat flexible constraint - not all architec-
ture specific binaries need to be available as long as the scheduling/migration policies can be
constrained to utilize feasible schedules given the available set of binaries.

• The executable program associated with a process is built from a set of modules. Each module
contains a set of executable subprograms and data.

• A running process contains a set of active threads of control. The execution model for these
threads is based on the traditional procedural model with a stack based parameter and local
variable storage scheme. Thus, a thread of control in the system logically consists of a pro-
gram counter (i.e. a logical location in the executable code for the process) and a subprogram
activation stack containing the local variable and parameter storage for the thread’s subpro-
gram call stack.

• A process contains data in the form of memory blocks. Every memory block contains some
structured layout of elements of basic data types (i.e. data types supported by the processor
and/or programming language systems used by the process). A process contains three basic
classes of memory blocks: statically sized global blocks, dynamically allocated blocks whose
size and structure are determined at run time, and automatically allocated stack blocks that are
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local to some subprogram activation in a thread of control within the process.

4.2 The Process Introspection Design Pattern
Given the definition of process discussed in Section 4.1, and the problem of checkpointing or restart-

ing the process as stated in Section 2, we can now describe a general design pattern for modifying the mod-
ules that make up the process in order to support introspective checkpoint and restart. These general design
and implementation strategies can be applied by a programmer by hand to create the checkpoint/restart
mechanism for the process. Given the code for the process (i.e for the modules that make up its program),
the following two principles are applied:

1. The ability to save and restore the call stacks of all threads must be added to the program.
To implement the checkpoint feature for threads, the code that the threads execute should be modified

to periodically poll for checkpoint requests; i.e. poll points should be placed throughout the code. As we
noted in Section 2.3, low checkpoint request service latency is a quality metric of the checkpoint mecha-
nism, so poll points ought to be placed in the code frequently enough to meet the performance needs of the
application. On the other hand, poll points constitute additional run time overhead, so excessive placement
of poll points would be un-wise.

If a checkpoint request is encountered at a poll point, the thread must immediately checkpoint any
data in its active call frame along with its logical point in execution, and returns to its calling subroutine
which must then save its call frame and return, and so on. In this way, the threads each checkpoint their
stacks using the native subroutine return mechanism to traverse the call frames.

Similarly, to implement the restart feature, the native subroutine call mechanism is employed. When
the process is asked to restart from a given checkpoint, it must call the initial subroutine for all threads
active at the checkpoint. Each initial subroutine restores its local variables from the checkpoint, uses con-
trol flow to advance to the correct logical point in execution (as reflected in the checkpoint), and then calls
the next subroutine in the checkpointed stack. The called subroutine then repeats the process, which con-
tinues until the final active subroutine is called and can proceed from its checkpointed logical point in exe-
cution.

2. The ability to save and restore all memory blocks must be added to the program.
The above mechanism requires that a means to save and restore the memory blocks in the stack be

added to the program. More generally, a mechanism must be added to the program to save all of the mem-
ory blocks in the process - global, dynamically allocated, as well as the stacks. The key attribute of this
mechanism is that it must be capable of masking all platform dependencies in all kinds of program data.
For example, the checkpointed data should not depend on any particular low level data format (e.g. “little
endian” versus “big endian” integers). More generally, however, the checkpointed data must be made to
mask higher level dissimilarities in the format and interpretation of memory blocks on different platforms.
For example, a file interface on one operating system might represent an open file as an integer file
descriptor. This integer would be meaningless to the file interface module on some other platform. Thus,
the data (in this case, an open file description) would have to be checkpointed using a higher level descrip-
tion. In this example, the higher level description might include a file name and current location in the file.
Another example in which higher level descriptions are needed is in the checkpointing of pointers. A mem-
ory address on one platform would need to be modified to reflect differences in address space layout and
data format on another platform. Thus, if pointers were to occur in a memory block, they would need to be
checkpointed using a logical description of the address they referred to instead of a low level memory loca-
tion.

The primary consequence of the above modifications to a program implementing a process as
described in Section 4.1 is that the process will be capable of introspective checkpoints and restarts. Fur-
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thermore, the checkpoints produced by such a program will be platform independent. As mentioned, the
placement of poll points is critical to the application of the pattern; too few can result in high checkpoint
request service latency, while too many can result in high run-time overhead. Both of these risks must be
illuminated as potentially negative, but avoidable, consequences of the pattern.

It is evident even from this general description that making the described modifications to a program
manually could be very complex, even for relatively simple programs containing a small number of mod-
ules and few platform dependencies. Increasingly complex codes would be correspondingly more difficult
to modify in order to support introspection. The difficulty involved in applying of the Process Introspec-
tion Design Pattern could be considered a negative consequence. This leads to the need to provide software
tools to automate as many of the tasks involved in making a program capable of introspective checkpoint/
restart as possible.

5 Process Introspection Library and Interface
The Process Introspection Library (PIL) is the most basic software layer intended to automate aspects

of the Process Introspection Design Pattern for checkpointable programs. The PIL presents an API that can
be used to deploy the coding strategies described in Section 4.2, which allow programs to be automatically
checkpointable. The API is intended to be used by programmers to facilitate the hand coding of checkpoint
algorithms, but it must also provide efficient access to runtime services suitable for use by a compiler
which can provide a higher level of automation. We now examine the design issues involved in the main
PIL modules.

5.1 Logical Program Counter Stack
The set of subroutine invocation stacks associated with a process define a logical point of execution

(called a Logical Program Counter (LPC) value) in each active call frame. Each thread of control in the
process has a stack of LPC values which defines its logical point in execution (i.e. its set of active subpro-
grams and the logical point in execution within each one). The LPC stack of each thread must be computed
at checkpoint time and stored with the checkpoint to restore the thread at restart time, using the native sub-
routine scheme described in Section 4.2. Similarly, at restore time, when the native subroutine call mecha-
nism is used to reinstantiate the call stacks, the logical program counter value for each stack frame must be
made available so that each stack frame will be able to determine the correct logical point at which to con-
tinue execution. The Logical Program Counter Stack module provides an interface for accomplishing these
tasks. Note, the LPC Stack module does not restore the call stacks automatically; the threads of control
owning the call stacks must restore the physical stacks themselves, but can use the LPC Stack module to
determine where in each frame to continue execution, thus simplifying the task.

5.2 Thread Management Module
To ensure that the appropriate threads of control can be restarted from the appropriate entry points, a

checkpoint must record a description of the threads that were active at the time the checkpoint was pro-
duced. Each thread of control in a process must be registered with the Thread Management Module which
is responsible for checkpointing information about the active threads of control. The Thread Management
module is also responsible for exporting a platform independent threads interface so that the semantics of
threads-related operations (such as synchronization and scheduling) can be made consistent across differ-
ent operating systems.

5.3 Data Format Conversion Module
When checkpointing memory blocks using the PIL, a process includes a description of the data for-

mats used. Later, when the checkpoint is restored, the data format can be converted to the restarting pro-
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cessor’s representation, a protocol known as “receiver makes right”[36]. The PIL supports a set of routines
to perform data format conversion on buffered data using this “receiver makes right” strategy. Conse-
quently, this library module must contain routines to translate a set of supported data types from every
available format to every other available format. This O(N2) (where N is the number of different data for-
mats) requirement initially seems like a bad idea; why not instead use a single universal data format for
checkpoints, and require conversion routines only between native formats and the universal format (reduc-
ing the complexity to O(N) conversion routines for N formats)? In fact, the receiver makes right protocol
makes sense only in light of the very small number of data formats used by current and planned computer
systems. By not requiring data format conversion on checkpoint, the cost of format conversions is avoided
for the common case in which a checkpoint is restarted on a similar type of machine to the one on which it
was created.

5.4 Type Table
To checkpoint or restore a memory block, the PIL must have a description of the basic data types

stored in that memory block. The PIL provides an interface to a table mapping type identifier numbers to
logical type descriptions. Every memory block savable through the PIL interface should be describable as
a linear vector of some number of elements of a type described by an entry in the type table. The Type
Table is not unlike a type description table that might be found in a standard compiler, except that it is
available and dynamically configurable at runtime.

5.5 Pointer Analysis Module
Memory addresses (i.e. pointers) contained within memory blocks must be described using a logical

format in the checkpoint. Similarly, at restore time, logical pointer descriptions must be used to determine
the physical memory address values that should be restored into all memory blocks. A suitable mechanism
for this purpose is based on the assignment of a unique identification number to every heap, global, and
stack memory block. A logical pointer description then is a tuple containing a memory block identification
tag, and an offset into the memory block. Offsets specified in a checkpoint may need to be adjusted due to
data format differences on the restarting processor; again, this is a receiver makes right protocol. It should
be noted that instead of pointing into a heap, stack, or global memory block, a memory address might point
to some code location or might contain an invalid address although being typed to contain a pointer (e.g. a
nil value). These kinds of values must also be in the logical pointer description space.

The Pointer Analysis Module provides the mechanisms for describing the logical value of memory
locations (pointers) in a checkpoint, and for interpreting these logical values into actual memory addresses
at restart time. These mechanisms are based on simple case analysis; a pointer can be one of exactly five
types:

• A reference into a heap allocated memory block
• A reference into a global memory block
• A reference into a local (stack) memory block
• A pointer to some code entry point
• A special value which has meaning in the program (such as NULL in C).

The Pointer Analysis module examines physical addresses to determine which of these kinds the pointer is
of (assuming the final case if the first four fail). It produces logical descriptions of pointers each of which
contains a logical identification number (that can be used to determine its type and base location at restart
time) and an offset based on the checkpointer’s data format.

5.6 Global Variable Table
The memory addresses, type table indices, and vector sizes of all globally addressable memory blocks

must be registered with the PIL. The Global Variable Table provides an interface to accomplish this. It also
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exports routines that can be used by the system to save the values of all global memory blocks to a check-
point buffer, and to restore those values using the type description table and data format conversion rou-
tines.

5.7 Heap Allocation Table
In addition to globals, the addresses, type table indices, and vector sizes of all active dynamically allo-

cated memory blocks must be registered with the PIL. To accomplish this, the Heap Allocation module
exports wrapper routines that should be used for typed memory block allocation and de-allocation. These
routines maintain a table of all active heap allocated memory blocks. As with the Global Variable Table,
the Heap Allocation Table must export routines to save and restore the state of all heap allocated blocks.

5.8 Code Location Table
To fully resolve the meaning of all pointers, the PIL must maintain a table that maps logical code

entry points to actual memory code locations. All subroutine entry points (and other addressable code loca-
tions) in a program are assigned a logical identification number via the Code Location Table interface.
During the program’s execution, code location pointers can be described logically in terms of code loca-
tion table indices.

5.9 Active Local Variable Table
Since pointers can refer to local variables, the addresses, type table indices, and vector sizes of some

local variable memory blocks must be registered with the PIL. Note, only those locals whose addresses can
ever be assigned to pointers (and whose address can consequently be found in some memory block) need
to be registered with the Active Local Variable Table. This leaves open the possibility that local variables
can be stored in registers.

A prototype of the PIL supporting most of the functionality described in this section has been imple-
mented and is operational. It demonstrates that the discussed design pattern can be applied without great
difficulty to implement checkpoint/restart mechanisms for actual programs. Implementation details and
preliminary performance results obtained using this prototype PIL are described in Section 8.

6 Automatic Process Introspection Compilation Techniques
The PIL makes hand coding introspective checkpoint/restart mechanisms for modules significantly

less complex, but in many cases a higher level of automation is possible. If a module is specified in a high
level language (e.g. C or Fortran) and contains no platform dependencies, PIL calls can be automatically
inserted into transformed code, completely automating the coding of the checkpoint/restart mechanism in
the best case, and requiring very little programmer input at a high level in the worst case. It should be
immediately noted that this automated usage of the PIL will not be appropriate for some modules. For
example, the file interface module already mentioned will likely not be specifiable in a platform indepen-
dent manner since calls to a lower level operating system will likely be needed. In cases such as this, the
programmer is left to design and implement the checkpoint/restart mechanism for the module using the
PIL. Fortunately, many modules such as the file interface example can be designed and coded once, and
then can be frequently reused by automatically translated, platform independent modules.

In this section, we provide an overview of the design of the “Automated usage of the Process Intro-
spection Library” (APrIL) Compiler, a source code translator to automatically apply the Process Introspec-
tion Design Pattern. In particular, we will examine the general goals of the APrIL translator, and examine
the most fundamental APrIL code transformations in detail. Implementation of the APrIL compiler is the
subject of current ongoing work.
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6.1 Translation Goals
The “Automated usage of the Process Introspection Library” (APrIL) compiler will provide an auto-

matic, programmer transparent mechanism for employing the PIL library to render a module checkpoint-
able. Use of APrIL is predicated on the programmer providing a module implementation in a high level
language (e.g. C or Fortran) in an architecture independent form. The APrIL compiler translates this archi-
tecture independent high level language source code into a lower level but architecture independent inter-
mediate representation. This intermediate representation is transformed to utilize the PIL runtime system
in a manner consistent with the Process Introspection Design pattern described in Section 4.2. The trans-
formed intermediate representation is then used to generate object code (which may be optimized) for all
platforms of interest. The APrIL code transformations on the intermediate representation are based on
three central goals:
1. The module must keep the PIL run-time tables consistent with the actual state of the process during

execution. This is accomplished by inserting code to update the tables at points in the code where state
changes must be reflected in the tables. The API presented by the PIL is designed to avoid frequent
updates to the run-time tables. As much of the work as possible is concentrated at process startup,
checkpoint, and restart times, in keeping with the “don’t pay if you don’t play” philosophy. Examples
of runtime table maintenance routines that must be inserted by APrIL include:

• On process start-up, the type table, global variable table, and function entry point table must be
initialized.

• When a subroutine begins execution, it must register in the Active Local Variable Table the
memory addresses and type table indices of any local variables whose addresses can be
assigned to pointers.

2. According to the design pattern described in Section 4.2, threads executing code in the module must
periodically poll for checkpoint requests during execution. This requires that APrIL place poll points
throughout the module code. In case the poll indicates that a checkpoint must be generated, the intro-
spective checkpoint mechanism must be dispatched (i.e. the memory blocks in the current call frame
must be saved and an immediate subroutine return must be performed). An open research issue is
where in the code and how frequently poll points should be inserted. The more poll points that are
placed in the code, the lower the latency between checkpoint request and service will be. On the other
hand, more poll points will lead to higher runtime overhead and more constraints on the back-end opti-
mizer.

3. When a restart is requested, the process must restore all threads of execution. Using the design pattern
described in Section 4.2, this requires subroutines to determine if a restart is in progress when it begins
executing, and to restore the state of the stack frame if a restart is in fact occurring.

6.2 Intermediate Representation
Before developing specific code transformations that will be used to accomplish the goals described

above, the issue of which intermediate representation on which APrIL will operate must be addressed. A
large variety of intermediate code representations have been proposed and are in common use in produc-
tion and research compilers. For example, abstract syntax trees, program dependence graphs, and assembly
language-like virtual machine instructions (e.g. byte-codes) are common possibilities. The choice of an
intermediate representation for APrIL would preferably balance the following goals:

• Architecture independence
• High-level language independence
• Good existing tool support (e.g. front-ends for various languages, back-ends for various plat-

forms, optimizers, etc.)
The current APrIL design choice in this area is to use source-to-source translation, making a subset of

ANSI C serve as the intermediate language. ANSI C meets the first requirement, architecture indepen-
dence, if certain platform dependent features (e.g. the “asm” directive) are excluded from the allowable
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subset. While seemingly counter-intuitive, ANSI C also meets the second requirement of high-level lan-
guage independence. For example, source-to-source tools exist to translate C++, Fortran, and Pascal
(among others) to ANSI C. Finally, source-to-source translation based on ANSI C meets the third goal of a
rich existing tool set. Back-end technology is available via existing high quality optimizing compilers.
Front-end source-to-source translation tool-kits are also available; for example the Sage++ library[6] offers
an object-oriented interface to parsing, manipulating, and transforming C using a set of C++ object classes.

It should be noted that the assumption of a high-level language as the intermediate representation is
not fundamental to the APrIL design. If a different intermediate representation were used, equivalent trans-
formations to those which will be described in the remainder of this section could be used to implement the
automatic checkpoint code.

6.3 APrIL Transformations
We will now examine the most fundamental specific transformations employed by APrIL. The pri-

mary goals of these transformation are those discussed in Section 6.1.

6.3.1 Function Prologues
Function prologues are added to every function definition transformed by APrIL. If any local variable

addresses are assigned to pointers in the function body, APrIL generates calls to the PIL to register those
variables in the local variable table. APrIL then generates a check to determine if a stack restart is in
progress (recall, stack restarts using the PIL are implemented using the normal function call mechanism).
APrIL generates code to be executed in case of a restart which will restore values of local variables and
actual parameters, determine the Logical Program Counter location at which the checkpoint for this frame
was created, and jump to a label in the function body corresponding to the LPC. The following example
illustrates an APrIL function prologue. The function beginning:

void example(double *A)
{

int i;
double temp[100];

is transformed to include the prologue:
void example(double *A)
{

int i;
double temp[100];
PIL_RegisterStackPointer(temp,PIL_Double,100);
if(PIL_CheckpointStatus&PIL_StatusRestoreNow) {

int PIL_rst_pnt = PIL_PopLPCValue();
A = PIL_RestoreStackPointer();
i = PIL_RestoreStackInt();
PIL_RestoreStackDoubles(temp,100);
switch(PIL_rst_pnt) {

case 1: PIL_DoneRestart(); goto _PIL_PollPt_1;
case 2: goto _PIL_PollPt_2;
case 3: PIL_DoneRestart(); goto _PIL_PollPt_3;

}
}

This function has an array which is evidently later assigned to a pointer, hence the call to register the
address, size, and type of the “temp” array. The prologue then checks the value of the special variable
“PIL_CheckpointStatus” to determine if this function call was made in the process of restoring a call stack.
If it was, the LPC value, actual parameter, and locals are restored using PIL routines. The correct point in
the function is then jumped to using a “goto” based on the LPC value.
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6.3.2 Poll Points
APrIL must insert poll points throughout the code it transforms. At each poll point, code must be gen-

erated to poll to see if a checkpoint is in progress. Code must be generated to be executed if a checkpoint is
in progress which will record the logical program counter value for the frame and jump to a function epi-
logue which will save the actual parameters and locals. APrIL generates two kinds of poll points: standard
and mandatory function call site poll points. Standard poll points can be inserted in the transformed code
between any two statements. A standard poll point has a single labeled LPC value and performs the poll
described above. An example of a standard poll point that might be found in the example function above is:

_PIL_PollPt_1:
if(PIL_CheckpointStatus&PIL_StatusCheckpointNow) {

PIL_PushLPCValue(1);
PIL_CheckpointStatus|=PIL_StatusCheckpointInProgress;
goto _PIL_save_frame_;

}

Mandatory function call point poll points are required to be inserted by APrIL after every function call
statement in the code1. Mandatory function call poll points are required in order to implement the stack
save mechanism based on the native function return mechanism. Every function return in APrIL trans-
formed code can be an actual return or a return that is used to save the stack. The mandatory function call
point must catch and implement the latter case. This requires two LPC values for a mandatory poll point,
one before the call site (in the case that the checkpoint began in a higher call frame), and one after the call
site (in the event that the checkpoint should begin immediately following a normal function return). For
example, a mandatory poll point that might occur in the transformed example code is:

_PIL_PollPt_2:
i = function(A,temp,100);

_PIL_PollPt_3:
if(PIL_CheckpointStatus&PIL_StatusCheckpointNow) {

if(PIL_CheckpointStatus&PIL_StatusCheckpointInProgress)
  PIL_PushLPCValue(2);
else {
  PIL_PushLPCValue(3);
  PIL_CheckpointStatus|=PIL_StatusCheckpointInProgress;
}
goto _PIL_save_frame_;

}

6.3.3 Function Epilogues
The poll points inserted by APrIL generate code to jump to a function epilogue in the event that a

checkpoint is found to be progress. Thus, APrIL generates an epilogue for each function it transforms
placed beyond the last return statement (the epilogue is accessible only by goto, and is not normally exe-
cuted by a standard function return). If the epilogue is executed (i.e. jumped to from a poll point), it saves
the stack frame variables and actual parameters, and returns to the next function activation leaving the
“Checkpoint in progress” flag set so that the stack save will continue. The function epilogue for our exam-
ple function would be:

_PIL_save_frame_:
PIL_SaveStackPointer(A);
PIL_SaveStackInt(i);
PIL_SaveStackDoubles(temp,100);
return;

1. Of course, function calls can occur in expressions, in which case they must be extracted from the expression and
assigned to a temporary variable.
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6.3.4 Module Initialization
The three types of transformations discussed thus far are primarily aimed at implementing the check-

point and restoration of function call stacks. A routine to register any types defined by the module with the
Type Table and insert any globals defined by the module in the Global Variable Tables is also generated by
APrIL. The generation of this function is a straightforward process based on any types, globals, and static
variables found in the module. The mechanism by which this initialization function is marked as a module
initializer to be called by the PIL on process startup is discussed in Section 7, which describes the Standard
Checkpoint Interface.

6.3.5 Heap Function Transformations
One of the more difficult transformations that APrIL must perform is the translation of all heap allo-

cation requests into calls to the typed allocation routines provided as part of the PIL. Since heap allocation
is not part of the C language definition, APrIL will need to perform a heuristic to determine when heap
allocation is taking place, and the type and size of the allocated memory. Of course, such a process will not
be accurate or even possible in all cases, and thus user input (or at least verification of results produced
using a heuristic) may be required at certain points during translation. For example, one possible heuristic
could find all calls to the malloc() C library routine, use the parameter to malloc() to determine the
allocation size, and base the allocation type determination on the type of value the result is casted or
assigned to.

7 Checkpoint Coordination and Module Interfaces
Assuming modules are automatically transformed or are hand coded to support introspective check-

points using the PIL interface and general design pattern, they must still be made to work together to pro-
duce checkpoints. In particular, it will certainly be desirable to combine separately developed and
compiled modules to construct complete applications; these separately developed and compiled modules
must be linkable and interoperable. The interoperation of modules to introspectively produce checkpoints
or restart processes is achieved by a combination of a Central Checkpoint Coordinator module and a Stan-
dard Checkpoint Interface for introspective modules.

The Standard Checkpoint Interface (SCI) is a functional interface that must be exported by all of the
modules that are linked together to construct an introspective process. The SCI essentially defines a set of
(possibly empty) function callbacks that are executed when certain key events relevant for checkpoint/
restart purposes occur. The list of SCI events includes:
• A Process Startup event is generated every time the process starts, either for the first time or at restart

time. The startup event handler for each module is responsible for registering any globals and/or data
type definitions included in the module.

• A Checkpoint Start event is generated when a checkpoint has been requested. During the handling of
this event, a consistent description of the module suitable for writing to the checkpoint should be cre-
ated. The module should not discard any information that other modules might depend on at this point.
For example, if a heap allocated block owned by the module might be addressed by some other mod-
ule, it should not be freed at during the Checkpoint Start event handler.

• A Checkpoint End event is generated after the Checkpoint Start event has been handled (i.e. the check-
point has been constructed). During the handling of this event, any resources held by the module can
be freed.

• A Restart Start event is generated when a restart has been requested. At this point, the module should
attempt to restore its state from the checkpoint. A complete restoration may not be possible if needed
information has not yet been restored by other modules. When this is the case, the module should
record the need to later restore some of its state during the Restart Done event handling.

• A Restart Done event is generated after all Restart Start event handlers have completed. During the
handling of this event, modules should restore any state dependent on information not available during
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the Restart Start event handling.
The SCI will be implemented as a separate “meta-file” that must accompany a compiled module object or
library file naming the event handlers contained in the module. Linkage of SCI modules will be performed
by a special linker tool that will generate code to register all handlers for the appropriate events.

The SCI is utilized by a Central Checkpoint coordinator module. This module implements the public
interface to the program’s checkpoint/restart facility. It must export a mechanism by which checkpoints or
restarts can be requested, and must coordinate the service of these requests. Service coordination by the
CCC is essentially the act of calling the registered event handlers of all modules whenever their associated
events occur.

8 Preliminary Experiments and Results
Prototype implementations of the PIL and a simple CCC module were recently constructed and used

as the basis for feasibility demonstrations and initial performance and cost analysis. In particular, three
sample applications were hand transformed using the proposed APrIL source-to-source compilation tech-
niques to examine typical runtime overheads, to gain an initial insight into the impact on back end optimi-
zations, and to determine checkpoint request service latencies (i.e. the time between checkpoint request
and service). Two numerical kernels (matrix multiplication and a sparse Gauss-Seidel solver) were
selected as typical target codes, and a quicksort kernel was selected as a potentially high run-time overhead
example.

As an initial demonstration of the feasibility of the process introspection technique, each of the exam-
ple programs was compiled, run, and verified as checkpointable/restartable across Sun workstations run-
ning Solaris or SunOS 4.x, SGI workstations running IRIX 5.x, IBM RS/6000 workstations running AIX,
DEC Alpha workstations running OSF1, and PC compatibles running Linux, Microsoft Windows NT, and
Microsoft Windows 95. The interface selected for the simple CCC overloads the “control-C” interrupt of a
process to checkpoint and exit the running program instead of simply terminating it. The CCC writes the
checkpoint to the process’s current working directory using a well known file name. Later, when the pro-
gram is run again, the CCC notes the presence of a checkpoint, and uses it to implement a restart instead of
allowing the process to start up normally.

In addition to these feasibility demonstrations, the programs were compiled with and without optimi-
zations, and run on a range of problem sizes. Each sample run was allowed to complete without performing
any checkpoints or restarts in order to measure the introduced run-time overhead and affects on the back-
end optimizer. Non-checkpointable versions of the codes were also run as control cases. Since all of the
measured performance metrics of the sample programs depend on the placement of poll points, a simple
placement heuristic was selected; poll points were placed at basic block boundaries, except in the inner-
most loop of multiply nested loops. Of course, many different placement strategies are possible and could
produce different performance trade-offs. This simple heuristic was selected because it would be very sim-
ple to implement in the APrIL compiler (and thus will be at least one of the supported placement policies
for APrIL), and it leads to a reasonable balance between introduced run-time overheads and checkpoint
request latencies. In all test cases, the average checkpoint service latencies were measured and found to
range from 0.01 to 1.0 milliseconds, indicating the utilized poll point placement scheme results in check-
point latencies at least an order of magnitude below the time to save a checkpoint.

Representative performance results of these are presented below. In each table, “Normal” indicates
the execution time of the non-optimized, nontransformed (i.e. not checkpointable) code. “Transformed”
indicates the execution time of the transformed (checkpointable) code compiled with no optimizations.
“Optimized” indicates the execution time of the optimized, non-transformed code, while “Trans. Opt.”
indicates the execution time of the transformed code compiled with optimization. All times are listed in
seconds, and represent the best run time taken over 8 runs to reduce the affect of shared resource conten-
tion.
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Table 1: NxN Matrix multiplication, Ultrasparc, compiled with gcc

N 32 64 128 256 512

Normal 0.03 0.16 2.49 27.36 115.77

Transformed 0.11 0.33 2.92 27.76 121.42

Optimized 0.06 0.08 0.81 19.86 75.72

Trans. Opt. 0.10 0.14 1.00 19.88 76.41

Table 2: NxN Matrix multiplication, RS/6000, compiled with xlc

N 32 64 128 256 512

Normal 0.03 0.26 2.66 21.16 288.96

Transformed 0.03 0.27 2.66 21.17 288.99

Optimized 0.01 0.06 1.16 9.14 198.01

Trans. Opt. 0.01 0.07 1.16 9.18 199.95

Table 3: 2D Gauss-Seidel Solver, NxN grid, Ultrasparc, compiled with gcc

N 32 64 128 256

Normal 0.12 2.29 44.53 854.93

Transformed 0.12 2.29 46.78 859.35

Optimized 0.11 0.37 16.26 239.60

Trans. Opt. 0.11 0.39 16.72 267.50

Table 4: 2D Gauss-Seidel Solver, NxN grid, SGI, compiled with cc

N 32 64 128 256

Normal 0.22 2.27 40.87 670.96

Transformed 0.22 2.29 41.54 685.57

Optimized 0.12 0.86 17.40 268.75

Trans. Opt. 0.20 0.95 19.12 313.44
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The results of the performance tests demonstrate three general cases that can occur for a given place-
ment policy. The first test, matrix multiplication, exhibited little difference in the performance of the
checkpointable and non-checkpointable code, both for non-optimized and optimized versions. This indi-
cates that the utilized poll placement heuristic is a good choice for the matrix multiplication code, as it
results in low overhead and low checkpoint request latency, and also does not affect the operation of the
optimizer. The next case, gauss-seidel, illustrates a case where the introduced overhead is low, but the opti-
mizer is somewhat constrained. While the non-optimized checkpointable and non-checkpointable codes
execute in roughly the same times, the optimized checkpointable code runs 10%-15% slower than the opti-
mized non-checkpointable code. This indicates that the extra work introduced in this example is minimal,
as it is in the matrix multiply example, but the optimizer is less able to speed up the code due to the place-
ment of poll points. The final example, quicksort, illustrates the case where poll points are too frequent
(10’s of microseconds apart), and overhead is introduced due to the extra work. In this case, the effect of
the added overhead rather than any constraints on the optimizer result again in a 10%-15% slowdown of
the application. These three cases illustrate the critical nature of the poll point placement algorithm. If the
poll points are well placed, the code will not suffer performance degradation and will exhibit low check-
point service latency. On the other hand, poor placement or too liberal placement of poll points can seri-
ously affect performance.

9 Related Work
The problem of checkpointing a process in a platform independent manner is closely related to work

in two key areas: process migration, and object/data structure marshalling and migration. We will now
examine related work in these areas.

9.1 Related Work in Homogeneous Process Migration
The area of process migration has been the subject of a great deal of research, both in terms of mech-

anisms and policies. The work most closely related to this proposal deals with migration mechanisms,

Table 5: Quicksort, 2N keys, Ultrasparc, compiled with gcc

N 17 18 19 20 21

Normal 1.95 3.28 6.86 13.91 28.25

Transformed 1.96 3.68 7.54 15.31 31.25

Optimized 0.83 1.20 2.48 4.92 9.85

Trans. Opt. 1.00 1.46 2.99 5.94 12.22

Table 6: Quicksort, 2N keys, SGI, compiled with cc

N 17 18 19 20 21

Normal 1.87 3.81 8.22 17.22 35.44

Transformed 2.20 4.55 9.73 20.41 42.15

Optimized 0.70 1.42 3.05 6.42 13.16

Trans. Opt. 1.04 2.12 4.26 8.96 18.50
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which in general can be viewed as checkpoint mechanisms. A broad survey of migration mechanisms in
homogeneous environments is presented in [27]. Most homogeneous migration mechanisms are imple-
mented at the kernel level of distributed and network operating systems. Examples of such systems include
Charlotte[1], Sprite[10], DEMOS/MP[25], and the V-System[33]. In all of these migration mechanisms,
the address space (i.e. the internal state) of the process is assumed migratable without modification, and the
focus of the work is generally on masking differences in OS services (e.g. file system, intra-process com-
munication) from the migrated process. Besides the obvious difference of the assumption of a homoge-
neous environment, these systems differ from the introspective mechanism in that they require kernel
support. The argument for implementing process migration or checkpoint at the kernel level is based on the
desire for efficiency and the availability of process resource usage information at the kernel level. In the
context of a large scale, heterogeneous distributed system, these arguments become weaker. First, as the
number of different architecture and operating system platforms grows, the issue of mechanism portability
becomes important in addition to efficiency concerns. Furthermore, in meta-system approaches[16], the
assumption that the operating system will have the needed intra-process communication information asso-
ciated with a process becomes false, and the design decision to modify the kernels of all included hosts
becomes impractical. These facts lead to the desire for a user-level checkpoint/migration mechanism.

User level process migration schemes have been implemented in some existing distributed sys-
tems[8,21,22,26]. For example, the Condor[21] load balancing system migrates processes in homogeneous
environments by transferring a core image of the process. Needed operating system specific information
associated with the process is maintained at the user level by tracking the parameters and return values of
all system calls. While this approach is typically somewhat less efficient than kernel level implementa-
tions, the Condor system is easily portable to any Unix-based platform. Common constraints on user level
migration schemes in network operating systems such as Condor and [22] are that the underlying operating
systems provide network transparent file access, and that migrated processes do not use intra-process com-
munication mechanisms. Some systems such as MIST[8] and Fail-safe PVM[19] have overcome many of
these limitations. The primary difference between existing user-level approaches and the introspective
mechanism is the lack of support for heterogeneity. In existing user level schemes (as in most existing ker-
nel-level schemes), the address space image of the process is assumed to be migratable without translation.
Again, the focus is on masking operating system service difference from migrated processes, rather than on
dealing with the internal structure of the process. Furthermore, the limitations placed on operating system
service usage in some of these systems are artifacts of the implementations, and do not reflect inherent lim-
itations on user-level migration schemes. The introspective mechanism offers the flexibility to implement
inherently operating system dependent interfaces such as message passing so they may be checkpointable.

9.2 Related Work in Heterogeneous Process Migration
The theoretical basis for process migration in a heterogeneous environment is discussed in [35]. In

this work, the authors develop a formal definition of the points during execution at which a procedural
computation based on some high level specification can be transformed to continue execution on any other
Turing equivalent machine. They also introduce the idea that a compiler could place such points in a trans-
lated program, a key idea utilized by APrIL, which inserts poll points at which the PIL can correctly check-
point the running process. Furthermore, the authors identify the fundamental trade-off between consistency
point frequency and checkpoint request service latency discussed in Section 4.2. Thus, much of the theo-
retical foundation that demonstrates the feasibility of, and issues related to, a heterogeneous checkpoint
mechanism has begun to be examined. The key element not yet addressed is the design and implementa-
tion of a flexible, reasonably easy to use system for real heterogeneous computing environments.

There have been a number of notable previous attempts at designing a heterogeneous process check-
point or migration scheme. The first, an extension of the V migration mechanism, is presented in [11]. In
this scheme, compiler support is used to generate meta-information about a process describing the loca-
tions and types of data items to be modified at migration time to mask data representation differences. For
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example, a map of the data area and type information about heap allocated blocks is maintained as in the
PIL mechanism. There are a number of key differences between the introspective checkpoint mechanism
and the heterogeneous V mechanism. First, the V mechanism requires kernel support for migration. This
has the drawbacks in a large scale heterogeneous system already described. Second, the V mechanism
requires that data be stored at the same address in all migrated versions of the process - a constraint that
may not be efficient or even possible to meet in some heterogeneous environments. The source of these
limitations of the V approach is its basis in a traditional process migration scheme, and its focus on simply
data-format converting and transferring the process address space to perform migration. The PIL focus on
logical program structure enables it to operate at the user level, and without limitations on the actual mem-
ory image differences on different architectures.

Another approach to heterogeneous migration is presented by Theimer and Hayes in [34]. The basic
idea of their scheme is to construct an intermediate source code representation of a running process at the
point of migration, and to recompile this source at the migration target, continuing its execution in a
semantics preserving manner. The migration source code produced in this scheme is required to contain
code to reconstruct the migrated process to its state at the point of migration, as well as the normal code to
implement the future operation of the process. The scheme proposed to generate this migration code is
based on utilizing the debugger interface to examine all available process state information. The primary
differences between this approach and the introspective approach are portability and efficiency. To imple-
ment the Theimer-Hayes approach, the low-level, non-portable debugger interface must be utilized by an
process-external agent on each supported platform. Furthermore, the Theimer-Hayes approach requires the
use of compilation at run time, which can result in significant additional migration latency. This approach
was never implemented, and so actual performance and usability levels are difficult to evaluate.

A more recent approach to the heterogeneous process migration problem is the Tui system presented
in [28]. This system also utilizes compiler support, extending the scheme of utilizing the debugging inter-
face to examine or restore the state of a running process. While this system addresses some of the limita-
tions of the two previous proposals, and has been more fully implemented in a prototype system, it has
some drawbacks compared to the introspective approach. First, as with other schemes that modify back-
end compilers or utilize the debugging interface, the portability of the system can be limited, a major draw-
back in a truly heterogeneous system. Furthermore, the Tui approach requires all checkpointable code to be
translated by a special compiler, unlike the introspective approach, which supports a programmer accessi-
ble API. The Tui approach thus limits or precludes the checkpointability of inherently architecture or oper-
ating system dependent modules, and may preclude programmer optimization of the checkpoint
mechanism for some modules.

9.3 Work in Object Persistence and Migration
An additional source of related work deals with object and data structure marshalling and migration.

Perhaps the most basic, low level data marshalling interface is the External Data Representation (XDR)
library utilized by the Sun RPC mechanism[29]. This library provides routines to marshall atomic data
types (e.g. integers, floating point values, etc.) into a machine independent format.

A higher level object marshalling and migration environment is provided by the Distributed Object
Migration Environment system (Dome)[2]. This library is based on the C++ template mechanism, which it
uses to support automatically migratable objects and vectors. This system hides the low-level program-
ming details required to marshall and migrate distributed data structures, but it requires programmer decla-
ration of checkpointable data structures, and does not support arbitrary checkpointable data types (e.g. a
vector of floats is supported, but a linked list of records is not). Furthermore, this system constrains the
programmer to a single language (C++), limits the kinds of data structures that can be checkpointed, and
constrains the programming model to SPMD data-parallel codes.

A general framework for persistent objects was developed for the Arjuna[7,24] persistent object store.
All persistent object classes in the system are required to define the mandatory member functions “save
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state” and “restore state.” These methods create and interpret objects of the class ObjectState which imple-
ments an object checkpoint/persistent representation. A limitation of this framework is that objects can
only be checkpointed at the well defined point of method invocation. Furthermore, the generation of the
checkpoint code is left to the programmer.

A more recent approach to object marshalling has been developed and released in prototype form for
the Java programming language[30]. This mechanism allows arbitrary Java objects (including active
objects, i.e. those that implement the “Runnable” interface) to be communicated through Java I/O facilities
(i.e. over network connections, to and from files). The current primary limitation of this approach is that it
works only for interpreted byte code Java objects - native code compiled or “just-in-time” compiled
objects are not yet supported. This restriction makes the Java mechanism inappropriate for most high per-
formance computing applications. Of course, the other main drawback of this mechanism is that it is lim-
ited to programs written in the Java language.

A prototype scheme similar to the Java mechanism but with support for native code objects was
implemented for the Emerald distributed system1. This scheme, described in [31], requires that native-code
versions of Emerald objects be made to periodically reach points in execution (called “bus stops”) at which
they can be made consistent with their byte-code counterparts. These points are similar in some respects to
APrIL poll points. At these points, the existing mechanism for migrating byte-code Emerald objects can be
employed. A drawback of this approach is that it is only appropriate for programs written in the Emerald
language. A further drawback is the lack of support for programmer specified checkpoint mechanisms for
architecture dependent or hand optimized modules.

10 Summary and Future Work
The problem of providing a checkpoint/restart mechanism for use in a heterogeneous environment is

significantly complicated when compared to the same problem in a homogeneous environment. On the
other hand, the uses for such a mechanism in a heterogeneous environment are at least as important.
Although some work has been done to develop an automated mechanism for capturing the state of a pro-
cess in a platform independent, restartable form, no design has yet been developed that addresses the full
set of requirements inherent in a high performance, heterogeneous distributed system. This document pro-
poses a basic design strategy that is being employed to develop a general purpose, flexible, largely auto-
matic heterogeneous checkpoint/restart mechanism appropriate for high performance heterogeneous
computing: process introspection. Preliminary experiences in the design, implementation, and perfor-
mance evaluation of an introspective process checkpointing toolkit have demonstrated that the proposed
approach is promising in all respects.

Ongoing work on the Process Introspection project centers on four major elements. First, current
efforts are focused on the completion of the design and implementation of the prototype Process Introspec-
tion Library (PIL), the APrIL compiler, the Central Checkpoint Coordinator, and checkpointable utility
libraries for sequential codes. A significant amount of work in this area remains, including the design and
construction of an APrIL compiler to perform the code transformations described in Section 7. The second
major goal of ongoing research will be to continue to expand the empirical cost analysis of the checkpoint/
restart mechanism for sequential applications. This research is aimed at experimentally determining
answers to the following fundamental questions:

• What is the run-time overhead of code transformed to used the PIL as compared to non-trans-
formed code?

• How much does APrIL affect the operation of back-end optimizers? In other words, how great
is the speedup of APrIL transformed code with back end optimization as compared to non-
transformed, non-checkpointable code?

1. The Emerald scheme actually pre-dates the Java mechanism. The presentation follows this order because the Emerald
native code mechanism builds on a general design for object migration of which the Java mechanism is one example.
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• What is the observed checkpoint request service latency for APrIL transformed codes? In
other words, how long on average and at worst does a process take to begin servicing a check-
point request given different poll point placement schemes?

• What is the observed cost of performing a checkpoint for processes of different state complex-
ities and sizes?

• What is the observed cost of performing a restart of checkpoints of different complexities and
sizes?

The third future research goal will be the integration of introspective checkpointing into at least one paral-
lel distributed system. The general problems associated with integration of the system are somewhat inde-
pendent of the distributed system targeted for integration. The anticipated integration issues include:

• Checkpointable versions of libraries needed to interact with the system (e.g. message passing)
must be constructed. These libraries will likely have inherent operating systems dependencies,
and will thus be candidates for hand coded checkpoint mechanisms.

• A version of the CCC based on the intra-process communication interface for the selected sys-
tem must be constructed.

The fourth major item to be addressed by future work will be the evaluation of the checkpoint mechanism
for distributed programs. This evaluation will involve quantitative and qualitative aspects. First, the check-
point and restart costs of programs in the distributed environment must be measured. This performance
will indicate the degree to which using introspective checkpointing is a viable methodology for high per-
formance applications in a real distributed system. Next, some qualitative measurement of the usability of
the system in a working environment must be made. This may involve finding users with real programs
that need a checkpoint/restart mechanism. The degree to which they can automate the coding of their
checkpoint/restart mechanism using the PIL and APrIL will be a direct measure of the ease of use of the
system.



- 22 -

References
[1] Y. Artsy and R. Finkel, “Designing a Process Migration Facility: The Charlotte Experience”, IEEE

Computer, pp. 47-56, Sept. 1989.
[2] A. Beguelin, E. Seligman, and M. Starkey, “Dome: Distributed Object Migration Environment”,

Carnegie Mellon University Technical Report CMU-CS-94-153, May 1994.
[3] K.P. Birman, T.A. Joseph, T. Raeuchle, and A. El Abbadi, “Implementing Fault-Tolerant Distrib-

uted Objects”, IEEE Transactions on Software Engineering, Vol. 11, No. 6, pp. 502-508, June
1985.

[4] M. Bishop and M. Valence, “Process Migration for Heterogeneous Distributed Systems”, Dart-
mouth College Technical Report PCS-TR95-264, Aug. 21, 1995.

[5] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter, “Distribution and Abstract Types in
Emerald”, IEEE Transactions on Software Engineering, Vol. 13, No. 1, pp. 65-76, January 1987.

[6] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B. Winnicka,
“Sage++: An Object-Oriented Toolkit and Class Library for Building Fortran and C++ Restructur-
ing Tools”, OONSKI, 1994.

[7] S.J. Caughey and S.K. Shrivastava, “Architectural Support for Mobile Objects in Large Scale Dis-
tributed Systems”, IWOOOS-95, Lund, August 1995.

[8] J. Casas, D. L. Clark, P. S. Galbiati, R. Konuru, S. W. Otto, R. M. Prouty, J. Walpole, “MIST:
PVM with Transparent Migration and Checkpointing”, 3rd Annual PVM Users’ Group Meeting,
Pittsburgh, PA, May 7-9, 1995.

[9] T.C.K. Chou and J.A. Abraham, “Load Balancing in Distributed Systems”, IEEE Transactions on
Software Engineering, Vol. 8, No. 4, pp. 401-412, July 1982.

[10] F. Douglis and J. Osterhout, “Process Migration in the Sprite Operating System”, Proceedings of
the 7th International Conference on Distributed Computing, pp. 18-25, 1987.

[11] F.B. Dubach, R.M. Rutherford, and C.M. Shub, “Process-Originated Migration in a Heteroge-
neous Environment”, Proceedings of the ACM Computer Science Conference, pp.98-102, Feb.
1989.

[12] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing in Homogeneous Distrib-
uted Systems,” IEEE Transactions on Software Engineering, Vol. 12, pp. 662-675, May 1986.

[13] R.F. Freund and D. S. Cornwell, “Superconcurrency: A Form of Distributed Heterogeneous
Supercomputing,” Supercomputing Review, Vol. 3, pp. 47-50, Oct. 1990.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of Reusable Object-Ori-
ented Software, Addison-Wesley, 1995.

[15] A. Geist, A Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.S. Sunderam, PVM: Parallel Vir-
tual Machine, MIT Press, 1994.

[16] A.S. Grimshaw, J.B.Weissman, E.A. West, and E. Loyot, “Meta Systems: An Approach Combin-
ing Parallel Processing And Heterogeneous Distributed Computing Systems,” Journal of Parallel
and Distributed Computing, pp. 257-270, Vol. 21, No. 3, June 1994.

[17] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Mes-
sage-Passing Interface, MIT Press, 1994.

[18] D.R. Jefferson, “Virtual Time”, ACM Transaction on Programming Languages and Systems, Vol.
7, No. 3, pp.404-425, July 1985.

[19] J. Leon, A.L. Fisher and P. Steenkiste, “Fail-safe PVM: A Portable package for Distributed Pro-
gramming with Transparent Recovery”, Technical Report CMU-CS-93-124, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, February 1993.

[20] M.J. Lewis, A.S. Grimshaw, “The Core Legion Object Model,” Proceedings of IEEE High Perfor-
mance Distributed Computing 5, pp. 551-561 Syracuse, NY, August 6-9, 1996.

[21] M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor-A Hunter of Idle Workstations,” Proceedings
of the Eighth International Conference on Distributed Computing Systems, pp. 104-111, 1988.



- 23 -

[22] K. Mandelberg and V.S. Sunderam, “Process Migration in Unix Networks”, Proceedings of the
USENIX Winter Conference, pp. 357-363, 1988.

[23] A. Nye, Xlib Programming Manual, O’Reilly & Associates, 1993.
[24] G. D. Parrington, S. K. Shrivastava, S. M. Wheater and M. C. Little, “The Design and Implemen-

tation of Arjuna,” USENIX Computing Systems Journal, Vol 8, No 3, 1995.
[25] M.L. Powell and B.P. Miller, “Process Migration in DEMOS/MP”, Proceedings of the Ninth Sym-

posium on Operating Systems Principles in ACM Operating Systems Review, Vol. 17, No. 5, pp.
110-118, 1983.

[26] J. Robinson, S.H. Russ, B. Flachs, and B. Heckel, “A Task Migration Implementation for the Mes-
sage Passing Interface”, Proceedings of the Fifth IEEE International Symposium on High Perfor-
mance Distributed Systems, Syracuse, NY, August, 1995.

[27] J.M. Smith, “A Survey of Process Migration Mechanisms”, Operating Systems Review, Vol. 22,
No. 3, pp. 28-40, July, 1988.

[28] P. Smith and N.C. Hutchinson, “Heterogeneous Process Migration: The Tui System”, Technical
Report, University of British Columbia, Feb. 28, 1996.

[29] Sun Microsystems, External Data Representation Reference Manual, Sun Microsystems, Jan.
1985.

[30] Sun Microsystems, Java Object Serialization Specification, Revision 0.9, 1996.
[31] B. Steensgaard and E. Jul, “Object and Native Code Thread Mobility Among Heterogeneous

Computers”, SOSP 1995.
[32] V.S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurrency: Practice

and Experience, vol. 2(4), pp. 315-339, Dec. 1990.
[33] M.M. Theimer, K.A. Lantz, and D.R. Cheriton, “Preemptable Remote Execution Facilities for the

V-System”, Proceedings of the 10th ACM Symposium on Operating System Principles, Dec. 1985.
[34] M.M. Theimer, and B. Hayes, “Heterogeneous Process Migration by Recompilation,” Proceed-

ings of the 11th International. Conference on Distributed Computing Systems, Arlington, TX, pp.
18-25, May 1991.

[35] D.G. Von Bank, C.M. Shub, and R.W. Sebesta, “A Unified Model of Pointwise Equivalence of
Procedural Computations”, ACM Transactions on Programming Languages and Systems, Vol. 16,
No. 6, pp. 1842-1874, Nov. 1994.

[36] H. Zhou and A. Geist “Receiver Makes Right Data Conversion in PVM”, Proceedings of 14th
International Conference on Computers and Communications, Phoenix, pp. 458-464, March 1995.


