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Abstract

Research in parallel discrete event simulation indicates that neither purely
conservative nor purely optimistic synchronization algorithms will perform well
consistently. We survey several new approaches that attempt to improve performance by
limiting optimistic execution. In most of these, the criterion for limiting optimism is static
or based on local information, which conflicts with the dynamic nature of discrete event
simulations. We contend that an adaptive approach based on low cost near-perfect system
state information is the most likely to yield a consistently efficient synchronization
algorithm. We suggest a framework by which NPSI (near-perfect state information)
adaptive protocols could be designed and describe the first such protocol - Elastic Time
Algorithm. We present performance results from an implementation of this algorithm
which show that adaptive protocols based on the use of NPSI are promising. In particular,
we show that NPSI adaptive protocols have the capacity to be more efficient than Time
Warp in both timeand space. We identify major issues in the design and usability of NPSI
protocols and discuss ongoing research.
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1 Introduction
The state-of-the-art in parallel discrete event

simulation (PDES) is captured well in the recent survey
by Fujimoto [Fuji90]. Although this survey is dated
eleven years since the inception of PDES, it is dedicated
entirely to the discussion of synchronization
mechanisms for PDES.The synchronization problem
has remained the central challenge in PDES. A large
number of protocols have been proposed to solve the
problem and many have reported good performance.
However, a general solution which can be applied to a
wide range of simulations still eludes the community. A
more recent survey [FuNi92] confirms that this state has
not changed. We present initial results of research into a
novel and unique class of protocols - those in which
LP’s adapt their behavior dynamically to changes in the
simulation using low-cost near-perfect system state
information. We refer to these protocols asNPSI (Near-
Perfect State Information) adaptive protocols. Given the
inherently dynamic nature of simulations [NiRe90], we
believe NPSI adaptive protocols offer the best hope of
finding a consistently efficient, general protocol.

We assume familiarity with the common approach
to PDES [Fuji90], namely the partitioning of a
simulation into logical processes (LP’s). Each LP is
itself a sequential discrete event simulator which can
schedule events at other LP’s using timestamped
messages. The LP’s must execute events, whether
generated internally or scheduled by other LP’s, without
violating causality constraints (effectively). Typically,
this is the responsibility of aprotocol. The nine design
variables in [Reyn88] define the design space for
protocols. Anaggressive protocol is one which executes
events without the guarantee of freedom from causality
errors. A protocol hasrisk if it propagates messages
based on aggressive or inaccurate computation. Based
on these two variables, aconservative protocol is non-
aggressive and without risk, while anoptimistic protocol
is aggressive and with risk. These two categories form
the end points of a spectrum of protocols with limited
optimism (aggressiveness and risk).

Adaptiveness for PDES protocols is defined in
[Reyn88] as the capability of a protocol to modify the
bindings of one or more of its design variables during
the simulation. Several protocols have been proposed
that limit optimism, but most of them are not adaptive
by this definition. In order to make dynamic decisions
based on system state, processes must be provided with
near-perfect state information at low cost. Gathering
such information by exchanging messages through the
communication network of a multi-processor as the
simulation proceeds is infeasible due to the relatively

high cost of such communication. This has been the major
obstacle in the study of NPSI adaptive protocols.

To overcome this obstacle, we assume an
asynchronous dynamic feedback system which provides
each LP with a near-perfect snapshot of the system state
(in a reduced form) at very low cost. This is done for three
reasons: (i) we believe NPSI adaptive protocols have
significant potential and thus warrant a detailed study,
(ii) a feasible implementation for the feedback system is a
high-speed reduction network, and (iii)an implementation
exists for such a reduction network [RePS92]. As we shall
see later, our first NPSI adaptive protocol shows
significant improvements over pure Time Warp [Jeff85],
in terms of both time and space.

2 Previous work
We categorize protocols that limit optimism based on

the criterion for limiting optimism:

• Window based: Only those events within a
(common or independent) window are executed
aggressively. Similarly only those messages
within a (possibly different) window are sent out.
This ensures that all of the LP’s remain close to
each other in logical time. Uncontrolled echoing
and cascading rollbacks cannot occur. Examples
are [SoBW88, LuWS89, ReJe89, McAf90,
TuXu92, Dick93, Stei93].

• Space based: Here, the boundaries for limiting
optmism are spatial rather than temporal. In
general, the processors are divided into clusters
which use Time Warp internally. Interaction
among clusters follows some non-aggressive
protocol. Examples are [Gima89, RaAT93]. An
interesting special case is when each cluster
contains exactly one LP; then we have a risk-free
system [DiRe90, Mehl91, Stei91, Bell93].

• Penalty based: This approach assumes that the
recent past is a good predictor of the near future.
Based on their recent behavior, some LP’s are
penalized (and consequently block) while others
are favored (and consequently continue).
Examples are [ReJe89, BaHo90]. In [Madi93],
the penalty is based on the difference between an
LP’s logical clock andestimates of the logical
clocks of other LP’s.

• Knowledge based: The basic idea is to contain
the propagation of incorrect computation as soon
as it is determined that the computation is
incorrect. When an LP suffers a primary rollback,
any aggressive processing it has done and sent to
other LP’s is potentially incorrect. So it
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broadcasts a message to all “affected” LP’s
informing them that their computation is
potentially incorrect. These LP’s then limit
their optimistic processing. Examples are
[MaWM88, PrSu91].

• Probabilistic: A special process periodically
makes a probabilistic decision to send out
synchronization messages to all LP’s, forcing
them to synchronize.

Most of these protocols have demonstrated better
performance than pure Time Warp under specific tests.
However, we expect that all of them will have limited
performance in the general case due to one or more of
the following: (i) the criterion for limiting optimism
(window size, cluster size, penalty thresholds,
probabilities, etc.) is predetermined (ii) the decision to
limit optimism is based solely on local history (iii) the
LP’s are loosely synchronous (i.e. not asynchronous).

Recently, three protocols have been proposed which
we categorize asstate based protocols. They differ from
those listed above in two significant ways: first, they are
truly adaptive in that the LP’s continually adjust their
optimism, and second, adaptive decisions are based on
state information which, although available locally, is
directly affected by the actions of other LP’s. Thus,
these protocols are similar to NPSI protocols. The first
two of these [HaTr94, FeTr94] are similar to each other
in that they both utilize channel information to decide
when and for how long LP’s should wait. Intuitively, it
may be argued that our approach has an advantage over
these because LP’s in NPSI protocols can receive
information from all of their predecessors whereas
channel protocols provide information only about
immediate predecessors. The benefit comes from the
fact that in a channel protocol, information has to
percolate through the predecessors of an LP before it
reaches that LP. During this time, the LP may have
moved farther ahead than it should have. Moreover, the
protocols in [HaTr94, FeTr94] cannot determine if a
predecessor is rolling back until they receive a null- or
anti-message conveying that information. NPSI
protocols are able to determine this information earlier.
The third protocol in this class [DaFu94] uses memory
consumption as the basis for limiting optimism. The
protocol limits the memory consumption of LP’s
adaptively and consequently, also limits their optimism.
It is based on a memory management protocol such as
Cancelback or Artificial Rollback. We take the opposite
approach in that NPSI adaptive protocols directly limit
the optimism of LP’s and consequently limit their
memory consumption. Our approach has the potential

for eliminating the need for costly memory management
schemes completely.

3 Effect of limiting optimism
Aggressive protocols incur three direct costs: state

saving cost, rollback cost and memory management cost.
Limiting aggressiveness and risk introduces a fourth cost:
lost opportunity cost, characterized by the potential loss in
performance when an LP stops executing events or
sending messages even though it is safe for it to continue.
In order to obtain good performance, protocols must
attempt to minimize:

state saving cost + rollback cost +
memory management cost + lost opportunity cost

While limiting optimism tends to decrease the first three of
these, it also tends to increase the fourth, leading to the
typical trade-off shown in Figure 1. This trade-off must be
balanced properly in order to obtain the best possible
performance. To do so, protocols must attempt to
distinguish incorrect computations from correct ones and
limit the propagation of the former while allowing the
latter to progress.

PDES’s are known to be very dynamic in nature, i.e.
the locality of events in the system changes as the
simulation progresses. Typically, this is due to the fact that
simulated systems have some form of information flow
which is translated in the simulator into a causal chain of
events among LP’s. Since the propagation of such chains
is based on probabilistic decisions and input parameters of
the simulation, it is impossible to determine the flows a
priori (except in special cases). This suggests that in order
to balance the trade-off above, a protocol must also be
dynamic, adapting its behavior in response to observed
changes in the system.

Restriction on optimism

C
os

t

state saving + rollback +
+ memory management costs

lost opportunity cost

Balance

Figure 1 : Trade-off introduced by limiting optimism

Overall cost
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4 Near-perfect state information
We believe the two key requirements for a protocol

to be consistently efficient are that it is dynamic and that
it uses feedback from the simulation to adapt. Ideally,
these requirements should be met by providing LP’s
with perfect state information, such that any relevant
change in system state is visible instantaneously.
However, this is impossible to achieve due to various
latencies in computing distributed snapshots. Therefore,
a good approximation of perfect state information is
required.

We take the direct approach by assuming the
existence of an asynchronous dynamic feedback system
which operates asynchronously with respect to the LP’s
and provides them with near-perfect information at
almost no cost. Clearly, the feedback system cannot
operate over the native communication system of the
multi-processor executing the PDES. One solution is to
use a high-speed reduction network. A global reduction
network is one in which binary, associative operations
(minimum, summation, etc.) are used to reduce state
information so that, say, the minimum simulation clock
value can be computed across all LP’s. Our experience
with the design, construction and testing of a global
reduction network [RePS92] suggests that a production
version of such a network can operate at very high
speeds (less than 20 nanoseconds per stage in the tree).
These low latencies, combined with its pipelined, tree
structure make such a network scalable up to thousands
of processors. We have used this reduction network for
the perfromance analysis described later.

5 NPSI adaptive protocols
NPSI adaptive protocols are optimistic protocols

(such as Time Warp) in which the aggressiveness and
risk are controlled dynamically using near-perfect state
information. There are two phases in the design of NPSI
adaptive protocols:

• identifying the information on which the decision
to limit optimism is to be based;

• designing the mechanism that translates this
information into control over an LP’s optimism;

Clearly, there are numerous choices for each of these. In
order to facilitate independent study of each, we
uncouple them by introducing a quantity called error
potential (EPi) associated with each LPi. The value of
EPi is used to control LPi’s optimism. The framework
we propose is shown in Figure 2. The NPSI adaptive
protocol keeps each EPi up-to-date as the simulation
progresses, by evaluating M1 at high frequency using
state information it receives from the feedback system.

Similarly, M2 reflects new values of EPi in the event
execution and communication rates dynamically. Different
protocols may be devised by changing M1 and M2. The
goal of our research is to design mappings M1 and M2
such that their combination forms an adaptive protocol
that performs well consistently.

To achieve optimal performance, LP’s must be able to
identify computations that will be rendered incorrect in the
future and limit their propagation. Obviously, this requires
the ability to predict the future which is difficult at best. In
the framework described above, the error potential is a
way of labeling computation as potentially incorrect. EPi
is simply a number which indicates the likelihood of LPi’s
computation becoming incorrect in the near future: the
higher the value of EPi, the higher this likelihood. The key
to consistently good performance is to devise an M1 which
will predict the nature of the LP’s computation (i.e.
whether that computation will be rolled back or not)
accurately most of the time. An inaccurate M1 can produce
a low value of EP when the computation is erroneous,
resulting in higher rollback costs, or a high value of EP
when the computation is correct, resulting in higher lost
opportunity cost.

M2 must be such that higher values of EPi result in
lesser aggressiveness and risk at LPi. A simple scheme is
to establish a threshold such that if the value of EP
exceeds this threshold, event execution and
communications are suspended until EP falls below the
threshold again. A more sophisticated scheme would
reduce the event execution and communication rates
gradually as EP increases. This deceleration can be
achieved by inserting delays at appropriate points. M2
would then be a function that maps EP to a wall-clock
time delay.

6 Elastic Time Algorithm
We describe the specifics of the elastic time algorithm

(ETA), the first NPSI adaptive protocol. ETA has been
implemented and the results of preliminary performance
analysis are presented here. The protocol can be specified
completely by describing the two mappings M1 and M2.

Figure 2 : General framework for adaptive protocols

Error Potential

Event
processing

and

M1 M2

message
sending

System
State
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6.1 M1: computing EPi
M1 is the following function:

M1 : EPi = logical clocki - GVT
where GVT (global virtual time [Jeff85]) is defined as
the minimum of the logical clocks of all LP’s and the
timestamps of any messages in transit. Thus, ETA is
based on near-perfect values of GVT being available to
the LP’s. We use the reduction network to provide
accurate GVT at high frequency and low cost [SrRe93].

The rationale behindthis M1 is that if an LP is far
ahead of others, it is likely to be rolled back soon and
therefore should be slowed down. The algorithm’s name
derives from the following analogy: one may imagine
an LP and its predecessors as pins moving along the
logical time line with an elastic band around them. The
farther an LP moves away from the rest, the slower its
progress due to the restraining pull of the elastic band.
When the LP farthest behind moves forward, the
restraint on the LP farthest ahead is reduced so that it
may quicken its pace again. As the load locality changes
among LP’s, this scheme adapts by restraining those
LP’s far ahead in logical time.

6.2 M2: controlling optimism
Given a value of EPi computed by M1, we use the

following function to scale it to a delay value,δi:

where MaxEPi is the maximum value of EPi observed
thus far ands is a scaling factor (we defer discussion on
s to Section 7). The event processing loop of a Time
Warp LP is modified as shown in Figure 3 to incorporate
adaptive delaying. Some interesting features of this M2
must be noted:

i) The blocked state of the LP is not “opaque” in
that while in this blocked state, the LP observes
its input channels for messages that may cause it
to rollback. If such a message arrives, the waiting
is aborted and rollback is initiated. Also, the LP
may perform useful work in the blocked state
such as converting messages that it receives (that
do not cause a rollback) into future events.

ii) EPi and δi are updated in each iteration of the
loop in the blocked state.

iii) The waiting scheme is not memoryless. The wait
timer is started only once at the beginning of the
wait period. As LPi goes through successive
iterations of the wait-loop, its wait time increases
whereasδi decreases (because its logical clock is

δi s
EPi

MaxEPi
--------------------⋅=

constant and GVT is monotonically increasing).
Thus, LPi interprets each new value ofδi as an
estimate of the amount of time it should have
waited since the start of the waiting period. When
this value becomes smaller than the time it has
actually waited, LPi exits the wait-loop.

iv) This M2 provides direct control over an LP’s
aggressiveness only. The LP’s risk is controlled
only to the extent that while in a blocked state, the
LP does not send out messages. Clearly, it is
possible (and perhaps desirable) to have a separate
mechanism to limit risk.

Putting ETA in perspective with previous protocols, we
observe that it is a state based protocol that is similar to
window based protocols with two significant differences:

• It is completely asynchronous - there are no
barrier synchronizations to negotiate windows

• Each LP’s logical time window may be
considered infinite but the event execution rate
drops rapidly as the LP moves farther away from
the base of the window

6.3 Performance analysis
We present the results of performance tests on ETA.

We describe the testing environment, followed by test
cases, metrics used and results.

Hardware

The hardware consists of a cluster of four Sparc 2
workstations connected by Ethernet and aparallel
reduction network (PRN) that we have designed and built
[RePS92]. Each workstation communicates with its own

While there are events to be processed

Update logical clock and process event

Start wait timer

do

Receive messages and exit from loop if

there is a message that will cause

rollback or if the message has

timestamp = GVT

Update GVT, EPi and δ
Read wait timer

while wait timer value < δ
Rollback if necessary

Process messages

Save state

Collect fossils

endwhile

Figure 3 - Event processing loop with adaptive waiting
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auxiliary processor (AP) through dual-ported memory
(DPRAM). The four AP’s are connected to the PRN
which computes and disseminates globally reduced
values at very high speeds. The AP’s are responsible for
sending values into the PRN and reading its global
output. Dedicated processors have been used to offload
this task from the workstations so as to keep
interference with the simulation to a minimum. The
workstations communicate relevant state changes to the
AP’s through the DPRAM. The AP’s process this
information and send it to the PRN. Also, the AP’s read
the globally reduced output of the PRN and propagate
relevant parts of it to the workstation.

Software

The two primary software components are the Time
Warp LP’s and the GVT computation algorithms
executing on the workstations and the AP’s respectively.
The LP’s use aggressive cancellation and do not support
event pre-emption; they include the M1 and M2 for
ETA. The GVT computation algorithm for the AP’s is
described in [SrRe93].

Test cases

We employ a parameterized synthetic workload
generator to create our test cases with the important
parameters being event execution time, average
timestamp increment, state saving cost, communication
topology and distributions, number of local events per
message, and state saving and fossil collection
frequencies. Time consuming actions such as event
executions and state saving are simulated by busy loops;
all other mechanisms such as rollback, restoring state,
sending antimessages and fossil collection and data
structures such as saved state list and antimessage list
are implemented in detail. A synthetic workload
generator is used instead of actual applications because
it allows us to mimic those applications without the
excessive time and effort required to implement each of
them. Our workload generator is very similar to the
PHOLD model [DaFu94].

We tested ETA on several workloads and observed
that it outperformed Time Warp on all of them. We
present results for the following:

a) Workload 1 consists of four LP’s with the T1
communication topology shown in Figure 4 (a
torus). The number on an arc is the probability that
a generated message is sent along that arc. The
workload is self-initiating (each event schedules the
next local event [Nico91]) and the probability of an
LP sending a message after an event is 0.2.

Messages may cause rollbacks, but do not schedule
events.

b) Workload 2 also uses topology T1 but is message
initiating (messages cause events to be scheduled).
Each message schedules a job event. Execution of a
job event creates an output event, which generates a
message. Every LP has 25 events initially. Thus, this
workload resembles a closed queueing network with
density 25.

c) Workload 3 is an implementation of theechoing
example described in [LuWS89]. LP0 and LP1
execute in self-initiating mode, sending messages to
LP2 after each event. In addition, there is a single
message-initiating event that is at LP0 initially. Upon
processing this event, LP0 sends a message to LP1.
This causes LP1 to schedule an event, possibly after
rolling back. After processing this event, LP1 sends a
message back to LP0 and the cycle repeats. The idea
is that this “causal” message rolls back its receiver
and while the receiver is rolling back, the sender
continues to move ahead, sending messages to LP2.
Since the cost of rollback is proportional to the depth
of rollback and the event execution time is
comparable to the cost of rollback, LP0 and LP1 spend
increasing amounts of time rolling back and the
progress of the simulation diminishes rapidly.

For all three workloads, the mean event execution time is
100 µs, the mean state saving time is 25µs and state
saving and fossil collection are performed after each
event.

Metrics

One of the important aspects of ETA is the scaling
factor, s in M2. This factor is required to translate the value
of EPi which is in logical time units into a delay in real-
time. The range of EPi is dependent on the logical time
increments exhibited by the LP’s and the rate at which
they execute events, send messages, etc. Since these
factors differ considerably across applications, it is

0.75

0.25 0.75

0.25

0.75

0.25

0.75

0.25

0 1

23

0

1

2

Figure 4 - Communication topologies for test workloads

T1 T2
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expected that the value of s that maximizes performance
will be different for each application (and may in fact
vary during a single simulation). Thus, s is a good
candidate for the choice of independent variable in the
performance tests. The problem of determining a good
value of s dynamically is discussed in Section 7.

The most important metric, of course, is completion
time. Yet another metric is rollback time, which is the
time an LP spends rolling back (including state
restoration and sending of antimessages). Since limiting
of aggressiveness is expected to reduce rollback time,
ideally to zero, this metric seems to be a good indicator
of how close the actual performance is to the goal.

Results

Graphs 1, 2 and 3 show the variation of completion
time and rollback time with the scaling factor s for the
three workloads respectively. When s=0, δ=0 and ETA
is essentially identical to Time Warp. As s increases, the
aggressiveness and risk of the LP’s decrease. The
completion time in graph 1 has the expected parabolic
shape based on the trade-off shown in Figure 1. The
absence of such a parabolic shape in graphs 2 and 3 is
due to the nature of the workloads. There is very little
concurrency in workload 2 owing to the small event
execution times, the high latency of Ethernet and high
connectivity of topology T1. A simple critical path
analysis of workload 3 shows that it is also inherently
sequential. Generally, the waiting period at each LP
increases with s, approaching sequential execution.
However, a threshold is reached such that further
increase in s does not increase waiting due to the
following: consider LPi waiting to execute an event.
When the last event with timestamp less than LPi’s
logical clock has been executed and all messages with
timestamps less than LPi’s logical clock have been
received, GVT will equal LPi’s logical clock causing
EPi (and δi) to drop to zero and LPi to come out of
waiting in the next iteration. This analysis demonstrates
that ETA has the capability to approach sequential
execution but not become arbitrarily slower than it
during phases in a simulation where there is so little
concurrency that parallel execution is detrimental.

The enormous reduction in completion time in
graph 3 demonstrates that ETA can avoid unstable
situations such as echoing. The instability is manifest in
the large variations in both curves in graph 3 for small
values of s. It is important to note that in all three
graphs, the rollback time is close to zero when
completion time is minimized. This suggests that the
reduction achieved by ETA is close to the maximum
possible.

Memory considerations

In the general case, memory consumption appears to
be a serious problem with Time Warp. Excessive memory
consumption is usually due to so-called runaway
processes - LP’s that execute events faster than other LP’s
so that (i) they have a large number of processed events as
yet uncommitted, and (ii) they schedule a large number of
unprocessed events at other LP’s. Several memory
management schemes have been proposed to reclaim
memory from future events (since this memory cannot be
reclaimed by fossil collection) [Lin92]. We expect that
NPSI adaptive protocols will eliminate the need for these
schemes for two reasons. First, any approach that limits
the aggressiveness of LP’s inherently reduces memory
requirements by not permitting runaway processes to get
too far ahead. Second, an adaptive, memory-based flow
control scheme [DaFu94] can be integrated naturally with
NPSI protocols by including information about the
memory availability of down-stream LP’s (perhaps
immediate successors only) in the mapping M1. In this
way, an LP could slow down when any of its successors is
at the risk of running out of memory.

ETA does not include information about successors’
memory usage in its M1. In spite of this, we observed
significant savings in memory requirements due to the
limited aggressiveness. For the three test workloads, we
measured the average and maximum size of the saved-
state list (in terms of the number of entries in the state list)
as an indicator of the LP’s processed but uncommitted
memory requirements. The maximum size is important
because the workstation must have sufficient memory to
store that much state even if it is a rare occurrence.

Graphs 4, 5 and 6 illustrate the substantial savings in
memory consumption (despite the fact that only state-
saving space is being considered here). In the two stable
workloads (graphs 4 and 5), the savings in maximum state
list size is noteworthy. In the echoing workload (graph 6),
it is interesting to observe that the average state list size is
very high. This is because for small values of s, the state
lists grow unboundedly due to instability.

Given the definition of ETA, an LP that is only a
source of messages (i.e. that has no predecessors) will
never have its optimism throttled. This does not pose a
problem when the workload is homogenous. However, if
the source is faster than its successors, it becomes a
runaway process which will not be limited by ETA. Thus,
it is important that the memory-based flow control
described earlier which solves this problem, be included in
ETA. We expect to report on this in the near future.
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7 Further issues
The results described in Section 6 are very

encouraging. They demonstrate clearly the viability of
NPSI adaptive protocols. Combined with the fact that
we have not yet encountered a workload for which ETA
performs worse than pure Time Warp (albeit with the
proper selection ofs), these results strengthen our
conviction that NPSI adaptive protocols can be
universally efficient. However, some important issues
must be resolved before any definitive conclusions can
be drawn. In the following, we discuss these issues in
some detail. Most of these are being explored currently.

Tunable parameters

One of the conclusions that must be drawn from the
results presented in Section 6.3 is that the scaling factor
s must be chosen properly for the protocol to perform
well. Too small a value will not reduce rollback costs
sufficiently while too large a value will introduce lost
opportunity cost. The “best” value ofs depends on the
particular application and hence cannot be determined a
priori in general. The user may be able to provide some
hints about this value; on the other hand, there is no
theory to aid the user. We refer to parameters likes as
tunable parameters.

While s is an artifact of the particular M2 chosen for
ETA, there are reasons to believe that such tunable
parameters will exist in any adaptive scheme:

• By definition, adaptive schemes are expected
to react to changes in the system. If the scheme
is a general one (i.e. one that will be used with
a wide range of applications), it must
necessarily determine the context of the
particular application in order to interpret the
state information it obtains. This process seems
to entail tunable parameters such as sampling
intervals, size of history, filter constants and
autoscaling factors.

• A problem similar to adaptive synchronization
of PDES’s is adaptive load balancing/sharing
in parallel systems. It is well known that good
load balancing requires good estimation of
tunable parameters such as thresholds and
maximum number of transfer-hops.

Not surprisingly, we observe that all existing adaptive
protocols admit tunable parameters of some sort (the
time-window-bound in [TuXu92], N1 and N2 in
[Stei93], cluster size in [RaAT93], blocking window
size in [BaHo90], the scaling factorci in [HaTr94] and
Mf and Mp in [DaFu94]). Clearly, there is a need to
invent a scheme by which adaptive protocols may tune

the values of such parameters dynamically. The Adaptive
Time Warp algorithm [BaHo90] computes its blocking
period based on a particular logistic response function.
Thus its efficacy depends on how accurately this function
reflects reality. Moreover, it is an entirely local
optimization. The Local Adaptive Protocol [HaTr94] also
uses a local optimization strategy in which the parameter
is tuned based on observed rate of progress of virtual time
per channel. This has the drawback that it cannot
distinguish between a decrease in porgress rate due to
excessive rollbacks from one that occurs inherently in the
application. The scheme of [DaFu94] tunes two
parameters, Mf and Mp dynamically based on an analysis
of the flow of memory buffers in a Time Warp simulation.
This scheme is very specific to the nature of the tunable
parameters.

The general solution to this problem (and the one we
adopt) is to monitor the progress of the simulation in order
to determine how well the current values for tunable
parameters are performing. The key is to identify metrics
that can be obtained by each LP during the simulation and
that reflect the progress of the computation accurately.
Once again, an analogy may be drawn with load balancing
where a good load index is essential [FeZh87].

In parallel simulation, as in many parallel
computations, local (per processor) optmization does not
imply global optmization (in fact it may be detrimental).
Consequently, a purely local metric may not be advisable.
On the other hand, if a single global metric is used, an LP
may not be able to determine if a change in the measured
value occurred due to some action that it performed (or
that it should have performed). Therefore, we propose a
combination of two metrics:

• RC - themaximum rate of commitment of events
over all LP’s. We believe this global metric to be
a better indicator of global progress than the rate
of advance of GVT because the base of reference
for RC is the same for all applications unlike that
for GVT. By taking the maximum commitment
rate over all LP’s we take into account the case
where events are distributed unevenly over the
logical time line at different LP’s.

• PRB - the percentage of events rolled back at an
LP. This local metric combines the number and
depth of rollbacks and, thus, appears to be a good
indicator of whether an LP is a cause for slow
progress.

RC indicates the overall progress of the simulation
while PRB indicates to an LP whether it is a potential cause
for any observed poor global performance. Table 1
summarizes the actions an LP takes under various
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situations. In terms of our tunable parameters, optimism
is increased (decreased) by decreasing (increasing)s.
RC, which is a global metric, can be computed for NPSI
protocols accurately at very low cost to the simulation
using the feedback system. We expect to have
performance results for a scheme that uses these metrics
in the near future.

In [PaWi93], the authors suggest the use of similar
metrics. Similar to RC, they define Wi as the rate of
commitment of events at LPi in one GVT cycle. Thus,
Wi is a local metric. While [PaWi93] argue for an
indicator of rollback behavior, they do not suggest one -
the algorithm they propose uses Wi only.

Larger systems

For the purpose of experimentation with
implementations of NPSI adaptive protocols, the
prototype reduction network restricts us to four
processors. To establish the effectiveness of NPSI
protocols, they must be tested on larger systems as well.
We have constructed a detailed simulation of the
hardware and software test environment and verified it
against data from the experiments on the prototype
hardware. Further, we have assembled a suite of
workloads ranging from those where Time Warp is
expected to perform well to those considered as “stress”
cases for Time Warp. Extensive testing of ETA and its
variants is underway.

Enhancing M1

In the context of our framework for NPSI adaptive
protocols, we note that the higher the accuracy of M1 in
identifying potentially incorrect computations, the less
the reliance of M2 on tunable parameters likes. For
example, in the ideal case, if M1 is sophisticated enough
to always identify any computation exactly as either
correct or not, then M2 is simply a binary function that
stops event execution (and message sending) when M1
flags an error. Accordingly, we are focusing on
identifying other kinds of information that may be
computed by M1 and would increase the accuracy of the
error potential. The goal is to minimize the dependence
of M2 on tunable parameters. Of course, care must be

RC PRB Action

Low Low Increase aggressiveness/risk rapidly

Low High Decrease aggressiveness/risk rapidly

High Low Increase aggressiveness/risk gradually

High High Decrease aggressiveness/risk gradually

Table 1 - Actions for dynamic tuning of parameters

taken not to introduce such parameters into M1 in the
process.

8 Summary
We have introduced a new class of synchronization

protocols called NPSI (near-perfect state information)
adaptive protocols. These differ from previous approaches
to adaptiveness in that they base their adaptive decisions
on near-perfect information about the state of relevant
parts of the entire system. In [RaSZ89], it has been shown
that a load sharing policy that assumes perfect state
information at zero cost offers the best solution.
Correspondingly, we believe that NPSI adaptive protocols
will provide a general, efficient solution to the
synchronization problem of PDES.

A framework has been suggested for the design of
NPSI adaptive protocols. Based on this framework, the
Elastic Time Algorithm has been designed and
implemented. For this implementation, near-perfect state
information is computed and disseminated through a high-
speed reduction network. The protocol has been tested
with several workloads, the results from three of which
have been presented here. From these results, it is evident
that NPSI adaptive protocols can outperform pure Time
Warp in both time and space. Some issues must be
resolved before any conclusive statements can be made
about the relative performance and usability of NPSI
adaptive protocols. These include: designing a scheme for
the LP’s to tune any parameters of the protocol
automatically; testing on larger systems; designing more
NPSI protocols and comparison with other adaptive
protocols. Ongoing research into some of these issues has
been described.
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