PARALLEL OPERATIONS

Paul F, Reynolds, Ir.
Craig Williams
Raymond R. Wagner, Jr.

Computer Science Report No. TR-89-16
December, 1989

Parallel Operations*

Paul F. Reynolds, Jr.
Craig Williams
Raymond R. Wagner, Jr.

ABSTRACT

We define a new synchronization primitive for paraflel asynchronouns computations, the paraliel operation.
The parallel operation (parop) is a special case of the atomic action. A parop is a set of partially ordered
independent. operations that appears to be executed indivisibly. Pepending on the programming model,
each operation is either a message (0 a process or an access to a shared variable, Operations must be in-
dependent in the sense that the process issuing a parop must be able to issue all the operations in the parop
before any operation in that parop is executed. The operations in a parop appear to be executed in a single
indivisible step even though different operations in the parop may be executed at different nodes. We
describe a mechanism, local synchrony, that supports a deadlock-free, fair, and highly concurrent imple-
menlation of parops in hardware. Using this mechanism, parops can be implemented without locking,
Parops can also be pipelined. Local synchrony supports the sequentially consistent execution of pipelined
memory accesses. It is compatible with combining and can be adapied 1o a wide class of network topolo-
gies. Since it requires no global clock or other global arbitration, local synchrony is suitable for imple-
menting parops on distributed as weil as tightly coupled systems. The use of parops reduces the need for
locks in accessing shared memory or distributed objects. The parop also forms a basis for a more general
method for coordinating access to shared memory described in a companion paper.

1. INTRODUCTION

Atomic access to multiple data objects is a powerful programming paradigm. Parallel assignments,
transactions, critical regions, and monitors are a few of the methods devised to support atomic actions in
an asynchronous parallel computation. This paper defines a new synchronization primitive, the parallel
operation (parop), for specifying a class of atomic actions and proposes a mechanism, local synchrony,

for implementing parops in hardware without locking.

The parop is a special case of the atomic action, a set of instructions executed as an indivisible step.
The atomic action is the smallest unit of process interleaving [OwL82]. No process other than the process
executing the atomic action can observe or change an intermediate state in the execution of an atomic
action. Our claim that parops are executed atomically rests on an assumption of hardware reliability. We

do not address the problem of recovery from hardware faults.

* This work is sapported in part by a grant from the Virginia Engineering Foundation and by an assistantship in parallel processing spon-
sored by DARPA and NASA and administered by the University of Maryland.

The parop is not as general as the atomic action because each operation must be independently issu-
able, i.e., the process issuing a parop must be able to issue all the operations in the parop before any
operation in that parop is executed. Note that parops can not specify atomic execution of the statement A
:= B, where A and B are shared variables. Execution of this statement requires two operations, a read to
B and a write to A, but the operations cannot be issued in the same parop because the write cannot be

issued until after the read is executed.

In spite of this limitation, we propose the parop as a synchronization primitive for the following rea-

S0115:

(1) Parops are powerful in combination with other mechanisms. In a companion paper {WiR89], we
show how 1o use parops in combination with split operations and access sequences to support pro-

cess synchronization and a much broader class of atomic actions.

(2) Parops can be implemented efficiently in hardware. No locking of accessed objects is required and

multiple processes can execute them concurrently.

We describe the parop in this paper from the viewpoint of a shared memory computation on a

tightly coupled multiprocessor, but it can be adapted to other architectures and programming models.

e Parops are applicable to both the shared memory model (SMM) and message based model (MBM)
of computation. In this paper we assume that each operation in a parop is an instruction accessing a

shared variable, but parops can be adapted to the MBM by defining operations to be messages.

e Parops are applicable to distributed as well as to tightly coupled systems. Since our proposed
implementation does not require a global clock or other global arbitration, parops are a reasonable

synchronization primitive to propose for geographically distributed systems.

e Parops can be implemented on a wide class of static and dynamic network topologies, including

dance hall topology mulliprocessors, hypercubes, and meshes.

e Parops are compatible with combining networks such as the NYU Ultracomputer. The implementa-

tion of parops does not require a combining network, but on a network that supports combining,

operations from different parops that address the same shared variable can be combined, further

increasing the concurrency of access to shared memory.

. Parops are scalable. Because parops are implemented without locking, they are especially well
suited for use in massively parallel systems, where locking shared variables can seriously degrade

performance.

The mechanism, local synchrony, with which we propose to implement parops is similar to that pro-
posed by Awerbuch [Awe85] and Ranade [Ran87,RBI88). We use local synchrony as a way 1o incor-
porate some of the advantages of synchronous computation in an asynchronous computation. Processes
can execute independently subject to data dependencies, but the routing of concurrently issued operations
is loosely synchronizéd. We show that this synchronization supports not only a limited form of atomic

action, but also sequentially consistent execution of pipelined operations.

The paper is organized as follows. Sections 2 and 3 define the syntax and semantics of parops.
Section 4 describes a mechanism for implementing parops. Section 5 describes applications and conclud-

ing remarks follow in section 6.

2. NOTATION

Syntactically, a parop is a list of operation sequences that we will call macro-ops. The list is ter-

minated by a semicolon and double bars ‘| 1" separate adjacent macro-ops within the list.
<parop> :i= <MACro_op>
t <parop> || <macro_op>;

Each macro-op is an ordered pair in which the first element names a shared variable and the second

lists operations on that variable.

<macreo_op> ::= <shared variable> : <operation list>.

An operation list is a sequence of one or more operations on the same shared variable. Each opera-

tion specifies zero or more operands and adjacent operations are separated by commas.

Each operation specifies a step that is executed indivisibly. In this paper, we assume that each
operation accesses a single location in shared memory. Accesses need not be limited to reads and writes,
but can be any read-modify-write (RMW) operation. A RMW operation atomically reads and updates a
single shared variable. The old value is returned and a new value assigned that is a function of the old
value and any operands supplied with the operation [KRS88]. If the memory modules have sufficient
computational power 10 compute the function, a RMW operation can be executed without locking. Note

that reads and writes are special cases of the RMW operation.

We use the following notation to specify read and write accesses:

<operation> :i:= read(<local variable>) | write{<expression>)

The operand to the write operation is the value to be written. The operand to the read is an address-
valued expression identifying the local variable assigned the result of the read. For example, the macro-
Op A:read(v) assigns the value of shared variable a t0 local variable v. In this paper, identifiers for

shared variables are in upper case and for local variables in lower case.

The location of variables and the value of operands can be dynamically computed using constants

and local variables. This restriction ensures that operations are independently issuable.

3. SEMANTICS

A parop is a partially ordered set of operations that is executed atomically. The macro-ops within a
parop are executed in any order, but operations within each macro-op are executed in the order in which

they are listed. For example, the parop

Arread{v) !| Bi:read(v),write(5);

nondeterministically assigns to the local variable v either the value of a or B, but if it assigns the value
of B8, the value assigned will be the “*0ld”’ value of B before the assignment specified by the write (5)
operation is executed. The shared variables named in a parop should be distinct. If two or more macro-

ops in a parop name the same shared variable, the order in which the macro-ops are executed is unknown,

A parop is elaborated before any operation in the parop is issued, i.e., the first step in executing a
parop is the evaluation of every expression in the parop representing the location of a variable or the
value of an operand. For example, the macro-op A[v]:read(v) is equivalent to the assignment v :=

Alv]. The address of A [v] is computed before v is assigned the new value.

Each parop is executed atomically and in an order that is consistent with the order specified by the
program. For example, consider the following parop program, where process P, issues parops PO, ; and

PO, ,, and P, issues PO, and PO, ,:

Py Arwrite(l) |1 B:write(l); POy,
A:read(vl) || Ciread(v2},write{l}; PGy,
Py 11 Crread(vi); POy,
Arread(v2) || B:i:read(v3): PO,,

Assuming a, B, and c are 0 initially and that no other process accesses these variables, the following are

trae for every execution of the program;

) The parops appear 1o be executed indivisibly. In particular, execution of PO, and PO, , cannot be
observed to interleave. Process P,’s reads in PO, , will return either 0 for both A and B or 1 for

both 2 and B.

s Any pair of operations from the same macro-op appears to be executed in the order in which they
appear textually. Note that PO, , contains both read and write operations on ¢. Since the read pre-

cedes the write, the read is executed first and will retum 0.

e Pairs of parops issued by the same process appear to be executed in the order in which they are
issued. Thus the read to A in PO, , will return the value 1 written by PO, ;. Furthermore, if the read
to CinPO,, returns 1, indicating that PO, , was executed before PO,,, then the reads to a and Bin
PO, will return 1, not 0. Similarly, if the reads to a and Bin PO, , retum 0, the read to C in P0,,

will also return O.

More formally, every execution of a parop program is ‘‘sequentially consistent’’. A computation is

sequentially consistent if it is equivalent to an execution in which the atomic actions are executed serially

in an order that is consistent with the order specified by each process’s sequential program [ShS88]. For
every execution of a parop program, there is an equivalent execution of the same program in which
parops are executed serially, i.e., without interleaving of operations from different parops, in an order that
is consistent with the program and in which the operations within each macro-op are executed in the order
in which they appear textually.
Derinrrion. For any operation, OP;, parop (OP;) = PO;, if OP; is in parop PO;.
DEFINITION. Parop PO; *‘logically precedes’’ PO, denoted PO; —, PO;, if the program specifics
that PO; be executed before PO;, i.e., if PO; and PO; are issued by the same process and PO; is
issued before PO;. We define “‘logically precedes’” for operations analogously, but restrict the
domain of the —, relation to parops. For any pair of operations, OP; and 0P;, OP; ‘*logically pre-
cedes’” OP; if parop (OP;) —, parop (OP;) or if parop (OP;) = parop (OP;) and OP; textually precedes

OP; in the same macro-op.

DerFINITION. For any pair of parops, PO; and PO;, let § be the intersection of the sets of shared
variables named in PO, and PO,.

DEFINITION. Parop PO; ‘‘is executed before’’ PO;, denoted PO; —, PO; if
(1) for every variable v in §, § not empty, PO,’s operations on v are executed before PO;’s
operations on v; or
(2) there exists a PO, such that PO; —, PO, and PO, —, PO;.

DEFINITION. Parop PO, ‘‘precedes’’ PO;, denoted PO; — PO, if

(1) PO; ~», PO; V PO; ~», PO}; OF
(2) there exists a PO, such that PO, —» PO, and PO, —» PO,

In every execution of a parop program, the following three propetrties, the ‘ ‘parop properties’’ hold:
ProrERTY P1. For every pair of parops, PO; and PO;, § is not empty = PO, -3, PO; V PO; ~3, PO,

PrROPERTY P2. The — relation is asymmetric, i.e., PO; — PO; => PO; -p PO;, where PO; - PO,
means —(P0; —» PO;).

ProrerTY P3. For every pair of operations, OF; and OP;, that access the same variable, OP; logi-
cally precedes OP; => OP; is executed before OP;.

Note that the — relation is transitive by definition and is asymmetric, and hence irreflexive, by P2,

It is, therefore, a partial order.

Let E, be any execution of a parop program and E, be any execution of the same program in which
the parops are executed serially in an order that extends the partial order — induced by E, and in which

operations from the same parop that access the same variable are executed in the order in which they are

executed in £,. Since E; extends the partial order — induced by £, the order in which parops are executed

in E, is consistent with the order specified by the program.

We show that every execution of a parop program is sequentially consistent by showing that E, is
“‘access equivalent’’ to E,. Two executions are access equivalent if they contain the same operations and
if every pair of operations that access the same shared variable are ordered in the same way in both execu-
tions. Access equivalence is closely related 1o the concept of conflict equivalence in concurrency control
for databases. Two schedules are conflict equivalent if they contain the same transactions and if every
pair of conflicting steps is ordered in the same way in both schedules, where two steps conflict if they
access the same entity and do not commute, e.g. a read and a write [Pap86]. We define access

equivalence in the same way, but assume that every pair of accesses to the same shared variable conflict.

An execution of a parop program, E,, is access equivalent 1o E, because for any pair of operations,
OP; and OP;, that access the same variable, OP; and OP; are executed in the same order in both £, and E,.
Assume, without loss of generality, that OP; is executed before 0P;. If the operations are from different
parops then, by P1, parop(OP;) —, parop (OP;). Since the order in which parops are executed in E, extends
the partial order -» induced by E,, OP, is also executed before OP; in E,. If the operations are from the

same parop, then by definition, E; also executes 0P; before OP;.

The access serializability of parops implies that each parop appears to be executed indivisibly. But
note that PO; —, PO; does not imply that all of the operations in Po; are executed before any of the opera-

tions in PQ;. Consider the following two parops.

FPi:: Briwrite(l)

b Briwrite(l); PO,
Py:: RA:write(2) || B:

write(2}; PO,

The semantics of parops allow these operations to be executed in the following interleaved order:

A:write(l), A:write(2), B:write(l}, B:write (2}

Even though there is no instant in which A = B = 1, the serializability of parops ensures that any pro-

cess that reads A and B in the same parop will get a consistent view. A similar phenomenon arises with

some concurrency control protocols, e.g., the tree protocol [SiK80], where each transaction is ensured a
consistent view of the database even though there may be no instant in which the database is in a con-

sistent state,

4, IMPLEMENTATION

An implementation of parops must ensure that execution conforms with the three parop properties.
Clearly parops can be implemented using locks and delays to ensure atomicity and sequential con-
sistency. But if parops are to be a useful synchronization primitive, the implementation must be efficient.
In this section we propose a mechanism, local synchrony, for implementing parops in hardware without

locks or global arbitration.

Local synchrony is a technique for simulating a synchronized network on a network with no global
clock. Each node in the network advances its local logical clock one tick by sending a control signal, a
“‘token,”’ 1o each of its neighbors. Each node synchronizes with its neighbors using the following rule:
emit message M at logical time i only after receiving every messages that may affect M emitted by a
neighbor at logical time i-1. In general, any message emitted by a neighbor at time i—1 may affect a mes-
sage emitted at tirne {, but in special cases, a node may have enough information to emit a message at
time i before receiving all messages emitted by its neighbors at time i-1. Local synchrony has been used
by Awerbuch to support the execution of SIMD graph algorithms on an asynchronous network [Awe85]

and by Ranade to implement efficient combining [Ran87, RBJ88].

In this section, we show how to use local synchrony to implement parops. We first describe a gen-
eral method applicable 1o any network topology in which the length of all ‘‘routable’ paths between any
given PE,MM node pair is the same. A routable path is a path that is consistent with the routing rules
applied by the switches. Some physical paths may not be routable paths for a given routing algorithm.
We then propose a simplified implementation for the important special case in which the length of all

routable paths is the same.

4.1. A General Method for Implementing Parops

We consider a network of interconnected nodes, where each node contains a switch, zero or more
PE’s, and zero or more MM’s. All communications within a node and between nodes is over reliable uni-
directional FIFO links with finite but unbounded delay and there is at least one routable path of links
from each PE 10 each MM and from each MM to each PE. The following properties hold for each rout-

able path from a given PE to a given MM:
(1) If there is more than one routable path, then the paths are the same length in links.

(2) Every routable path must go through at least one switch. In particular, every operation issued by a
PE must go through the node’s switch even if it accesses a variable located in a MM on the same

node.
The paths in the reverse direction, from MM to PE, need not be similarly constrained.

It is convenient to assume that a switch interface unit (SIU) is associated with each PE. The SIU
prepares parops for routing by the switch. In any given implementation of parops, the functions of the

SIU may be performed instead by the PE or switch. Each SIU knows the distance to each MM.

Assume each of n PE’s is assigned a unique ID in the range 0 .. n — 1. Several processes may share a
PE, but for simplicity we assume processes do not migrate. We require that processes issue operations in
the order specified by the program and that no process is interrupted while it is issuing a parop. Note that
as a consequence of these assumptions operations arrive at the SIU from the PE in an order that is con-
sistent with the order specified by each process’s sequential program and operations from different parops

are not interleaved.

Every communication is either an operation, a token, or a response. A ‘‘response”” is a packet
issued by a MM. The implementation of parops does not require any special treatment of responses. A
token is a control signal that can be distinguished from operations and responses. During the computa-
tion, each switch receives tokens and operations on its input lines and emits tokens and operations on its

output lines and each SIU emits tokens and operations on its output line. No other links internal to the

node carry tokens. We say that an operation is received (emitted) by a switch (SIU) in pulse £ if it is
received (emitted) by the switch (SIU) between the i—1s¢ and ith tokens received (emitted) on the line on
which the operation is received (emitted). Note that the token number need not be explicitly recorded in
the token if each switch (SIU) remembers the number of tokens that are received and emitted on ecach of

its input and output lines respectively, where the first token received (emitted) on each line is token 0.

We define a labeling scheme for parops that is a total ordering of the parops and that can be
extended to a total ordering of the operations. We show that the parop properties hold for any execution
consistent with the labeling scheme and then describe algorithms for the SIU’s and switches that ensure

that every execution is consistent with the labeling scheme.

Labeling scheme. Each parop is labeled by the pulse in which operations in the parop arrive at
their destinations, the position of the ID of the issuing PE in a given permutation of the PE ID’s, and the
rank of the parop among the parops issued by the issuing PE.

DeFINrTION. For any parop, PO, label (PO,) is a 3-tuple (pulse (PO).f (pe (PO,)),rank (PO.)), where
pulse (PO;) = j if each operation in PO; is received at its destination node in the jih token pulse,
and is otherwise undefined;
fis a permutation of the PE ID’s;
pe (PO} = jif PO, is issued by PE;; and
rank (P0O;) = j if PO, is the jth parop issued by the PE that issues PO,

DerinITION. For any pair of parops, PO; and PO, PO; <, PO; if label (PO;) lexicographically pre-
cedes label (PO)).

If operations are from different parops, the ordering of the parops as determined by the labeling scheme
determines the ordering of the operations. If operations are from the same parop, their order is deter-
mined by the order in which they appear textually in the parop.

DeriNrrioN. For any pair of operations, OP; and OP;, OP; <, OP; if parop(OP;) <, parop (OP;) or if
parop (OP;) = parop (OP;) and OP; logically precedes 0P;.

Note that if the pulse function is defined for every parop, the <, relation is a total ordering of the parops

and <, is a total ordering of the operations.

An execution is ‘‘consistent’” with the labeling scheme if the following properties hold:

ProrErTY L1. The pulse function is defined for every parop.

10

ProperTY L.2. For any pair of parops, PO, and PO;, PO; —, PO; = pulse (PO;) < pulse (PO;).

ProrerTY L3. For any pair of operations, OP; and OP,, that access the same variable, OP; <, OP;
=» OP; is executed before 0P;.

Let E be an execution that is consistent with the labeling scheme. We show that the parop properties

hold forE.

P1. By definition of the <, relation, for any pair of parops, PO; and PO;, PO; <, PO; = op(PO;) <,
op (PO;), where op (PO,) is any operation in PO,. If op(PO;) and op (PO,) access the same variable, by L3,
op (PO, <, op(PO;} =» op (PO;) is executed before op (PO;) in E. Thus § not empty A PO; <, PO; => PO; -,

PO;. Since <, is a total ordering of the parops, either PO; <, PO, Or PO; <, PO; and P1 holds.

P2. We first show that PO, — PO; implies PO; <, PO;. There are three cases.

Case 1. PO; —, PO;. Parop PO; and PO, are issued by the same process and PO; is issued before PO;. Thus
f (e (POY) = f (pe (PO,)), rank (PO,) < rank(P0;), and, by L2, pulse (PO;) £ pulse (PO)), labeling constraints
that imply PO; <, PO;.

Case 2. PO; ~», PO; and S not empty. For any given v in §, and operations op (PO;) and op (PO;) that
access V, op(P0,) is executed in E before op (P0;). Since the operations access the same variable and E is
consistent with the labeling scheme, by L3, op(PO,) <, op(P0;). Given that the operations are from dif-
ferent parops, PO; <, PO;.

Case 3. Otherwise, there is a chain of one or more parops connecting PO; and PO;, where for each pair of
parops, PO, and PO,, that are adjacent in the chain, either PO, —, PO, or § not empty and PO, —, PO,. A

simple induction on the length of this chain shows PO; <, PO,.

Finally, we show that the — partial order induced by E is asymmetric. PO; — PO; — PO; = PO; <,

PO; <, POy, a contradiction since <, is a total order.

P3. Recall that operation 0P, logically precedes operation OP; if parop (OF;) —, parop (OP;) or if the
operations are from the same parop and OP; textually precedes OP; in the same macro-op. If parop (OP;)
~3, parop (OP;) then parop (OP;) <, parop(OP)), as shown above. In either case, OP; logically precedes OP;

= OP,; <, OP;. By L3, 0F; is executed before OP; in E.

11

Algorithms. We describe algorithms for the SIU’s and switches that ensure every execution is con-
sistent with the labeling scheme. For each operation, OF;, received by a switch, the switch must be able to
compute f (pe (parop{OP;))). The most general way to satisfy this requirement is to Iabel each operation
with the ID of the issuing PE. Note that this is the only Iabel required. The pulse and rank of each opera-

tion are implicit.

SIU Algorithm. After emitting token 0, each SIU continuously analyzes parops received from the
associated PE and emits operations and tokens on the output line to the switch. Operations can be emit-

ted in any pulse and in any order subject to the following constraints:

SIU-1. For any parop, PO;, let D (P0O;) be the maximum distance in links that will be traveled by any
operation in Pg,, counting the link from the SIU to the switch, and T (P0O,) be the first pulse in which any
operation from PO; is emitted. For any pair of parops, PO; and PO;, if PO, is received by the STU before
PO;, then T(PO,) 2T (PO;) + D(PO,) — D (PO)).

SIU-2. For any operation, OF;, let d; be the distance to operation 0P;’s destination. Operation OP; is
emitted in pulse T(parop(OP.)) + D (parop (OP)) — d;.

SIU-3. Every pair of operations that access the same variable and are emitted in the same pulse are

emitted by the SIU in the same order in which they are received.

We describe an SIU algorithm that incorporates these constraints and that preprocesses the opera-
tion emitted in each pulse to lay the foundation for an efficient switch algorithm. After emitting the
operations emitted in pulse i, the SIU analyzes any parops newly issued by the associated PE, if any.
With each new parop, PO, the SIU determines T(P0;), choosing the earliest pulse that conforms with
SIU-~-1. For each operation in the parop, the SIU determines, using SIU-2, the pulse in which to emit the
operation, adding the operation to the end of a list of other operations scheduled to be emitted in the same
pulse. The SIU then sorts the list of operations scheduled to be emitted in the next pulse, using the
address of the shared variable accessed as the key, and emits token i followed by the sorted operation Iist.

The sorting step is done using a stable sort to preserve, for each pair of operations that access the same

| ¥/

variable, the order in which the PE issued the operations.

Switch Algorithm. Each switch routes the operations it receives onto an appropriate output line,

subject to the following constraints:
SW-1. All operations received in pulse i are emitted in pulse i+1.

SW-2. For any pair of operations, OF; and OP;, that access the same variable and are received by the
switch in the same pulse
(a) If the operations are issued by the same PE, the operations are emitted on the same output line;
(b) If the operations are received on the same input and emitted on the same output line, the operations
are emitted in the order received.
(c) If the operations are received on different input lines and emitted on the same output line, 0P, is emit-

ted before OP; if f (pe (parop (OF))) < f (pe (parop (OP)))).

Note that the input lines from SIU’s, if any, “*look’’ to the switch just like any other input lines. The
switch does not distinguish operations arriving on a line from an SIU from operations arriving on other
input lines. For simplicity, we assume that the output lines to the MM’s, if any, also “‘look’’ to the
switch just like any other output lines. Actually, there is a difference. The MM’s ignore tokens, so it is

unnecessary for a switch to emit any tokens on an output line to an MM.

Since we do not require that there be 2 unique path between every PE,MM pair, there may be two or
more paths between a given PE,MM pair that join and then splif again at a switch. In general, the switch
can choose to route an operation on any output line allowed by the routing algorithm, but for operations
that access the same variable in the same pulse and are issued by the same PE, SW-2(a) requires that the

operations be emitted on the same line.

Assuming that the SIU’s emit operations within each pulse in sorted order, operations will remain
sorted if each switch merge sorts the streams of operations arriving on its input lines in each pulse. Note
that if operations were not received in sorted order, to ensure conformity to SW-2(c), each switch would

have to buffer all operations received during a pulse before emitting any of the operations. The

13

assumption that operations arrive in sorted order allows the switches to use a technique similar to
wormhole routing [DaS87]. If the leading bits for each operation encode the destination, a switch can
select the operation that accesses the variable with the minimum address from among the operations
ready on each input line and emit that operation without first buffering it. Each token acts of the end of
stream marker, i.e. it has address ‘‘infinity.”’ Let OP; be the operation, among all the operations ready on
each input line of a given switch, which accesses the variable with the least address. A switch waits if no
input line has a token or operation ready or if there is some input line, in;, with no token or operation
ready and the last operation received on in; accessed a variable with an address less than the address of the

variable accessed by operation OP;.

Consistency. We show that any algorithm for implementing parops that conforms with these con-

straints is consistent with the labeling scheme.

L1. The puise function is defined for each parop. By SW-1 an operation, OP;, emitted by a SIU in
pulse ¢ is received at the switch in the destination node in pulse ¢ + d; - 1. Since by SYU-2 each operation
in parop (OP;) is emitted by the SIU in pulse T (parop (OP;)) + D (parop(OP;)) - d;, €ach operation in any

given parop is received at its destination in the same pulse, pulse T (parop (OP;)) + D (parop (OP))) - 1.

L2. For any pair of parops, PO; and P0;, PO; —, PO; implies PO; is received at the SIU before PO;.

SHU-1 ensures that the pulse function increases monotonically for parops received at any given SIU.

L.3. For any pair of operations, OP; and OP,, that access the same variable, assume without loss of
generality that OP; <, OP;. Then OP; is executed before oP;. There are three cases:
Case 1. 1f pulse (parop (OP;)) < pulse (parop (OP;)), then, by definition of the pulse function, OP; is received
at the destination switch, the switch on the same node as the MM containing the variable the operations
access, in an earlier pulse than oP;. Since the destination switch sends the operations to the MM in the
order received and the MM executes the operations in the order received, OP; is executed before OP;.
Case 2. Otherwise, if f (pe(parop (OP)))) < f (pe (parop(GP}))), then let switch §; be the last switch at

which the paths taken by OP; and OP; join, i.e., OP; and OP; are received at §;; in the same pulse on dif-

14

ferent lines and are thereafter routed along the same path. Since OP; and OP; are received at the destination
switch in the same pulse, §;; exists. Operation OP; is emitted by §;; before OP; by SW-2(c) and at subse-
quent switches, if any, by SW-2(b}.

Case 3. Otherwise, OP; is issued before OP; by the same PE and the operations are emitted in the same
pulse. By SW-2(a) and SW-2(b), the operations take the same path to the destination switch and arrive
and are executed in the same order in which they are emitted by the SIU. The SIU emits OP; before OP;

by SIU-3.

4.2, Impiementing Parops on an Equidistant Network

We consider a network with three kinds of nodes: 1) n nodes containing a PE, an SIU, and a switch
(the processor network interface unit); 2) m nodes containing a switch (the memory module interface unit)
and a MM; and 3) zero or more nodes containing only switches. The nodes are connected in a “*dance

hall” topology in which every routable path from a PE to an MM is the same length.

These assumptions about the network topology have two consequences that simplify the algorithm

for implementing parops:

(1) Since each operation travels the same distance, all operations in any given parop will arrive at their

destinations in the same puise if they are emilted in the same pulse.

(2) Each operation received at a switch in pulse i is emitted in pulse i, not pulse i+1. In a general net-

work, each node must emit operations received in pulse i in pulse i+1 to avoid deadlock.

The constraints on the SIU and switch algorithms are the same for an equidistant network as for a

general network with the following exceptions:
SYU-1’. For any pair of parops, PO; and PO,, if PO, is received before PO;, then T(PO;) < T(PO)).
SIU-2’. For any operation, OP;, OP; is emitted in pulse T (parop (OP;)).

SW-1’. All operations received in pulse ¢ are emitted in pulse i.

15

Any algorithm for an equidistant network that conforms with these constraints is consistent with the
labeling scheme. Note that SIU~1" and SIU-2" are equivalent to SIU--1 and SIU-2, respectively, assuming
that for any pair of operations, OP; and OP;, d; = d;. The change in SW-1 affects the consistency proof of

L1 only. For an equidistant network the consistency proof for L1 is as follows:

L1. By SW-1’ an operation, OP;, emitted by a SIU in pulse ¢ is received at the switch in the destina-
tion node in pulse . Since by SIU-2", each operation in parop (OP;) is emitted by the SIU in pulse
T {parop (OP;)) each operation in any given parop is received at its destination in the same pulse, pulse

T (parop{OP,)).

4.3. Combining

Parops are consistent with combining. Combining is a technique for maintaining good performance
in the presence of multiple operations concurrently accessing the same shared variable, The switches in a
combining network fan-in operations that access the same variable and fan-out results to the PE's that

issued the combined operations,

The following description of how switches combine operations and decombine responses is adapted
from Kruskal, Rudolph, and Snir {KRS88]. Every operation is of the form (id (OP;),var (OP;),0p (OP:)),
where id(OP;) is a unique identifier for OP;, var (OP;) is the shared variable accessed by 0P;, and op (OP;)
encodes an operation and its operands, if any. A switch combines two operations, OP; and OP,, that access
the same variable by forwarding an operation of the form (d(0P.),var (OP;),op (OP;) - op(OP))), where
op(OP;) -op(OP;) is the composition of op (OP;) and op (OP,), and storing id (OP;), id(OP)), and op (OP;). A
response corresponding to the combined operation will be of the form (#d(OP;),val). When the response
returns, the switch uses the identifier in the response to retrieve the stored information, forwards response
(Fd(OP;),val) as a reply to OP; and response (id (OF;),op (OF;)(val)), where op(OP;)(val) is the value pro-
duced by applying op (OP;) to val, as a reply to OP;. Note that each response must return backwards along

the path traversed by the corresponding operation.

16

Each execution of a set of operations using combining is equivalent to some serial execution of the
operations. The result of combining OP; and OP; as described above is equivalent to a serial execution of
the same operations in the order oP; followed by oP;. Which of the serial executions is equivalent
depends on arbitrary choices made by the switches. If the the switch had reversed the role of OP; and OP;,
€.g., storing OP; instead of 0P, the result would have been equivalent to a serial execution in the reverse
order, oP; followed by OP;. All associative operations are combinable and unlike as well as like opera-

tions can be combined [KRS28].

Operations from parops can be combined if a few rules are observed in addition to the rules that

normally govern combining:

C-1. A switch can combine a given pair of operations only if, in the absence of combining, it could

emit the operations on the same output line with no token or other operation intervening.

C-2. If a switch combines OP; and OP; and, in the absence of combining, the switch could emit the
operations on the same output line only if it emitted oP; before OP;, then the switch must combine the

operations so that the result is equivalent 10 a serial execution in the order 0P, followed by OP;.

C-3. Parops can be combined only if the network is “‘convex’” and the processor priority function f
is a “‘convex labeling™’. We say that a network is convex if there exists a convex labeling, i.e., an assign-
ment of ID’s to the PE’s such that the source of all the routable paths through any given switch is a set of
PE’s with ID’s from a contiguous range. A wide class of networks that includes the butterfly and the
hypercube is convex. If the processor priority function f is a convex labeling then local combining deci-
sions made by the switches in conformity with C-1 and C-2 are guaranteed 10 be globally consistent with
f. I the ffunction is not a convex labeling, a switch may receive a pair of operations, ¢P; and OP;, where
OP; is a combined operation and OP; must be executed after the first operation but before the last opera-

tion combined to produce OP;.

Combining parops works, in brief, because C-1 through C-3 ensure that for any variable, v, the

results of combining the set of operations that access v during any given pulse is equivalent to the result

| ¥

of a serial execution of the same operations in the order induced by the <, relation. Let oP;,0P; ,.., OP,
such that OP; <, OP; <, * - * <, OP;, be the sequence of operations that access v during a given pulse. Note
that in the absence of combining, any execution consistent with the labeling scheme executes the opera-
tions in the correct sequence, the order induced by the <, relation. Constraints C—1 and C-3 ensure that
an operation can be combined only with an operation that is adjacent in this sequence or that represents
an adjacent operation. Since C~2 ensures that each pairwise combination is made in the order in which
the operations appear within the sequence, the result of combining the operations is equivalent to the

resulf of a serial execution of the operations in the correct sequence.

Ranade proposes an algorithm for combining that is more efficient than previous algorithms in that
switches can store the decombining information in FIFO queues instead of in queues requiring associative
lookups and less information need be stored [Ran87]. Since the mechanism we use to implement parops
is similar to that used by Ranade to allow combining using FIFO queues, we propose using Ranade’s
algorithm, modified to conform with C—1 and C-2, t implement combining in parops programs. Since
Ranade’s algorithm requires that the responses be kept sorted in the same order as the corresponding
operations, use of the algorithm requires that responses be treated in the same way as operations, except
that responses are decombined instead of combined. We are currently exploring generalizations of

Ranade’s algorithm to networks other than the butterfly.

The implementation of parops does not require a combining network, but parops and combining
bave a natural affinity in that they are both methods for increasing the concurrency of access to shared
memory by adding intelligence to the interconnection network and efficient implementations of both are

based on a similar scheme for coordinating the activity of the switches in the network.

4,4, Deadiock

Assuming that the commumnication network is deadlock-free as well as reliable, the proposed imple-
mentation of parops is deadlock-free. Since each MM execules operations in the order in which they

arrive, there can be no circular waiting, and therefore no deadlock.

i8

If, however, the communication network is susceptible to deadlock, then so is parops. Unfor-
tunately, the implementation of parops may introduce the potential for deadlock in a communication net-
work that is otherwise free of deadlock. Although Dally and Seitz have proposed a scheme for deadlock-
free wormhole routing in arbitrary networks [DaS87], this result is not directly useful here because opera-
tions can block not only because a channel required for routing the operation is occupied, but also
because of the constraint on the order in which operations arriving on different lines can be emitied on the
same line. This constraint, SW—-2(¢), prevents a switch from emitting an operation, OF,, waiting at the
switch, until it knows that it will not receive an operation on another line that must be emitted on the
same line as OF; and before oF;. Deadlock is possible because OP; may directly or indirectly block an

operation, OP;, that must be received at the switch before OP; can be emitted.

For some networks, deadlock is not & problem, In the reverse baseline and topologically equivalent
networks, deadlock in the proposed implementation cannot occur, For each switch at each stage, the
inputs to the switch come from disjoint subnetworks. No operation arriving on one input can block
another operation from arriving on another input since the operations are in different networks. Since the
networks that are topologically equivalent 10 the reverse baseline include the omega, indirect binary cube,
and rectanguiar SW-banyan [Wu80], deadlock-free impiementations of parops using wormhole routing

exist for many popular networks.

A general method for eliminating the risk of deadlock created by the ordering constraints is a topic
for further research. We are currently working on a method for binary n-cubes. For now, we assume that
each switch has sufficient buffer space to store the maximum number of operations it can receive in any
given pulse. If ¢ is the maximum number of operations that can be emitted by a PE during a given pulse,
c*n*b bytes, where b is the maximum size of any operation, is an upper bound on the size of the buffer
space. The buffer space allows switches to use virtual cut-through, removing waiting operations from the

network, so that they do not block other operations.

19

Assuming deadlock-freedom, any implementation that is consistent with the labeling scheme is fair.
If every PE issues a finite number of operations in any given pulse and there are a finite number of PE’s,
then for any given operation, OP;, there are a finite number of operations, OP;, such that 0P; <, OP;, Thus,

by L3, a finite number of operations that can be executed before oP;.

5. Applications

Parops are intended to be used as a primitive from which to construct more powerful mechanisms,
but they have some direct applications as well. In this section we wiil show examples of the use of
parops, give a brief and informal description of how parops can be used to support a method for coordi-
nating access to shared memory, and describe some applications for local synchrony other than in the

implementation of parops.

5.1. Applications for Parops

The problem that originally suggested parops is that of maintaining reference counts in a mé\ssively
parailel linked data structure where garbage collection of deleted nodes is by reference counts. A process
traversing a link in the structure must read a pointer and increment the reference count associated with the

pointer as an atomic action:

lock {POINTER} ; lock (REF_COUNT) ;
read {(POINTER, v} ; inc {REF_COUNT);
unlock (POINTER) ; unlock (REF_CCUNT}) ;

Assuming the memory modules support atomic execution of the RMW instruction inc, a parop can read

the pointer and increment the associated reference count as an indivisible step [Wag871]:

POINTER:read(v) |j REF_COUNT:inc;

Besides reducing in the number of instructions executed by each process, the use of parops increases the

concurrency of the solution.

A way to use parops in chasing pointers {(or using a shared index into a shared array) is the

“‘repeated read’’ technique. A process using this technique first reads the pointer and then issues a parop

20

that both dereferences and rereads the pointer. The second read confirms that the value of the pointer
read initially is still valid when the value is used. If the values returned by the two reads differ, the pro-
cess tries again until it executes two consecutive reads of the pointer that return the same value. Note that
the dereferencing operation must, in general, be a read. If the repeated read fails, any write based on the
invalid value for the pointer updates the wrong node. Another process may see the result of the mis-

directed write before it can be cancelled.

5.2. Parops as a Basis for Implementing Atomic Actions

The pﬁncipal application for parops is as a synchronization primitive on which to build other
mechanisms, Parops are not very useful by themselves because of two limitations. First, every operation
in a parop must be independently issuable, but a process does not, in general, have enough information 1o
issue all of the operations required for a given atomic action before any operation completes. Second,
any parop that contains an operation on a variable that may be locked must contain only that single opera-
tion. If a parop contains an operation that accesses a locked variable, either the access is allowed, in vio-
lation of the lock, or it is blocked. If the access is blocked, the semantics of parops is violated since other
operations in the same parop that access unlocked variables will be executed. Because of these limita-

tions, we do not propose a new parallel language based on parops.

In a companion paper we propose using parops as one of the bases for a general method for imple-
menting atomic actions and process synchronization [WiR89)]. This proposal is based on two ideas in
addition to parops:

(1) Variables can be represented as a sequence of values instead of as single values. Each element in

the sequence represents an access to the variable. An element can contain a2 value read from or writ-

ten to the variable or can reserve a position for such a value.

(2) The execution of an access to a shared variable can be split into a scheduling step and an assignment
step. The scheduling step reserves the context for an access by reserving a position in the variable’s

access sequence. Note that the scheduling step for a write can be executed before the value to be

21

written has been determined. The assignment step transfers a value. For writes, the transfer is from
a local variable or register to the position reserved for the write in the access sequence. For reads,
the direction of the transfer is reversed. The assignment step for writes is initiated by the process
when it determines the value to be assigned. The assignment step for reads is initiated by the MM
containing the variable when the value of the variable at the position reserved by the read has been
determined. This value is determined when the assignment step is executed for the write preceding

the read in the access sequence.

A process executes an atomic action by issuing a parop scheduling all the accesses to shared vari-
ables required for the atomic action, executing the assignment steps for these accesses as the values
become available. The use of the parop in the scheduling step reserves a consistent “‘slice’” across the

sequences of the shared variables accessed in the atomic action.

5.3. Applications for Local Synchrony

Local synchrony has applications other than in the implementation of parops. It can support an effi-
cient implementation of combining [Ran87], can simulate a synchronous network on an asynchronous
network so that SIMD graph algorithms can be executed [Awe85], and can be used to emulate a PRAM

on an asynchronous multiprocessor [RBI88].

Another application of local synchrony related to its ability to emulate a synchronous'machine isin
debugging parallel programs. If each SIU emits exactly one operation per process per pulse, the machine
operates in “‘synchronous mode’’. Note that in synchronous mode a program will execute determiﬂisti-
cally, always producing the same result given the same input and initial state. An error that occurs in the
normal asynchronous mode but not in synchronous mode is a time dependent error resulting from an

incorrect interleaving of accesses by processes executing at different rates.

Finally, local synchrony is a mechanism that supports correct, i.e., sequentially consistent, pipelin-
ing of memory accesses. We have shown that parops can be pipelined without sacrificing sequential con-

sistency. Since a parop, in the trivial case, is a single operation, this benefit extends to ordinary programs

22

that are executed on a machine that supports parops.

Maintaining sequential consistency is a hard problem in an asynchronous computation because sto-
chastic delays in the interconnection network allow different operations issued by the same process to
arrive at the memory modules in an order that is inconsistent with the order in which the operations were
issued. The most straightforward solution is for each process to delay issuing an operation until it
receives notice that execution of its preceding operation is complete. This solution has two drawbacks:
(1) it prohibits processes from decreasing the effective latency of the network by pipelining operations;
and (2) it is overly inclusive -— some operations may be pipelined without introducing any risk of violat-
ing sequential consistency. Lamport proposes a technique that eases the restriction on pipelining by per-
mitting a process to issue an operation as soon as it is notified that its last operation is queued awaiting
execution at the memory module [Lam79]. On some machines a special ‘‘fence’’ instruction is available
which the programmer can use to indicate that the next memory access cannot be issued until all memory
accesses previously issued by the process have been executed [KRS88]. Shasha and Snir describe an
algorithm for statically analyzing programs to determine which operations can be safely pipelined
[ShS88]. On a machine that supports parops, all operations can be pipelined. Assuming that operations

are issued in the order specified by the program, the execution will be sequentially consistent.

These applications demonstrate that local synchrony has generality. For the price of parops, the
machine designer gets a machine that can pipeline memory accesses and simulate SIMD algorithms
(without requiring the insertion of barriers after each global reference), a debugging tool, and the basis for

an efficient combining network.

6. Concluding Remarks

There are several directions in which the research described in this paper can be extended. We

describe a few of these below:

Detailed design and performance studies. Our focus in describing algorithms for the SIU's and

switches has been on correctness, We intend to identify design alternatives for the switches and SIU’s

23

and to evaluate their performance. Some design decisions that may have a significant affect on perfor-
mance include the following:

1) The flow control protocol, especially between each SIU and its associated switch, and the related ques-
tion of the ‘‘granularity’” of a pulse, the minimum time an SIU waits after emitting a token before emit-
ting the next token.

2) The information carried by a token. If a token carries information about the operations that follow, the
information may enable the switch to route operations on all outputs concurrently.

3) Additional control messages. Ranade proposes the use of *‘ghost messages’” to improve the perfor-
mance of the combining network [Ran87]. When a switch emits a message on one output line it sends a
copy, a ghost message, on every other output line. The receipt of a ghost message tells a switch that no
message that precedes the ghost message in sorted order will be received on that line. This information
may allow the switch to emit operations received on other lines earlier than it could in the absence of the

ghost message. Ghost messages may also be useful in a network that supports parops.

Deadlock-free routing and combining of operations. We are currently studying extensions of
Ranade’s algorithm to networks other that the butterfly, looking for algorithms that are deadlock-free and

consistent with both wormhole routing and parops.

Fault-tolerance. The parop implementation we have described has two characteristics that may pro-
vide a basis for a fault-tolerant implementation. First, the implementation imposes a regular pattern of
communication, the token pulses, on the network. The switches may be able to use these pulses as a
heartbeat to diagnose failure points. Second, the implementation allows multiple paths on which to route
any given operation. If one path has a malfunctioning link or switch, there may be an alternative path.
An efficient fault-tolerant implementation that also supports combining may be more difficult to find
since the rule in combining networks is that the response to an operation must take the same path as the
operation since decombining information is stored at switches along that path. A solution we intend to
investigate is t0 double the network, pairing each node with its copy. If each node pair shares combining

information, a response can return through either node in a given node pair,

24

Extension to the Message Based Model. We envision using parops in the MBM to implement lock-
free access to distributed objects, i.e., objects that are distributed over more than one multicomputer node.
An important question to explore is whether parops can be nested to facilitate information hiding and

object-oriented programming.

Hybrid synchronous-asynchronous operation. In the section on applications for local synchrony we
proposed that a machine that supports parops could operate in synchronous mode. An ability 1o specify a
subset of the SIU’s to operate in synchronous mode suggests the possibility of mixing synchronous and
asynchronous computation within the same program. Subsets of processes could execute as teams, each
executing a program from a library of synchronous programs called as subprocedures from an asynchro-

nous program. One question to explore is the performance of such hybrid computations.

Application to the cache coherency problem. We are studying the use of parops in solving the
cache coherency problem and its dual in the MBM, the virtual memory problem. We believe that parops
may give an efficient solution to these problems because parops provide a way to update muttiple copies

of a variable atomically without locking.

References

[AweB5] B. Awerbuch, Complexity of Network Synchronization, J. ACM 32, 4 (October 1985), 804-
423,

[DaS871 W. I, Dally and C. L. Seitz, Deadlock-Free Message Routing, IEEE Trans. on Computers 36,
5 (May 1987), 547-553.

[KRS88} C. P. Kruskal, L. Rudolph and M. Snir, Efficient Synchronization on Multicomputers with
Shared Memory, ACM Trans. Prog. Lang. and Systems 10, 4 (October 1988), 579-601.

[Lam79] L. Lamport, How to Make a Multiprocessor Computer that Correctly Executes Multiprocess
Programs, IEEE Trans. on Computers 28, (1979), 690-691,

[OwL82] S. Owicki and L. Lampori, Proving Liveness Properties of Concurrent Programs, ACM
Trans. Prog. Lang. and Systems 4, 3 (July 1982), 455-495.

[Pap86] C. Papadimitriou, Database Concurrency Control, Computer Science Press, 1986.

[Ran87] A. G. Ranade, How to Emulate Shared Memory, /EEE Annual Symp. on Foundations of
Computer Science , Los Angeles, 1987, 185-194,

[RBJ88] A. G.Ranade, S. N. Bhatt and S. L. Johnson, The Fluent Abstract Machine, Tech. Rep. 573,
Yale University, Dept. of Computer Science, January, 1988.

[ShS88] D. Shasha and M. Snir, Efficient and Correct Execution of Parallel Programs that Share
Memory, ACM Trans. Prog. Lang. and Systems 10, 4 (October, 1988), 282-312.

25

[SiK80] A. Silberschatz and Z. Kedem, Consistency in Hierarchical Database Systems, J. ACM 27, 1
(January, 1980), 72-80.

[Wag87] R. R. Wagner, Jr., Parallel Operations in Shared Memory, Master’s Thesis, University of
Virginia, Charlottesville, Virginia, August, 1987.

[WiR89] C. Williams and P. F. Reynolds, Jr, On Variables as Access Sequences in Parallel
Asynchronous Computations, Tech. Rep. 89-17, University of Virginia, Department of
Computer Science, December, 1989,

[Wu80} C. Wu and T. Feng, On a Class of Multistage Interconnection Networks, IEEE Trans. on
Computers 29, 8 (August 1980), 694-702.

26

