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1 Introduction

The objective is to analyze the performance of the WM architecture, and
to compare it to that of other machines. Architecture and implementation
cannot be cleanly separated for such purposes. However, our approach is
to characterize the work accomplished in the execution of an instruction
summing the costs of primitive unit operations performed in the course of
executing the instruction. By characterizing instructions from widely differ-
ent architectures in terms of the same primitive unit operations, they can be
compared.

In this initial analysis, we have selected a small set of benchmarks and
coded them in C and in WM assembly language. We measured their per-
formance ("wall clock ticks” to complete the benchmark) using the WM
simulator. We also determined, by hand counts, the unit operations per-
formed, weighted by the cost per unit operation type. We then computed
the "units of work accomplished per wall-clock tick”. When this number is
greater than one, it indicates the degree of concurrency of execution of the
unit operations.

2 Initial Benchmarks

First and foremost the benchmarks described below were selected because
they were at hand and small, so that hand coding was a reasonable task.



There is some degree of balance in the benchmarks. They are representative
- of several different styles of programming and application.
The benchmarks include:

Whetstone excerpts: Three key routines. Representative of scientific
calculation. Nasty in terms of data dependencies.

Infinite Impulse Filter: Recurrence in two levels. Representative
scientific function.

Dot Product: Workhorse mathematics function. Streamable. Very
tight loop.

Lawrence Livermore Loop Number 5: Recurrence. Tight loop. Rep-
resentative of some scientific calculations.

Fast Fourier Transform Inner Loop: Frequently used mathematics
function. Streamable.

Unix string manipulation: String copy and string compare. Repre-
sentative of systems code and text processing code.

Saxpy: Excerpted from Linpack. Tight loop. Input vectors have
differing strides.

Link list scan: Loop controlled by link field accesses in contrast
to predictable vector accesses. Representative of search algorithms.
Representative of Operating Systems applications.

Code for the benchmarks is shown in the Appendix. The code being
measured is typically found between two simulator TIMER commands.

3 Characterizing Execution

To characterize the function performed by an instruction, we define unit
operations, UO’s. The unit instruction is one of: load value from memory;
store value to memory; or a single arithmetic, logical or control operation
with register values or small literals as arguments. For a given technology,
we assume that the execution time of a unit operation can be specified as an



integral multiple of some basic time unit — ”the tick”; moreover, we assume
that this execution time is independent of its location/use in a program or of
the values of its operands. If X is a unit operation, then t(x) is it’s execution
time. No time is ascribed to instruction fetch and decode.

The effect of executing an instruction from any architecture can be de-
sciibed by a sequence of unit operations. For example, the VAX instruction
addw3 x, (12)+, 13 can be described by

load value from memory
increment register value
add two register values

Further, the "work accomplished” by this instruction can be characterized
as the sum of the execution costs of its constituent UQO’s

t(load) + t(add) + t(add) .

Note that in general the time required to execute this instruction will not
be equal to the work accomplished; it may be greater (because, for exam-
ple, instruction decode is serial with actual execution of the instruction or
operands are not available} or less (typically because there is some concur-
rency in the execution of the component UO’s).

4 Analysis

4.1 Rules for Counting UO’s on WM

Counting rules include:

o All jumps have the same function and cost.

¢ In non-streaming mode, references to FIFO-backed registers count
zero. In streaming mode, references to 0, r0, rl, and f1 count as
two operations, load and address increment.

¢ In multiple operator instructions, only the operators doing wuseful
work are counted.

e If an instruction is a simple register to register move, then (it is
assumed to be necessary to the algorithm implementation and) the
count is one.



4.2 Cycles per Operation

The assumptions about the number of cycles to perform an operation corre-
spond to the current Stellar machine implementation. The Operation Time
values were specified by Todd Basche and are:

¢ 12 ticks: floating divide; float reverse divide

o 10 ticks: integer divide; integer reverse divide

4 ticks: float multiply

2 ticks: all float operators except divides, multiply and nop; integer
multiply

1 tick: jumps; loads; stores; nops; all operators not named above

4.3 Benchmark Analysis

The following table shows performance measures of the inner loop (typically)
of a set of benchmarks. The most important result is the right hand column
which shows the amount of work per tick.

To compute work per tick for each benchmark, the code being measured
is inspected to determine the amount of UO work done in one iteration of the
loop. This work count is annotated on the benchmark code in the Appendix;
the total count appears in the second column below. The amount of work is
the sum of the number of ticks to perform each of the set of unit operations.
For each unit operation the tick cost is given above. The actual simulator
file defining operation costs is in the Appendix.

The third column gives the tick count for the measured code as deter-
mined by the WM simulator. Except for Whetstone derivative benchmarks
each benchmark involved loops which were run for many (20 to 100) itera-
tions so that concurrency of multiple iterations was possible. The simulator
given tick count is conservative in that all instructions were completed and
final stores were complete before the final tally was made. This definition of
what to measure is conservative in that the last instructions in a loop may
overlap with processing which follows in actual programs.



WM Performance using ”Stellar Operation Times”

Simulated

U0 Work Time Work/Tick
FET 49 29 1.69
IR 22 16 1.37
DOT 11 4 2.75
LLL5 13 6 2.16
WHET-pa 51 40 1.27
WHET-p0 22 14 1.57
WHET-p3 31 29 1.06
STRCPY 6 2 3.00
STRCMP 8 3 2.66
SAXPY 13 4 3.25
LINKLIST 8 5 1.60

5 Notes on the Benchmarks

Simulated time was measured in two ways. For the whetstone derivative
benchmarks, the code is packaged as subrountines. So it did not seem appro-
priate to measure that code as though in a loop. Consequently the measure-
ments reported here for whetpa, whetp0 and whetp3 are measured from the
tick in which the first instruction of the code is processed through that tick
in which the last portion of the last instruction is completed. (Note that
whetpa has 8 loop iterations in it, by definition.) Any overlap of subrou-
tine entry and return is not taken into consideration. Consequently, these
measurements are conservative.

WHETP0 is an example in which the FEU waits on the IEU.

The remaining benchmarks all involve loops. These were measured in
looping code that did permit one iteration to overlap execution with others.
Typically, 100 iterations were measured. The code executed in most loops
is not data dependent. Exceptions include LINKLIST. In this case three
measurements were taken. In the best case each time through the loop, the
list element was not interesting and therefore not processed. In the worst



case, the list element was always interesting and always processed. Happily
the average case measurements fall in between best and worst.

STRCMP is interesting in that execution of the first loop instruction is
started in the IEU every three ticks. The IEU is held up one tick, awaiting
the condition code from the previous test to be processed by the IFU.

6 The WM Simulator

The simulator has some assumptions that affect its timing reported under
"simulated time” in the measurements above. Several of interest are dis-
cussed below.

" Memory is "one tick fast”. If execution of a load/store operation is com-
pleted during one tick in the IEU, then the data is available in the next
tick. This is reasonable if one assumes perfect and fast caching. But, it is a
simplification to be aware of.

The IFU is infinitely fast. It is capable of performing any of its operations
for which data is ready and buffering space is available, unless the operation
necessitates synchronization with other function units. It takes a tick for a
condition code value to get from an EU to the IFU

Benchmarks written in C and WM code

These benchmarks are included here. Most provide corresponding C
or Fortran code in the comments to document the computation being per-
formed.



-=- FFT Inner Loop
e (taken from the WM manual)

synch
LW r% = j R L L
rlQ := x0
1f r9 := ekrp
£10 := £0
1f r9 := ekip
f11 := £0
r3 1= 3% -— r3 == address of z
r4 1= zm —-- r4 == address of zm
rh = wk w— rhH == gddress of wk
r6 1= wj -- r6 == address of wj
SinF £0, r3, xl10, 8 -= gtream z (i).rp’s into £0 FIFO
SinF f£1, r4, zl0, 8 -- stream zm(i) .rp’'s into £1 FIFO
SoutF £0, r53, rio, 8 -= gtream wk(i).rp’s intc f0 FIFO output
SoutF £1, r6, rl0, 8 -— gtream wj(i).rp’s into £l FIFO output
TIMER clear, start LQO&Mm
L £3 := (£0 nop £9) nop £9 2. -~ zrp := f0
£4 := (£1 nop £9) nop £9 2 -—- zmrp 1= f1
£f5 = (£0 nop £9) nop £9 2 -~ zip 1= £0
£6 = (fl1 nop £9) nop £9 Q. - zmip 1= f1
£f0 := (f3 + f£4) nop £8 A - £0 := zrp + zmrp
£0 := (£f5 + £6) nop £8 A e £0 := zip + zmip
£7 = (£3 - £4) * f10 o~ ftl := (zrp - zmrp) * ekrp
£f8 := (f5 - f£6) * fll1 &b - £ft2 = {(zip - zmip) * ekip
£1 := (£7 nop £8) - £8 & -~ £1 = (ftl) - ft2
£7 = (£5 - f6) * f10 G - ftl := (zip - zmip) * ekrp
£8 := (£3 - £4) * f1il o —— ft2 := (zrp - zmrp) * ekip
f1 := (f7 nop £8) - f8 Y - fl1 := (ftl} ~ ft2
JNIE0 I, { ~- loop if not done
TIMER stop print ‘%%

.section data
j:  .word 4 -— Count control, MUST be even=2*# loops
ekrp: .float 1.0
ekip: .float 2.0

z; Lfloat 1.0,0.0 -- z vector; zeros are ip placeholder
.float 2.0,0.0,3.0,0.0,4.0,06.0,5.0,0.0,6.0,0.0

Zm: .Eloat 11.0,0.0. - zm vector
.float 12.0,0.0,13.0,0.0,14.0,0.0,15.0,0.0,16.0,0.0

wk: .float 1.0,0.0 -—~ wk vector

.ficat 0.0,0.0,0.0,0.0,6.0,0.0,0.0,0.0,0.3,0.0
wjs Jfloat 1.0,0.0 -~ wJj vector
.fl0at 0.0,0.0,0.0,0.0,0.6,0.0,0.90,0.0,0.0,0.0



1p:

kl:
k2

INFPINITE IMPULSE RESPONSE FILTER

FOR 4 in 3 .. N LOOP

a(i) := (b(i) + a(i~1)* kX1 + a{i-2)* k2) /2;

END IOOP:
or
for(i=3; i<=N; i++) alil =

synch

1w N

x5 1= r0

lw k1l

re = r0

1w k2

rl2 = A

rl3 := B

rd := r{

rl2 := {(rl2 + 12}
ri3 := (xl3 + 12)
lw 9 := (rl2 - 4)
lw r9% = (ri2 - 8)

SinW x0, xrl13, x5, 4
SoutW =0, rl2, =5, 4
r1l0 = x0

rll = x{
TIMER clear start

r9 := (riQ0 * ré&) + r0 .-y
r9 1= {(ril * r4) + rd 3
ril = riQ i
rl0 = {(xr9 / 2) 10
r0 rlQ 2
jnir0 1lp 1

1

TIMER stop print D
.section data

word b

word 1

word 1

.word 2,3,4,5,6,7,8,9,10

.word 2,3,4,5,6,7,8,9,10

Nb. recurrences

{(b[i] + ali~171*k1 + a[i-2]*k2)

ensure data section req,
r5 == N loop c¢ontrol
ré == kil
rd == k2

.address of A[3]

address of B[3]

load a{2)
load a(l)

Stream Word in FIFQO 0
Stream out FIFO 0
a(i~1) := a(2)

al(i-2) := a{l)

b{i) + a{i-1) * k1
+ a{i~2) * k2

a{i-2) := a{i-1)
ali~1) := al(i)
a(iy :=

loop if not dene

Loop control variable

A vector

B wvector

r8,

/! 2;

is loaded



~- STREAMED DOT PRODUCT
~— sum = 0.0;
——  for {(i=0; i1<N; i++) sum += ali}] * bii):

synch -—- ensure data section reg, r8, is loaded

1w N - rh == N loop control

5 = x0

r6 = A ~w 16 == address of A(0)

r? = B ~= 17 == address of B(0)

f4 1= (£4 - £4) -— init sum to (.0

SinF f£f0,ré6,rb,4 -~ stream A(i}’'s into £0 FIFO

Sin¥ £1,r7,x5,4 -- gtream B(i)’'s into £1 FIFO

TIMER clear start

f4 :=(£0 * £1) + f4 4D ~- do it!

Fnif0 1 4 ~= loop 1f not dene

TIMER stop print I

sf r9 := RES -- store result

£0 1= £4

.8ection data

.word b -= Loop control wvariable
.Eloat 0.0 ~-- site to store result
float 1.0 -- A wvector of length N+l
fleoat 1.0,1.0,1.0,1.0,1.0

.fioat 1.0 -- B vector of length N+1

.flgat 1.0,1.6,1.6,1.0,1.0

Az



-~ Lawrence Livermore Loop # 5
— (tri-diagonal elimination)

—— DG 5 i=2,N
=5 X{i) = Z{i) * (¥ (i} - X(i-1))
- ‘ or

o for {(i= 2; i<n; i++)}
- x[1] = =z[i] * (yli] - x[i-11):;

synch ~— ensure that the stack ptr is loaded
r3 3= 2 " == 13 == address of Z
rd =Y —-=— 1r4 == address of Y
r5 = X —-— r5 == address of X
Lw N ] owme= N
r7 = x0
rd := (rd4 + 8) ~= 14 == address of Y (2)
r3 := (3 + 8) -— r3 == address of Z(2)
r5 = (rh + 4) ~w 7B == address of X (1)
ré 1= (7 - 1) wee p == N-1
~— £0 (input) == stream of Z{(i)s
-~ £1 {(input) == stream of Y(i)s
—-— £0 {(output) == resulting stream of X(i-l}s
—-= £3 == X(i-1)
LF %rb) -- engue regquest for X(1)
SinF £0, r3, r6, 4 ~= gtream Z{i)’s inteo £0 FIFO
SinF £1, rd, r6, 4 ~= gtream Y(i)‘s into f1 FIFQO
Sout¥ £0, r5, r7, 4 -- prep to stream X(i)’'s into £0 FIFO output
£3 = £0 -— init £3 with X (1)
Nop ~- pause for data dependency rule
TIMER start clear
L: £3 := (f1-£3) * £0 /D ~— compute X(i)
£f0 = (£3) 2 -- store PREVIQUS X, X(i-1}
JNIfO L 1 -— loop if not done
TIMER print “*}““‘“5
£0 := £3 : ~- gtore last X
.section data
N: .woxd 5 - Loop control wvariable
X: Lfloat 1.0 ~- X vector of length N+l
.float 2.0,3.0,4.0,5.0,6.0
Y: Lfloat 1.9 -— ¥ vector of length N+l
.float 2.0,4.0,6.0,8.0,10.0
Z: L.float 1.0 -~ % vector of length N+l
.float 2.0,4.0,6.0,8.0,10.0

--newX: .flecat 1.0 -~ expected X vector AFTER computation
- float 2.0,8.0,-4.0,96.0,-860.0



Whetstone subroutine pa

3]-e(4])*t;
3]+eid]) *t;
31+el4]) *t;
31+efd]) *t;

£ J ==

-— r6
[~ f5
- £7 ==

-]

address of E

T

0.

== pale)
e float el]:
- {
- int j;
- j = 0:
- al: e[l] = (e[ll+e[2]+e]
-= el2] = (e[l]+e[2]~e]
-- e[3] = (ellil-el[2]+e]
e efd4] = (e[ll+el2]+e]
- 3 += 1;
—— if ((j-8)<0) goto al else goto al;
v az2: ;
- }

r5 = 0

L T

r6 := Eaddr

£5 = £0

£7 1= (£7-f7)}

LF {xr6 + 4)

loop:

T:
Laddr:

LE {(r6 + 8)
LF {(r6 + 12)
LF (ré6 + 16)

£11 := £0

£12 := F0

£13 := f0

£14 = £0

TIMER clear start

5F (x6 + 4)

SF (r6 + 8)

SF (x6 + 12)

SF (z6 + 16)

rs = (rb5+l) < 8

£6 1= (f11+f12) + £13

£7 = £7

£11 := (f6-£f14) * £5

£0 = {(fh nop f£5) @' £11
fé = (f11+£12) - fl3

£7 = £7

£12 := (£6+£14) * £5

£0 = (£5 nop £5) @’ fl12
£6 = (f11-f12) + £1i3

£7 = £7 .

£13 := (f6+fl4) * f5

£0 = (£f5 nop £5} @" f£f1i3
fé = (f12-£f11) + f13

£7 = f£7

£f14 ;= (f6+fl4) * f5

£0 = (f5 nop £5) @' fl14
JumpIT loop

TIMER stop print

.section data
.float 1.0
.float 1.6,2.0,3.0,4.0,5.0

0

-- get the ef]’'s

-~ e[l]
-— el2]
-— e[3]
-— e[4]

WInR

FosRt@sNabeon sl agehpy VP

|

G
=

test loop te
floating Nop
store e[l};
Nop

store ei2]
Nop

store e[3]
Nop

store ef4]

rmination

note data dep



Whetstone subroutine pld

== p0(}

- {

- el[3] = ellk]: -~ Note we do not know whether J,k, and 1 might
— ellk] = el[l]; have the same values, but the hardware
- el[l] = el[]j]: is supposed to sort this out.

TIMER c¢lear, start

rl) := Eladdr ~-- rl0 == el address 4
W J 1
LW K 1
LW L N
rd = x0 : - rd == J o
r5 = r0 — rh ==K &
r6 := r0 -l owmwm &
LF {(r5 ~ 2) + ri0 —— e[k} 3
SF (rd4 =~ 2} + ri0 -~ efj] "R
£0 1= £0 o
LE (ré6 ~ 2) + rl1l0 — ell] =
SF (r5 ~ 2) + rl0 -- e[k] 3
£0 1= £0 A7
LE (x4 ~ 2} + rl0 -- e[7] 3B
SF {(r6 ~ 2) + rl0 -—— el[l] =
£0 := £0 o
TIMER stop print 2.5
.section data

J: word 1

K: Tword 1

L: .word 1

Eladdr: .word 1,2,3,4.,5



H oA e e

p3(x,v,2)
float *=x, *y, *z;

{

float
x1

-
il

BERREE L
%]

+h
[teg
[ [

TIMER

.secti
.fioat
.£loat
.float
Eloat
.float

Whetstone subroutine p3

xl, yl;

*3;

*y;
t*{xl+yl); -—- this and next two instructions are known
t* {xl+yl): — to be "hard" on the Stellar machine
(x1+y1l) /£2; - because of the data dependencies

-- o get stack pointer loaded
clear start

i
i
L
4
4
£0 7 e £6 mm FY
£0 A e F7 == T
(F0+£6) *£7 lo —= £5 == (*¥X+YL1)*T

(£% nop £9) &' £94& -- Note f5 req’d as inner op of next instr

(£5+£0) *£7 {p ww £6 == (X14+YL1)*T
(£9 nop F£9) @' £9.49 -— Note £5 req’d as inner op of next instr
(£5+£6) /£0 jy == *Z 1= (X1+Y1)/T2
stop print “5f
on data
1.0
1.0
1.0
1.0
1.0



- Unix string copy
-- gtrepy{sl,s2)

e char *sl, *s2:

e { char *s = sl;

- while ({*sl++ = *g2++);

- return {(s):

- 3

ril = (31 ~ 20) -~ get large count
r5 1= sl -~ base address of gl
r6 1= g2 —-w base address of s2

Sing r0, r5, rii, 1
SeoutB r0, ré6, rli, 1
TIMER clear start

loop: rQd = (rQ <> 0) NG copy and test for null terminator
JumpIT loop | -~ loop if

TIMER stop print
rQ = 0 -- write the terminator
StopAll

.section data
sl: .byte 1,2,3,4,5,0 -- each byte specification will be
- word aligned: careful
823 .word 0,0,0

.
{AF

e,



- Unix string compare

-— strcmp(sl, 82)

- char *sl, *s2;

- {

- for (y *sl == *sg2; sli++, s2++) 1f (l*sl) break;
-- return (*sl-*s2}):;

-~}

rll := (31 ~ 20) ~-- get large count
r5 = gl ~-— base address of sl
ré = 82 ~— base address of g2

8inR r0, r5, ril, 1

8inR rl, r6, rll, 1

riz ;= ¢ -— count for computing result
TIMER clear start

loop: rl0 := (r0 = 0) <> rl ( -- is *sl null? OR is *sl<>%s2?
rl2 := {(xrl2 + 1} 4 --— count chars compared
JumpIF loop 4
TIMER stop print g
Stopall
IB r7 = {xr6 - 1) + ri2 - reload *sZ[count-1]
r1l0 := (x10 - r0)
.section data
~-8l: byte 1,2,3,0 ~~ gl == g2
—~—52: byte 1,2,3,0
-—-gl: .byte O -~ g1 ig null
~--g2: .byte 5,5,5,0
sl: .byte 3,4,5,6,7,0 -= gl lexically greater
sZ2: .byte 3,4,5,1,0



-=- gaxpy from LINPACK sources

-- constant times a vector plus a vector
-- unequal increments

-~ Note: incx and incy are increment parameters
-=—  ix=1

-- iy=1

- Do 30 i=1l,n

e DY {iy) = DY(iy} + DA*DX(ix)
—— ix=ix+incx

-- _ iy=iy+incy

- 30 continue

synch -- ensure that the stack ptr is loaded
LE¥ DA —w f3 == DA
LW N —— @ == N
LW INCX -~ r8 == INCX
LW TINCY - p7 == TINCY
r3 := DY - x3 == address of DY
r4 := DX -- r4 == address of DX
£3 := £0
r9 := r0
r8 = (rQ*4) —— r8 == INCX * 4
r7 = (r0*4) -— r7 == INCY * 4
-- £0 (input) == stream of DY (i)s
-— £l {input) == stream of DX{i)s
~—= £0 (output) == resulting stream of DY(i}’'s
SinF £0, r3, r%, r7 -~ gstream DY(i})’s into £0 FIFQ
Sin¥F f£fl, rd4, r9, r8 -— stream DX(i}’'s into f1 FIFO
SoutF £0, r3, »9%, x7 ~— prep to stream DY(i)'s into £0 FIFC output
TIMER start clear
L: £0 = (f1*£3}) + £0 {9  —~ DY(i} = DY{(i) + DA*DX({i)
JNIFQ L { -~ loop if not done
M
TIMER stop print 13
.section data
N: .word 10 ~- Loop control variable
INCX: .word 1 ~w DX index increment
INCY: .word 2 ~— DY index increment
DA: .float 3.0
DX: LJfloat 1.0 ~- DX wvector 10 some big
.float 2.0,4.0,6.0,8.0,10.0,10.0,8.0,6.0,4.,0,2.0
DY: L.float 1.0 -~ DY wector 80 some big
.flecat 2.0,3.0,4.0,5.0,6.0,6.0,5.0,4.0,3.0,2.0
.float 2.0,3.06,4.0,5.0,6.0,6.0,5.0,4.0,3.0,2.0
.fleoat 2.0,3.0,4.0,5.0,9.0,6.0,5.0,4.0,3.0,2.0
.£loat 2.0,3.0,4.0,5.0,6.0,6.0,5.0,4,0,3.,0,2.0
.float 2.0,3.0,4.0,5.0,6.0,6.0,5.0,4.0,3.0,2.0
.float 2.0,3.0,4.0,5.0,6.0,6.0,5.0,4.0,3.0,2.0
.float 2.0,3.0,4.0,5.0,6.0,6.0,5.0,4.0,3.0,2.0
.float 2.0,3.0,4.0,5.0,6.0,6.0,5.0,4.0,3.0,2.0
.fFloat 2.0,3.0,4.0



rl
rl
W
ré
rl
ro

SoutW rl,r10,r6,8

init:

LW
LW

WoRE:

i

lp:

xit:

j— ,..-“’—-""%J T e e T

Scan down a linked list

Locate list element with certain property
Property here is highest value in a field

3
2

0
0

I
: 0

4

0

a
1= a + 8

rl 1= r%
r9 1=
Jnoxrl inif

rl0
r9 =

1wog
a + 4

TIMER clear start

rll:=x10
rl0 :=
rl2 :=
JumpIF
LW (r10)

LW (x10+4)
JumpIF lp
ri3 := rli
Jump lp
JumpIF xit?2
rl3 := ril

xit

xiv2: —

[&

- Worst
——g

TIMER stop print

.section data

word 19

case
.word
.word
.word
Lword
.word
.word
~word
.word
word
~word
.word
.word
.word
.word
.word
.word
.word
word
word
.word

<

R L T T T T T R T L T T Y
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extern long iTimes|
#define INTtimes
/*

* x

* %

* *

* 5

* *

* %

* %

* K

* %

* ok

* &

K&

%

* ok

X

*/

1:
{ 1,

L
E
l
l
f
[
l
I
I
I
I
I
I
I
i
|

extern long fTimes[];
#define FLTtimes {
/*
&k
* %
* K
L
* Kk
* ok
* %
* Kk
* &
* K
* %
* k
* K
* Kk
* Kk

*/

extern long iTimes[16],

l, 1,1, &, 1, 2, 1,16, 1, 1, 1,10, i, 1, 1}
1t 1 bt ]__greater than
[ v v °r 1 1 1 1 |__AND
1t 11 b b1 f__less than or equal
[ 1t 1 | | 1 ] __reverse divide
1 0 &+t 1 1 | 1 1__less than
&t 1 1 1 1 J_OR
I 1 1 ¢t I | | | | _greater than or equal
Ly b __divide
L 011 ]__equal
bbb i mualtiply
[ 1 1 | | __equivalence
i I | |__reverse subtract
| | | __reverse arithmetic shift left
| |__add
[ conx
subtract
2, 2, 2, 2, 2, 4, 2,12, 2, 1, 2,12, 2, 1, 21
L b1 b b | __greater than
Pt 111 | __reverse NOP
b0 b 11 b1 1 i__less than or equal
P80 b1 | reverse divide
1 1111 |_less than
[ e e e e T )24
[ e
Lt 11 |__divide
L1 11 _equal
; P+ 1 | multiply
A
I | | i _reverse subtract
| | |_greater than or equal
{ |__add
I
subtract

fPimes[16];
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The WM Computer Arshitesturs

Wm. A. Wult
Pittsburgh, Pa.

27 December 1987

Introduction

The time to complete an application ¢can be expressed as the product N-C+T, where Nis the number
of instructions executed, C is the number of cycles per instruction, and T is the time per cycle. The
important lesson of the RISC architectures was that, by simplifying the instruction set and thus

potentially increasing N, the other two terms are disproportionately. decreased and overall execution
time is reduced.

This paper outlines an architecture, called WM1, which retains the RISC philosophy of "performanca

through simplicity”. However, WM achieves significantly greater performance than RISC designs; it
does so by:

(1) reducing N, while retaining the cycle time of a RISC machine.
{2} reducing C to less than one.

At first, these may seem as non-intuitive as the advantages of RISC machines did in 1975. However,
for example, N can be reduced by at least two techniques: (1) an instruction can specify two or more
independent actions -- each of which has RISC-like simplicity and speed, and (2) a single
instruction can spawn a sequence of asynchronous actions -- each of which would otherwise have
required a RISC-like instruction to be executed. C can be reduced to less than one by dispatching more
than one instruction per cycle. The combined effect in WM can be quite dramatic -- as much as a 4-
10 performance advantage over RISC designs.

Designing an architecture that is faster than the current generation of RISC chips isn't especiaily
hard -- witness the plethora of (mini)supercomputer designs that have emerged recently, The
charms of the WM design, however, are the simpiicity of the mechanisms used, its obvious suitability
for single-chip impiementation, and its broad spectrum of applicabifity.

! Application for patent protection has been made for portions of the material described here.
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The following sections briefly describe various aspects of the WM architecture. We then provide a
few examples and use these o provide an intuitive feel for the machine's performance. Finally we
make some general ramarks on the design.

General Information

WM is a 32-bit, byte addressed machine. It is a "load/store" architecture: arithmetic and logical
operations can only be performed between registers. There are 32 integer/logical registers and 32
floating-point registers; a few of these registers have special purposes as will be discussed later.

All WM instructions are exactly 32-bits, and must be word-aligned; there are five instruction for-
mats, as shown in Figure 1. Instructions are executed by one of the thres, asynchronous components
shown in Figure 2: the Instruction Fetch Unit (IFU), the Integer Execution Unit (IEV), and Floating
Execution Unit (FEU). Integer and Load/Store instructions are executed by the IEU; floating point
instructions are executed by the FEU; control and special instructions are executed by the IFU. An
instruction may be dispatched to each of these components on each cycie.

The semantics of the WM instruction set are sequential; instruction / is executed befora instruction
(i+1). However, the design has been partitioned to permit greater concurrency than is suggested
by this statement. The principal state shared between the IFU, IEU, and FEU is a set of Fi FOs (“first-
in-first-out” queues); interactions between the components are implicitly synchronized through
these FIFOs. Although strict sequentiality of instruction execution must be maintained for the
components individually, no such requirement exists giobally -- in principle the IFU, IEY and FEU
can be exacuting instructions from quite distinct portions of the program concurrently. The relative
prograss of the components is governed by their relative speeds and by intrinsic data dependencies,
not merely by PC-vaiue. This independence between components significantly increases the potential
for multiple instruction executions per cycle.

01 34 78 1112 1617 21 22 2627 31

0| RL | OP1 | OP2 | Rd AL | RL2 | RL3 | 'Meser

op op
10JRL | LSOP] 1 2 Rd RL1 RL2 RL3 load/store

110(p]loP1 |oP2 | Rd | R R2 Ry | floating

1110 | op RL| Rd RL1 | RL2 | RmLg | srecial

1111 | OP OFFSET control

Figure 1: The WM Instruction Formats

Copyright © by Wm. A, Wulf. All rights reserved. 12/31/87 2
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Figure 2: The IFUAEU/FEU Decomposition

The Integer Instructions
The integer instructions evaluate the assignment:
Rd := O1 apt (02 op2 03)

That is, they perform two operations on three source operands and place the result in a destination
register. The source operands, O1-03, may be either the contents of one of the integer regtsters or

5-bit unsigned literals from the instruction word!.

Figure 3 illustrates the conceptual model of the IEU. The machine is pipelined so that an instruction
can be daspatched to the IEU each cycle: while op1, the outer operatlon of one instruction is being
executed in ALU1, op2, the inner operation of the next instruction is being exsecuted in ALU2. This
gives rise to the data-dependency rule:

The resuit of one instruction is not available as an operand of the inner operation
of the next instruction.

'The RLI fields are the operand specifiers and the RL field determines whether RL} is the name of
the register holding Qi or is the literal Oi itself.

Copyright © by Wm, A. Wulf. Al rights reserved. 12/31/87 3
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Figure 3: The IEU Conceptual Model

There are 16 operation codes for each of opt and op2, and they are mostly what one would expect --

add, subtract, and, or, etc.? In addition 1o these expected operators, there are a set of reiationals:
equal, greater-than, etc. The relational operators have three properties:

They are the only operations that set the condition code; the non-relational operators, e.g.,
add, do not | We will see Iater that this is half of what permits WM to execute conditional
jumps in zero time.

They produce their right operand as a result; the vaiue of “(r11 < r10)" is the vaiue con-
tained in r10. Thus, an instruction such as

110 w11 > (110 + 1)
both increments r10 and compares the incremented value to the value in r11. This is the

"add-and-compare” portion of the the typical "add-compare-and-branch” loop controt
paradigm.

If two relationals occur in the same instruction, the resuiting condition coda is the logical "or*
of the two. This permits, for example, range checking in a single instruction.

in principal the operations available in the two ALUs need not be the same, but for the purposes of

this paper we will assume they are. As one might expect, a good dea! of cleverness was expended to
determine just the right set of operators.

Copyright © by Wm. A. Wult. Al rights reserved. 12/31/87 4
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The Floating Point instructions

The floating point instructions are similar to the integer instructions and also perform the compy.
tation

Fd = O1 op1 (02 op2 03)!

The "p® it of the instruction (Figure 1), determines whether this computation is performed in sin-
gle or doubie precision. No literals are allowed.

The fioating point operations are also pretty much what one would éxpect. Specifically, there are a set
of relational operators with the same semantics as their integer counterpans. The conceptual modai
of the FEU is identical to that of the IEU, and it too is pipelined and has the same data dependency rule.

The Control Instructions

The control instructions perform PC-reiative jumps, and contain a 24-bit displacement2. The
“interesting” instructions are the conditional jumps -- for which we impose the following
restriction on valid programs:

Instructions containing relational operators must be dynamically paired one-for-
one with conditional jump instructions.

As a consequence of this rule we can model this portion of the machine as a producer-consumer
system. Instructions containing relational operators "produce” a condition-code value: conditional
jumps “consume” one. As with all producer-consumer systems, we can synchronize the two
participants by a FIFO. This means that the IFU is free to execute the conditional jump as soon as a
condition code value becomes available, i.e., the FIFO is non-empty. Thus, if the compiler separates
instructions containing relational operators from the corresponding conditional jump by at least one
instruction3, the execution of the the jump can be compietely overfapped with that of other
instructions and hence takes "zero time".

Note thai, in practice, the ability of the compiler to move relational operators is significantly
enhanced by the fact that other operators do not set the condition codesl

' To avoid confusion, the integer registers are referred to as r0-r31 and the floating point
registers are referred to as f0-f31.

2 Since all WM instructions are the same size and word-aligned, this displacement is padded with
two trailing zeros before being added to the PC. An unconditionai “jump indirect” is provided if you
really have a program larger than 224 instructions and wish to jump from beginning to end.

3 This is identical to the problem of filling "branch shadows" in "delayed branch® or "branch with
execute” schemes. '

Copyright © by Wm. A. Wull. All rights reserved. 12/31/87 5



The Load/Stors Instructions

The method of performing loads and stores is one of the more unusual aspects of the WM design, and is
another source of its perfermance advantage. The scheme has three important differences from the
conventional:

1. On most machines, a load (or store) specifies two quantities: a memory address and a
register name -- i.e., "load the contents of location 42 into register 13", or "store the
contents of register 3 into location 511",

in WM, only the memory address is specified in the load/store instructions. The target of a
load (source of a store) is implicitly "register zero® 1.

2. On most machines there are a set of "addressing modes”, albeit simple ones for RISC ma-
chines, that are usad to compute memory addresses as part of the load/store operation.

WM achieves this effect with the standard integer operators that are part of the load/store
instruction,

3. On most machines, the effect of a load/store is conceptuaily "immediate”,
WM interposes FIFOs between the registers and memory.

- A "load” instruction is a request to enqueue data from a specific memory location into
an input FIFQ; data is dequeued from this FIFO by referencing register zero as a source
operand of a data-manipulation instruction. Several load instructions may be executed
and consequently data enqueued, before being referenced and dequeued.

- A "store" instruction is a request to dequeue data from an output FIFO and store it into
a specific memory location. The data is enqueued in an output FIFQ by specifying
registar zero as the destination of a data-manipulation instruction.

¥

Load/store instructions specify an address. They do so by performing a computation semantically
identical to the integer instructions. That is, they compute the assignment

Rd := O1 op1 (02 op2 03)

The initial execution of these instructions is identical to that of integer instructions. The operations,
op1 and op2, are a subset of the integer operations, and, when padded with leading zeros, are even
encoded the same. The data paths, ALUS, and data dependency rule are the same; there is no speciai
"address generation" unit in the hardware. Only during the assignment to Rd is there a difference
between the load/store and integer instructions -- and it is in the form of an additional action,

Concurrent with the assignment to Rd, the resuit of "O1 opt (02 op2 O3)" and the LSOP (Fig. 1)
are sent to the memory system. '

- The value of "O1 op1 (02 ep2 O3)" is the address of the value 10 be loaded or stored. Note: it is not

the value to be loaded or stored -- it is the address of the value.

The LSOP fleld determines the type of load or store to be done -- e.g., load-byte vs, load-word, This

also implicitly determines whether the IEU (integer load/stores) or FEU(fioating load/stores) is in-
voived.

! This will be sither r0 or 10, depending on whether an integer or floating load/store was done,

Copyright © by Wm. A. Wulf. Al rights reserved. 12/31/87 8
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A typical ence of events for loading/using a memory operand is as follows. First, a load instruc-
tiof‘ty ?s exe?uctwad. This provides an address, the kind of data to be loaded (word vs byte, sign-extended
or not), and the FIFO to be used (integer vs ﬂoating'point). The memory system now operates asyn-
chronously to fetch the data, and at some later time inserts the data at the end of the appropriate input
FIFQ. In the mean time, the execution units are proceeding asynchronously. They may or may not have
attempted {0 dequeue this data by referencing register zero as a source operand; if so, they will be
biocked until the data is available. Eventually, however, an execution unit will reference register
zero and the data will be dequeued.

The sequence of events possible for storing data is similar, but has the added possibility that the as-
signment to r0 (i.e., the computation of the value to be stored) and the store instruction can occyr in
either order. It is the presence of a <value, address> pair that triggers the actual store operation.

Note that the "addressing modes” of WM are just the set of two-operator, three operand integer ex-
pressions. This set conveniently includes most of the familiar addressing modes of CISC machines,

e.g., scaled indexing. Because of the assignment to Rd, the set also includes a generalized form of
"auto-increment®.

The FIFQ interface to memory encourages the compiler to move load operations to earlier peints in the
program, and hence to mask latency resuiting from a cache miss. More importantly, however, it
decouptes the integer “address generation” portion of a load/store from the use or generation of the
data. Thus, for example, the integer and floating point units of the machine can proceed asyn- -
chronously in a data-fiow-like, "data availability" driven manner. '

Special Instructions and “Streaming"

The “special” instructions include ail those conventional instructions not covered in the pravious
discussion -- e.g. those for interacting with the operating system, for supporting subroutine link-

ages, etc. We will not discuss these. However, the specials aiso inciude the instructions that control
an important feature of WM -- “streaming".

Streaming is simply a mechanism for causing a saquence of values o be loaded from, or stored to
memory. An instruction such as

SinW stride, count, base

initiates “streaming mode”, in this case, a sequence of "word loads". The effect of this instruction is
just as though “count" loads were executed, the first computing "base” as the address from which the
load is to be done, and successive ones incrementing this address by "stride”. Just as with the load in-
structions, the data from those memory locations is enqueued in an input FIFO and computational in-
structions access (and dequeus) that data by referencing register zero as a source operand.

The similarity of streaming to "vector load/store” operations should be apparent, and the rationale
for its existence is similar -- it reduces the number of instructions that must be executed in loop
bodies, and signals predictable reference patterns that can be exploited by the memory system. Note
that WM has no vector instructions: streaming obviates the need for them. Moreover, uniike vector
machines, the rate at which the operands are loaded or stored is determined by the rate at which they

are consumed/produced by computational instructions that reference register zero as
source/destination.

Copyright © by Wm. A. Wull. Al rights reserved. 12/31/87 7
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Streaming, as we shall see later, is extremely powerful, and it is useful to have at least two input and
Wo output streams for each of the IEU and the FEU. Theretore, the "start streaming* operations
name which FIFO is to be used; thus the format we shall use is

SinW fifo, stride, count, base

It is also useful to add a set of conditional jump instructions that can test whether or not a streaming
operation is complete -- jNZ, "Jump on Stream Count Non Zero”. Examples appearing later should
motivate these decisions.

Examples and Rationale

Let's consider several versions of a "dot product” example. The algorithm is, of course:

X = 0.0
DO 10 i=1,N
10 X = X + A®i)*B(i)

In order to focus on the essentials of the example, let's suppose that the following registers have been
assigned and the corresponding valuas assigned to them are:

f3 = 0.0 f4 = X
4 mm | : 15 nw N
ré == address of A{0) r7 == address of B(0)

8 == "trash”

Remember, r0-r31 are the integer/logical registers in the IEU and 10-31 are the floating point
registers in the FEU. In coding for WM, we use this to distinguish integer and floating point
instructions since they are otherwise similar in form. Thus,

rd = 1S + (r6 - r7) -- is an integer instruction, but
f4 = 15 + (f6 - 17) -- is a floating point instruction.

Example 1: The Obvious Code

The most obvious , although not the best performing, WM code for the dot product loop is

4 = 1 -- {1} Initialize | to 1
f4 = 13 - {2) initialize X to zero
loop: LF 8 = 18 + rd4*4 -~ (3) load A(i} into FIFO 10
LF 18 = 17 + r4°4 -- (4) load B(i) into FIFO f0
f4 = f4 + (f0"f0) -- (5) compuie next term
ré = rS<=(rd4+1) -- (6) increment and test i
iT Loop -- (7) loop if not done

Copyright © by Wm. A. Wulf. Al rights reserved. 12/31/87 8
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First, tet's walk through the example expiaining each line.

(1) This instruction copies the literal value one to register r4 (recall, integer instruc-
tions may contain 5-bit unsigned literal values). In reality, of course, this instruc-
tion contains two operations; as a notational convenience they needn't be written and
the assembier inserts appropriate "nops”.

(2) This merely copies the fioating point zero vaiue from register 13 0 register f4. Note
that, again, the two operations are not used in this instruction. : -

(3) This is a load-floating (LF) operation and computes the address of A(i) by using
"scaled indexing"; since the address is not needed later, it is stored into the "trash”
register. As a result of this instruction, the value of A(i) will, at some iater time, be

- enqueued in the floating point input FIFO corresponding to 0.

(4) This is the analogous load of B(i). Note that at some later time, the value of B(i) will
be enqueued after that of A(i) in the floating point input FIFQ, f0. Note that we ussd
"** in these instructions for exposition; a shift is obviously better.

{5) This is the actual computation of X = X + A(i)*B(i). Note the two references 1o 0 --
these dequeue the values of A(i) and B(J) that were enqueued by the previous load
instructions.

{6) This is the increment and 1est of i. Recall that the value of a relational is it's right
operand -- the incremented value of r4 in this case.

(7) This is the branch ("jJump on True") back to the head of the loop. it branches just in
the case that the condition code set in (6) is "true”.

Before modifying the sxample for better performance, it's worth noting several things. First, notice
the use of two operations per instruction in the address computations, the dot-product computation

itseif, and the increment-and-test. The frequency of the “O1 ep1 (02 op2 O3)" pattern in real pro-
grams was a great surprise to this author -- but it is pervasive, Obviously, some number of expres-
sions of this form “occur naturally® in any program. in addition, however, many common idioms have

this form. For example, "muitiply-and-add" is the central computation in many scientific
computations:

- dot product,
- Horners rule (polynomial evaluation),
- LU decomposition,
- etc.
Simitarly, there are quite a number of "system-y” idioms of this form:
- addressing expressions (double indexing, scaled indexing, etc.),
- field extraction (shift-mask for unsigned extraction, shift-shift for signed extraction),
increment-and-test,
range checking,
stack-adjustment with fimit-testing,
- etc.

In a series of experiments compiling a variety of benchmarks, the number of WM instructions in
inner loops was actually smaller than the number of VAX instructions -- the use of two-operations
per instruction was the primary reason. Though surprising, this is one of the reasons for WM's
performance advantage -- to complete an application it executes a number of instructions comparable
to a CISC machine, but instructions are dispatched and axecuted at RISC machine rates.

Second, note the decoupling of the integer and floating point units. The first execution of line (5), the
actual dot product computation, will likely be delayed some amount of time until the values of A{i}
and B(i) are loaded. This does not, hawever, need to delay the execution of any of the integer or
control instructions! Specifically, the remainder of the loop body can be executed and the next set of
loads can be initiated. Depending on the latency of the cache/memory-system and the relative speed of

Copyright © by Wm. A. Wulf. Ali rights reserved. 12/31/87 g
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integer and floating point operations, the integer portion of the loop can happily be many iterations
ahead of the floating-point portion.

Example 2: improved Code

The example can be improved by noting that ptacipg the increment-and-test immediately next to the
‘conditional jump was a bad idea; it prevented the jump from being executed concurrently with the
other instructions. It would be better to move the relational earlier in the loop.

it would be tempting to think that the "fix" is simply to interchange lines (5) and (6), but that won't
heip -- and the reason lets us emphasize a point. On each "cycle”, WM can dispatch an integer in-

struction, dispatch a floating point instruction, and execute a branch?. Specifically, lines (5) and
(6) can be dispatched at the same time, and hance interchanging them doesn't increase the "distance”
hetween the increment-and-test and the conditional branch. A somewhat trickier transformation, but
one that is easy for the compiler, is shown below:

4 (= 1 - {1} initialize i to 1
f4 = 3 -- {2} initialize X to zero
Loop: LF 18 = 16 + r4*4 -~ {3} load A(l) into FIFO fQ
rd m rSc<={rd4+1) -- {4) increment and test i
LF 8 = 17 + 14%4 -- (5) load B(i) into FIFQ 10
f4 = {4 + (10*10) -- (6) compute next term
it Loop - (7) loop if not done

By moving the increment-and-test over two instructions, including one of the loads, we have achieved
the requisite separation. it might appear, however, that we have introduced a bug by incrementing ré
before the second load. Not so. Recall the data dependency rule says that the resuit of one operation is
not available until the outer operation of the following instruction. Thus, the fetch of r4 in line (5)
gets the previous, un-incremented value of i,

In this version, the integer unit executes 3 instructions, the floating-point unit executes one in-
struction (which overlaps with some or ail of the integer instructions), and the IFU is able to com-
pletely overlap the execution of the branch instruction.

The exact performance of this example will depend upon the ratio of integer and floating-point op-
eration times, but for many impiementations, floating multiply will take at least three integer-op-
eration times. For such implementations, the machine is completely limited by the floating-muitiply
time; everything else is compietely overlapped! in particular, note that line (6) is it's own successor
with respect 1o the floating-point unit and, because it obeys the data-dependency rule, successive in-
stancas of it can be dispatched on each cycle if the FEU.

Example 3: A Streamed Implementation

Consider a PTTM2 implementation of floating-point, as one might use for scientific computations. For
such an implementation, even the "improved" code above may be memory limited -- partly because of
the load instructions themsalves, and partly bacause the memory system is unabie to exploit the

! In principie, then, WM can dispatch § operations each cycle since each of the integer and
floating-point instructions can specify two operations.

2 PTTM == "Pedal To The Metal®

Copyright © by Wm. A. Wuif. Al rights reserved. 12/31/87 10
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predictability of a vector-like reference pattern. In such cases, as well as many others, streaming is
just what the architect ordered.

Assuming slightly different initial register values:

fa - 0.0

f4 mm X

IS wa N

16 == address of A(1)
17 == address of B(1)

The streaming version of dot product is:

f4 = {3 -- (1) initialize X to zero
SinF  fo, 4, 5, r6 - {2) start streaming A(i)'s to {0
SinF 1, 4, 15, 7 -- (3) start streaming B(i)'s to ft
f4 = t4 + (f0°f1) -- (4) do the actual computation
INZ 0 Loop -- {8) jump on f0 count not zero

The two new operators here are "SinF™ and “JNZ 0", "SinF 0,4,15,r6" starts streaming in floating
point values to the FIFO corresponding to f0; the stride is 4 (bytes), the count, N, is contained in 5,
and the address if the first item, A(1), is contained in r6. "jNZ f0 Loop" jumps to L if the count of
items not yet consumed by the loop is not zero. .

Because execution of the jNZ can be overlapped with the arithmetic operations, the performance of
this loop is limited only by the speed of the floating multiplier and the bandwidth of the memory
system. In general, streaming mode ailows WM to perform vector operations as fast as the functional
units can handie the operands; in this sense it is capable ot "vector performance”.

Streaming is, however, more general than vectoring since the "vector operation” can be any pro-
grammed sequence of operations -- including ones involving  reductions, recurrences, complex
conditionals, arbitrary length vecters, etc., each of which is a problem for vector machines. In this
sense WM is capabie of "super vector performance”. The dot-product exampie illustrates a reduction:
the following examples will illustrate recurrences and conditionals.

Example 4: Handling Recurrences
Consider the fifth "Livermore loop”, which is trl-diagonal elimination below the diagonai:

DO § i=2N
5 X(i) = Z{)*(Y(i)-X(i-1))

A loop such as this cannot be vectorized because it contains a "recurrence” -- a value that i$ com-
puted in one iteration and used in a subsequent one. Recurrences pose no problem for non-vector
machines, inciuding WM -- but WM can achieve vactor-like performance on them, Assuming the
following register assignments:
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r3 == the address of Z(2)

r4d == the address of Y(2)
rs == the address of X(1)
ré == N-1

r7 =m N

f0 (input) == the stream of Z(E)'s

f1 (input) == the stream of Y(i)'s

f0 (output} == the resuiting stream of X(i-1)'s
f3 == X{i-1)

Tha code for LLL-5 is

LF r5 - {1) enqueue request for X(1)

Sink 10, 4, 16, 13 -- {2) start streaming in the Z's

SinF 11, 4, 16, r4 -« {3} start streaming in the Y's

SoutF 10, 4, 7, 15 -- {4) prepare to stream out the X's
3 := {0 -- (5) initialize f3 with X(1)

Nop -- (6) pause lo observe the data-dependency rule

Loop: 3 = fO"(f1-13) - (7) compute X(i) :

f0 = 13 -- (8} store previous X, X{i-1)

NZ f0 Loop - (9} loop if not done
f0 = 13 - {10} store the last X

Note two things. First, at line (6) we inserted a Nop to ensure that the proper value of f3 is avaiiabie
to the first exacution of line (7); we could have interchanged lines (4) and (5) to achieve the same
affect -- but it seemed pedagogicaily better this way. Second, we have used the same technique as in

the "improved” scalar code for dot product -- because of the data-dependency rule, line (8) causes
the value in f3 before the computation in line (7) to be stored.

This example is typical of the code compiled for loops involving recurrences -- it involves one reg-
ister for each variable invoived in the recurrence, and a number of register-to-register copies to

move the variabies involved into the “right ptace”. This copy code can be eliminated by unrolling the
loop a number of times equal to the number of variables involved in the recurrence and “renaming®

the registers on each such unrolling. The effect of this unrolling and renaming is illustrated by the
following exampie.

Example 5: Bubble Sort

To illustrate that the utility of streaming is not limited to traditional numeric computations, as well

as to exhibit the effect of loop unroiiing, consider the foliowing implemaentation of bubble sort!. Since
the resuiting code will be a bit tricky, we'll use a simplifiad version of the all-too-familiar ai-
gorithm. Using C source for grins this time, the aigorithm is:

for (i=2; i<an; i++)
for (jwi; je<=n; j++)
it (AG-1] > Al {t = ALl Afi] := Al-1]; Af-1)} = t;)

' Yes, we know bubbia sort is not the best kind. Yes, we know that the outer loop can be aborted if
no interchanges are performed on one iteration. We suggest that the reader consider the

!mp!ementation of some of these alternatives -- especially the logarithmic sorts; use of WM's twa
Input and two output FIFO's can be quite effectivel
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To keep the program simpler and focus on the basic loop, wae'll assume i>2 and the foliowing initial
conditions:

r4 = A[I"?]

r5 == Ali]

r0 (input} set up to stream in Afi+1], Ali+2], ...
r0 {output) set up to stream out Afi-1], A[i), ...

Then, with unrolling, other traditional scalar compilation algorithms, and only a little smarts about
the data-dependency rule, the inner ioop becomes:

rd = (15 < r4) -- sat the 1st CC value
loop: T L5 -~ is Af-1] 2 A} 7
Ld:  -ecevecananann.. -- this is the unrolled case of r4 < r5
r4 = (r5<rQ) -~ start reloading r4 and set CC for the next iteration
0 = r4 -- store r4, the smaller item on this iteration
JNZ 0 Loop -- loop if not done
i Xit -- @xit if input is empty
L5: c-eeeeeaaa -- this is the unrolled case of r4 >= r5
15 = {rd<rQ) -~ start reloading r5 and set CC for the next iteration
Q= 5 - store r5, the smaller item on this iteration
JNZ r0 Loop -- loop if not done
Xit:  vvveerennn-n -- store the last two values in proper order
L45: T L54
rQ := r4
rg = 5
i Done
L54 0 = 15
10 = r4

Done:

Note that the roles of r4 and r5 are interchanged in the chunks of code labeled L4 and L5. This re-
naming eliminates the interchange code, and the resuiting code uses only two cycles per iteration.

Summary and Commentary

At one level, WM is a conventional von Neuman machine: specifically, its instructions have classic
sequential semantics. WM is also unconventional in a number of respects: 2 operations/instruction,
explicit relational operators, load/store operations through FIFOs, separate IEU, FEU, and IFU defined

at the architectural leve!, and streaming. Together, these mechanisms provide a significant per-
formance advantage at a smail cost in additional hardware. :

Any architecture imposes a loose limit on the performance of implementations of itseif!. For RISC
machines, that limit is one relatively simple instruction per cycle; the only question is how fast is
the cycle time. There are many ways to try to exceed the RISC limit, e.g. vector machines, SIMD ma-

! The limit is a "loose” one because one may use various implemaentation tricks, e.g. "prefetch”, to

exceed the limit. Because such tricks are more-or-less applicable to all architecturas, we ignore
them for this discussion.
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chines, VLIW machines, etc. WM is yet another in this list. For these machines, there are several
relevant questions:

(1) what is the peak performance? _ .

(2) what fraction of the peak performance is attainable due to
- inherent problem structure (e.g., recurrences can't be vectorized)?
- compiler limitations?

The theoretical peak performance of WM is something like 11 RISCy operations per cycle. This the-
oretical peak would be attained if on each cycle we couid dispatch an integer instruction, a floating
point instruction and a branch, and both the integer and floating instructions (a) used both opera-
tions, (b} read two operands from streamed FIFOs (therefore executing two implicit load
operations), and (c} set their result into a streamed FIFO (therefore executing an implicit store
operation). No realistic program will sustain this peak performance.

A definitive answer to the question of attainabie performance awaits further experimentation. How-
ever, over a fairly broad set of benchmark fragments, 4-§ RISC-like instructions per cycle has
been common. This is significant for several reasons. First, unlike other approaches, WM's perfor-
mance does not resuit rom, and hence does not depend upon, the appiicability of a singie mechanism
(e.g., vectors); hence, the performance spans an assortment of applications. Second, the performance
of the WM design does not depend on heroic compiler techniques; quite conventional scaiar
optimizations are enough. Third, the hardware implications of the design are modest.

Within reason, conserving area was not an explicit goal in the WM design -- witness the assumption
of two fully functional integer ALUs, two fully functional floating ALUs, and eight FIFOs. On the other
hand, it seems clear that these assumptions are modest compared to other high performance
approaches, and that WM can be implemented with a small chip set (one plus floating point), Some
care was expanded on the bandwidth (pins) between components because, even as more area becomes
available, PTTM implementations may stilt favor separate floating point units.

The reader may have detected a certain ambivalence in the foregoing discussion of performance:
should WM be compared to a workstation-like, single-chip RISC dasign, or should it be compared to
one or more of the many (mini)supercomputer designs?

The author's original goal was to design a 100+ MIPS], single-chip machine for "embedded" and
"general purpose” applications written in high level languages -- notably Ada. In that sense, the
appropriate comparison is to RISC machines, where the preliminary data suggests at least a 4-to-1
performance advantage, and that the goal is easily reachable. As the design evolved, however, the
nature of the mechanisms (e.g. streaming) suggested comparison with supercomputer designs. Here
the preliminary data is less clear, and more sensitive 1o implementation issues. Given *comparable”
PTTM implementations, WM probably loses on the vectorizabie portions of the code because the
floating-point operations cannot be as deeply pipelined; it probably wins on the the non-vectorizable
porticns because they can still be streamed, they can still use 2 operations/instruction, etc..

In retrospect my ambivalence feels "Just right”. The distinction between "embedded", “general pur-
pose”, and "scientific* computation is an artificial one. It was created by the existence of computers
that were better at one class of computation than another, not because the distinction exists crisply
in real applications. WM is an example of a simple architecture that spans a broader spectrum of
these ciassifications than previous machines. _

'Whataver that means, but intuitively roughly 100 times a VAX11/780 executing “real® programs

gvhatla\;er that means, but intuitively something closer to Linpak or Grep than Dhrystone or
uzzla),
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