New Performance-Driven FPGA Routing Algorithms*

Michael J. Alexander and Gabriel Robins

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442

Abstract

Motivated by the goal of increasing the performance of
FPGA-based designs, we propose effective Steiner and
arborescence FPGA routing algorithms. Qur graph-
based Steiner tree constructions have provably-good per-
formance bounds and outperform the best known ones in
practice, while our arborescence heuristics produce rout-
ing solutions with optimal source-sink pathlengths at a
reasonably low wirelength penalty. We have incorporated
our algorithms into an actual FPGA router which routed
a number of industrial circuits using channel widths con-
sitderably smaller than was previously possible.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are flex-
ible and reusable high-density circuits that can be
(re)configured by the designer, enabling the VLSI de-
sign/validation /simulation cycle to be performed more
quickly and cheaply [19]. The flexibility provided by
FPGAs incurs a substantial performance penalty due
to signal delay through the programmable routing re-
sources, and this is currently a primary concern of
FPGA designers and users [16]. In order to increase
FPGA performance, partitioning and technology map-
ping have been used to minimize the length of critical
paths [3]. On the other hand, less attention has been
focused on the actual routing, which is surprising since
circuit performance is limited by routing delays, rather
than by combinational logic delays [11].

Routing affects the performance of FPGA-based sys-
tems in two major ways. First, a typical design must be
partitioned and mapped onto several FPGAs. Because
FPGA size is fixed, the ability to pack larger partitions
onto a single FPGA can reduce the total number of
partitions (and hence FPGAs) required to implement
the design. The feasibility of implementing a piece of
the design on a single FPGA is often limited by routing-
resource availability; this motivates Steiner routing con-
structions which minimize use of routing resources.

Second, since FPGA resource utilization typically
does not exceed 80%, considerable flexibility remains
onboard the FPGA for optimizing the routing. For
example, we could reduce signal propagation delay

*G. Robins is supported by NSF Young Investigator Award
MIP-9457412. Corresponding author is G. Robins, Department
of Computer Science, Thornton Hall, University of Virginia, Char-
lottesville, VA 22903-2442, USA, Email: robins@cs.virginia.edu,
phone: (804) 982-2207, FAX: (804) 982-2214, WWW URL
http://uvacs.cs.virginia.edu/~robins/

reprinted from Proceedings of ACM/SIGDA Design
Automation Conference, San Francisco, June 1995.

through critical paths by using the most direct inter-
connections (i.e., shortest paths), where a secondary
criterion is to minimize wirelength in order to reduce
capacitance and conserve routing resources. This moti-
vates Steiner arborescence constructions (i.e., shortest-
paths trees having minimum wirelength) for critical-net
routing.

Our first contribution is a class of algorithms for
non-critical-net routing which can outperform the best
known graph Steiner tree heuristics, i.e., those of Kou,
Markowsky and Berman [12], and of Zelikovsky [20].
Our graph Steiner construction is based on an iterative
template that uses any given Steiner tree heuristic H by
greedily selecting Steiner nodes that induce maximum
wirelength savings with respect to H. The theoretical
performance bound is guaranteed to be no worse than
that of H, and in practice the construction will tend to
outperform H.

Our second contribution is a pair of arborescence-
based constructions for critical-net routing. Given an
arbitrary weighted routing graph, our arborescence al-
gorithms produce a Steiner tree where all source-sink
paths are shortest-possible, and where total wirelength
is optimized as a secondary objective. Our first graph
Steiner arborescence heuristic is based on a path-folding
strategy that overlaps and merges shortest paths in or-
der to reduce the overall wirelength. Our second heuris-
tic iteratively selects Steiner nodes which improve the
total wirelength.

We have incorporated our algorithms into an actual
FPGA router and successfully routed industry bench-
mark circuits using considerably smaller channel width
than previous routers. Our routing benchmarks are cur-
rently the best among all published results. The total
wirelength used by our arborescence constructions in
unit-weighted grid graphs is on par with the best graph
Steiner tree heuristics. This is interesting, since our
arborescence solutions have optimal source-sink path-
lengths, while Steiner tree heuristics are designed to
only optimize wirelength.

2 Problem Formulation

An FPGA architecture consists of a set of user-
configurable logic “blocks”, and a set of programmable
interconnection resources used for routing [3, 16] (Fig-
ure 1). Each logic block implements a portion of the
design logic, and the routing resources are used to in-
terconnect the logic blocks. This paper focuses on the
routing phase of FPGA design; thus, we assume that
technology mapping, partitioning, and placement have
already been performed.

Previous work on FPGA routing concentrated on so-
lution feasibility and resource-usage minimization. For
example, the CGE [3] and SEGA [13] routers handle
nets based on demand and assign critical nets a higher
routing priority. Other papers studied FPGA routing

LogicBlocks £~

Figure 1: A symmetrical-array FPGA.

with switch blocks of limited flexibility [18], explored
modified architectures [15], or computed lower bounds
on routing rather than providing actual routes [4]. Re-
cently [1, 2] developed a routing framework where mutu-
ally competing objectives (e.g., congestion, wirelength,
jog minimization) are simultaneously optimized. How-
ever, these works do not directly minimize source-sink
signal propagation delays, and while many approaches
implicitly equate delay minimization with wirelength
optimization, these two goals are not synonymous [11].

In order to apply graph-based techniques, we model
the FPGA as a graph, where the overall graph topol-
ogy mirrors the complete FPGA architecture; paths in
this graph correspond to feasible routes on the FPGA,
and vice versa (Figure 2). Let G = (V,E) denote
such a graph, where each graph edge €;; € FE has
a weight w;; that corresponds to the wirelength of
the associated FPGA routing wire segment (weights
may also reflect congestion, jog penalties, etc.). A net
N ={no,n1,...,n} C V is a set of pins that are to be
electrically connected, where ng is the signal source and
the remaining pins are sinks. A routing solution for a
net is a tree 7' C G which spans N, and the cost of a
tree T', denoted cost(T'), is the sum of its edge weights.

Figure 2: An FPGA routing graph model.

Prior to routing, nets may be classified as either crit-
tcal or non-critical based on timing information that
becomes available during iterative layout. When rout-
ing non-critical nets, we seek not to optimize delay but
rather to maximize the likelihood of completely routing
all nets on the given FPGA; this resource-usage mini-
mization objective motivates the following graph Steiner
minimal tree formulation:

Graph Steiner Minimal Tree (GSMT) Problem:
Given weighted graph G = (V,E), and net N C V,
find a minimum-cost spanning tree 7' = (V' E’) with
NCV'CVand F'CF.

Any node in V — N may be used as a potential Steiner
point in order to optimize the overall wirelength. The
GSMT problem is known to be NP-complete and arises
in numerous applications [9]. The high-performance re-
quirement of critical nets dictates a shortest source-sink
paths objective, with wirelength minimization being a
secondary optimization criteria. For a weighted graph
G = (V, E) and two nodes u, v € V, let minpathg(u,v)
denote the cost of a shortest path between u and v in
G. We thus formulate the graph Steiner arborescence
problem as follows:

Graph Steiner Arborescence (GSA) Problem:
Given weighted graph G = (V, E), and net N C V
to be routed in G, construct a least-cost spanning tree
= (V',E") with N C V' CV and E’ C E such that
minpathy(ng, n;) = minpathg(no, n;) for all n; € N.

Since the GSA problem is NP-complete [7], and FPGA
routing graphs are generally large, we must seek efficient
heuristics for this problem. On the other hand, we can
prove the following non-approximability result:

Theorem 2.1 The GSA problem can not be approzi-
mated in polynomial time to within a performance bound
of better than O(log N) times optimal (unless determin-
istic polylog space coincides with non-deterministic poly-
log space, which is a longstanding open problem).

-] -]
[[
(a) KMB (b) IGSMT
cost = 16 cost = 14
max path = max path =
16 12
- L]
]]
(c) DJKA (d) IDOM
cost = 19 cost = 14
max path = 8 max path = 8

Figure 3: Four routing constructions.

Figure 3 illustrates routing solutions produced by the
algorithms discussed below (the source is the lightly-
shaded square, and the dark squares are sinks). The
two solutions at the top depict Steiner trees, while the
two lower constructions are Steiner arborescences: (a)
the KMB heuristic of [12], (b) our IGSMT solution
(which is also the optimal Steiner tree here), (c) DJKA,
a variant of Dijkstra’s algorithm [6], (d) our IDOM con-
struction (which is also the optimal arborescence here).

3 A Graph Steiner Tree Heuristic

A number of heuristics were proposed over the years
for the GSMT problem [9], two of which have perfor-
mance bounds of a constant factor from optimal:

e KMB - the heuristic of Kou, Markowsky and
Berman [12] with a performance bound of 2 times
optimal; and

e ZEL — the more recent heuristic of Zelikovsky [20]
with performance bound of 16—1 times optimal.

We propose a method of iterating heuristics for the
GSMT problem. Recall that an instance of the GSMT
problem is a weighted graph G = (V, F) and a net
N C V, with the objective being finding a minimum-
cost tree in G that spans N. For any existing graph
Steiner tree heuristic H, let H(G, N) denote the solu-
tion that H produces, and let cost(H(G, N)) denote the
cost of that solution. Our algorithm accepts as input an
instance of the GSMT problem and any existing GSMT
heuristic H. It then repeatedly finds Steiner node candi-
dates that reduce the overall spanning cost with respect
to H, and includes them into the growing set of Steiner
nodes S.

Definition 3.1 Given a set of Steiner candidate nodes
S CV — N, the cost savings of S with respect to H is:
AH(G,N, S) = cost(H(G, N)) — cost(H(G, N U S)).

Starting with an initially empty set of Steiner nodes
S = 0, our heuristic finds a node ¢ € V — N which
maximizes AH (G, N,SU{t}) > 0 and repeats this pro-
cedure with S — S U {t}. The cost for H to span
NUS will decrease with each added node ¢, and the con-
struction terminates when there isnot € (V- N)— S
such that AH(G,N,S U {t}) > 0. The output solu-
tion is H(G, N U S). This general template, which we
call the Iterated Graph Steiner Minimal Tree (IGSMT)

approach, is formally described in Figure 4.

Tterated Graph Steiner Minimal Tree Algorithm

Input: A weighted graph G = (V,E), anet N C V,
and a GSMT heuristic H

Output: A low-cost tree T/ = (V’, E’) spanning N,
where NCV/ CV and E'CE

S=0

Do Forever

T={teV-N|AH(G,N,SuU{t}) >0}
I T=0Then Return H(G,NU S)
Find t € T with maximum AH (G, N, S U {t})

S=Ssu{t}

Figure 4: The IGSMT algorithm.

The performance bound of the IGSMT method is no
worse than that of the heuristic H, since if no improving
Steiner nodes can be found, the output of IGSMT will
be identical to the output of H. For example, we may
use the ZEL heuristic [20] as H inside the IGSMT tem-
plate to yield the Iterated ZEL (IZEL) method, which

inherits ZEL’s performance bound of < 16—1 times op-

timal. Note that IGSMT generalizes the Iterated 1-
Steiner heuristic of Kahng and Robins [10] (where H
is an ordinary rectilinear minimum spanning tree con-
struction), as well as the algorithms of [1, 2] (where H
is the KMB heuristic). Our experimental results indi-
cate that iterating a heuristic H in this fashion yields
significantly improved solutions as compared with the
non-iterated version of H.

The time complexity of IGSMT depends on the par-
ticular heuristic H that is used. A naive implementation
(which treats H as a “black box” subroutine) will have
time complexity O(|N|- |V|-t(H)), where t(H) is the
time complexity of H. This time complexity may be
substantially improved by (1) extracting out of H com-
mon computations (e.g., computing shortest-paths), to
avoiding duplication of effort among multiple calls to
H, and by (2) adding Steiner points in “batches” based
on a non-interference criterion [8, 10].

4 Path-Folding Heuristic

Constructing an arborescence intuitively entails
“folding” (i.e., overlapping) paths in a shortest-paths
tree to yield the greatest possible wirelength savings
while maintaining the shortest-paths property. For
pointsets in the Manhattan plane, an effective arbores-
cence heuristic is the construction of Rao et al. [14],
which has a performance ratio of twice optimal, as
well as good empirical performance (a variation of the
method of [14] was given in [5]). However, these meth-
ods rely on the underlying geometry of the Manhat-
tan metric. In order to handle FPGA routing graphs,
we first define the notion of dominance in arbitrary
weighted graphs as follows:

Definition 4.1 Given a weighted graph G = (V, E),
and nodes {no,p,s} CV, we say that p dominates s if
minpathg(ng, p) = mmpathG(no, s) + minpathg (s, p)

Thus, p dominates s if a shortest path from the source
ng to p can pass through s. Note that the shortest path
between a pair of nodes in an FPGA graph is gener-
ally not unique. We define MaxzDom(p,q) as a node
m € V dominated by both p and ¢ which maximizes
minpathg(ng, m). Selecting a MaxzDom as far away
from the origin as possible maximizes the overlap (i.e.,
the wirelength savings) between the two paths.

These definitions enable our Path-Folding Arbores-
cence (PFA) heuristic which generalizes the method of
[14] to arbitrary weighted graphs. Starting with the
set of nodes containing the source and all sinks, find a
pair of nodes p and ¢ such that m = Ma:bDom(p, q)
is farthest away from the source among all such pairs;
then replace p and ¢ by m and iterate until only the
source remains. The graph Steiner arborescence solu-
tion is formed by using shortest paths in G to connect
each MaxzDom(p, q) to both p and ¢ (Figure 5).

Path-Folding Arborescence (PFA) algorithm
Input: Weighted graph G = (V,F) and net N CV
QOutput: A low-cost shortest-paths tree spanning N
M=N
While N # {no} Do
Find a pair {p,q} C N such that m = MazDom(p,q)
has maximum minpathg(no, m) over all {p,q} C N

N={N—-{p,q}}u{m}
M=Mu{m

Outp_ut the tree formed by connecting each node p € M
(using a shortest path in G) to the nearest node in M
that p dominates

Figure 5: Path-Folding Arborescence (PFA) heuristic.

Since there are at most O(|N|) elements in set NV, the
time to compute all shortest-paths trees is bounded by
O(|N| - |E|), and the total number of MazDom com-

putations performed is at most O(|V| - |N|?). Storing

the results of the M axz Dom computations in a heap al-
lows the next MaxDom to be determined efficiently,
and results in an overall time complexity for PFA of
O(IN[-|E| + [V|-|N|*log|V]).

Our empirical results indicate that the PFA method
is effective in producing shortest-paths trees at a rela-
tively modest wirelength penalty. However, in consider-
ing the worst-case behavior of PFA | we found examples
of graphs where PFA can perform as badly as O(N)
times optimal. Thus, the next section presents another
heuristic for the graph arborescence problem which es-
capes such worst-case examples.

5 TIterated Dominance Heuristic

Our second heuristic for the GSA problem greedily it-
erates over a given spanning arborescence construction:
we repeatedly find Steiner candidates that reduce the
overall spanning arborescence cost, and include them
into the growing set of Steiner nodes. The heuristic
which we use for producing spanning arborescences is
the Dominating (DOM) heuristic, described as follows:

¢ DOM — connect each sink to the closest sink or
source that it dominates, and compute the shortest-
paths tree over the union of these paths.

Definition 5.1 Given a set of Steiner candidate node
S CV —N, we define the cost savings of S with respect
to DOM as ADOM(G,N,S) = cost(DOM(G, N)) —
cost(DOM(G, N U S)).

Starting with an initially empty set of Steiner candi-
dates S = 0, our heuristic finds a node t € V — N which
maximizes ADOM(G, N, SU {t}) > 0 and repeats this
procedure with S — SU{t}. The cost for DOM to span
NUS will decrease with each added node ¢, and the con-
struction terminates when there isnot € (V- N)— S
such that ADOM(G,N,S U {t}) > 0, with the final
solution being DOM(G, N U S). This Iterated Domi-
nance (IDOM) approach is formally described in Figure
6. The IDOM heuristic can be implemented within time
O(IN|-|E| + [V]-INP).
Tterated Dominance (IDOM) Algorithm.
Input: A weighted graph G = (V,E),anet N CV
Output: Low-cost arborescence T/ = (V', E’) spanning N,
where NCV/CVand E'CE

S=0
Do Forever

T= {t €V — N | ADOM(G, N, Su{t}) > 0}

If T'=0 Then Return DOM(G, N U S)

Fi nd t € T with maximum ADOM(G, N, S uU {t})
S=Su{t}

Figure 6: The Iterated Dominance algorithm.
6 Experimental Results

We have implemented the IGSMT, PFA and
IDOM algorithms using C++ in the SUN Unix en-
vironment. Our code is available upon request,
and all of our benchmarks and routing solutions
are available on the World Wide Web at URL
http://uvacs.cs.virginia.edu/~robins/. ~We have also
implemented KMB and ZEL, and used each of these as
H inside the inner loop of IGSMT yielding the IKMB
and IZEL constructions, respectlvely For comparison,
we have implemented DOM as well as the following
adaptation of Dijkstra’s shortest—paths tree algorithm
[6] to the GSA problem:

Average Wirelength and Maximum Pathlength %
For various congestion levels, over 50 nets
5-pin nets 8-pin nets

Wire Max Wire Max
Algorithm || Length Path Length Path
(wr.t. | (wor.t. (wr.t. | (wr.t.

KMB) | OPT) || KMB) | OPT)

No Congestion (no pre-routed nets)
Average routing graph edge weight w = 1.00

KMB 0.00 23.51 0.00 40.30
ZEL -6.22 11.07 -7.85 23.42
IKMB -6.47 10.83 -8.19 24.04
IZEL -6.79 8.85 -8.31 21.47
DJKA 29.23 0.00 30.53 0.00
DOM 17.51 0.00 18.48 0.00
PFA -5.59 0.00 -5.02 0.00
IDOM -5.59 0.00 -4.89 0.00

Low Congestion (k = 10 pre-routed nets)
Average routing graph edge weight w = 1.28

KMB 0.00 27.61 0.00 47.66
ZEL -4.64 19.14 -4.10 34.17
IKMB -5.68 17.12 -4.50 33.35
IZEL -5.98 14.56 -5.52 22.29
DJKA 26.64 0.00 32.48 0.00
DOM 22.27 0.00 28.09 0.00
PFA 8.95 0.00 13.91 0.00
IDOM 8.95 0.00 13.91 0.00

Medium Congestion (k = 20 pre-routed nets)
Average routing graph edge weight w = 1.55

KMB 0.00 30.67 0.00 52.67
ZEL -4.37 21.54 -3.35 44.95
IKMB -5.09 17.77 -4.42 42.42
IZEL -5.57 15.26 -4.97 40.20
DJKA 22.94 0.00 36.79 0.00
DOM 21.78 0.00 33.89 0.00
PFA 13.93 0.00 22.65 0.00
IDOM 13.93 0.00 22.59 0.00
Table 1: The average wirelength % (normalized w.r.t.

KMB) and average maximum pathlength (normalized
w.r.t. optimal) for the various algorithms, run over grid
graphs with three different levels of congestion.

¢ DIJKA — compute Dijkstra’s shortest-paths tree
rooted at the source, and then delete edges that
are not contained in any source-sink path.

We compared all of these methods (KMB, ZEL,
IKMB, IZEL, DJKA, DOM, PFA, IDOM) on the same
inputs, both in terms of total wirelength as well as max-
imum source-sink pathlength. The inputs consisted of
uniformly distributed random nets in 20 x 20 weighted
grid graphs, where the edge weights modeled congestion
induced by previously-routed nets. Congestion was cre-
ated as follows: starting with a grid graph having unit
weights (w = 1.00) on all edges, k& uniformly-distributed
nets (2-5 pins each) were routed using KMB. As each
net was routed, the weights of the corresponding graph
edges were incremented, resulting in a higher average
routing-graph edge weight w > 1.00. Three differ-
ent levels of congestion were thus modeled: (a) none
(k= 0,w = 1.00), (b) low (k = 10,w = 1.28), and (c)
medium (k = 20, w = 1.55).

For each of these three congestion levels and net
size (6 and 8 pins), 50 uniformly-distributed nets were
routed on a congested graph (newly-generated for each
net), using all eight algorithms. For each net, we nor-
malized the wirelength produced by each heuristic with
respect to the wirelength used by KMB; similarly, the
maximum source-sink pathlength of each heuristic was
normalized to optimal. Table 1 gives the average per-
cent improvement for each congestion level, where a pos-
itive value represents an increase (i.e. dlslmprovement
in the total wirelength (resp. maximum pathlength

Maximum required
Xilinx 3000-Series Circuits channel width for a
complete routing
Name | FPGA size | #nets CGE Ours
busc 12 x 13 151 10 7
dma 16 X 18 213 10 9
bnre 21 X 22 352 12 9
dfsm 22 X 23 420 10 9
z03 26 x 27 608 13 11
otals: 1744 55 45
Ratios: 1.22 1.00

Table 2: Complete routing of benchmark circuits on a
Xilinx 3000-type part, with switch-block flexibility of 6 and
60% connectivity on the channel edges.

Maximum required
Xilinx 4000-Series Circuits channel width for a
complete routing

Name FPGA size | #nets SEGA [GPB [Ours
alud 19 x 17 255 15 14 11
apex7 12 x 10 115 13 11 10
terml 10x 9 88 10 10 8
example2 14 x 12 205 17 13 11
too_large 14 x 14 186 12 12 10
k2 22 x 20 404 17 17 15
vda 17 x 16 225 13 13 12
9symml 11 x 10 79 10 9 8
alu2 15 x 13 153 11 11 9
Totals: 1710 118 110 94

Ratios: 1.26 1.17 1.00

Table 3: Complete routing of benchmark circuits on a

Xilinx 3000-type part, with switch-block flexibility of 3 and
100% connectivity on the channel edges.

with respect to KMB (resp. optimal), while a negative
number represents a decrease (i.e., improvement).

Among the four Steiner heuristics (KMB, ZEL,
IKMB, IZEL), IZEL has superior performance. The
ranking IZEL<IKMB<ZEL<KMB is highly consistent
across all net sizes in terms of both wirelength and max-
imum pathlength, indicating that our iterated construc-
tions outperform the stand-alone, non-iterated versions.
Among the four arborescence constructions (DJKA,
DOM, PFA, IDOM), PFA and IDOM consistently use
the least wirelength (these all yield optimal maximum
pathlength). Here too, the ranking is quite consis-
tent in terms of wirelength across all net sizes, namely

IDOM<PFA<DOM<DJKA.

On uncongested graphs, both PFA and IDOM out-
perform KMB in term of wirelength by up to 5.6%. This
is interesting since KMB minimizes wirelength only, yet
it uses more wirelength than either PFA and IDOM,
which only optimize wirelength as a secondary crite-
rion. For uncongested graphs, both PFA and IDOM
yield optimal maximum pathlength at almost no wire-
length penalty over IZEL; thus, these seem to afford
favorable tradeoffs between wirelength and maximum
pathlength. Note that IKMB and Iterated 1-Steiner [10]
yield identical solutions for geometric instances (when
using the Hanan grid as the underlying graph).

We built an actual FPGA router based on these al-
gorithms, and completely' routed 14 pre-placed indus-
trial benchmark circuits, containing up to 608 nets each.
Our constructions easily adapt to a variety of architec-

1Incomplete routes or global routing only are not useful in
practice, since there can be an arbitrarily large increase in channel
width in obtaining complete detailed routes from these [17].

Xilinx Maximum required channel width
4000-Series for a complete routing
Circuits Other Routers Our Router
Name SEGA [GPB TKMB [PFA [IDOM
alud 15 14 11 14 13
apex7 13 11 10 11 11
terml 10 10 8 9 9
example2 17 13 11 13 13
too large 12 12 10 12 12
k2 17 17 15 17 17
vda 13 13 12 14 13
9symml 10 9 8 9 8
alu2 11 11 9 11 10
Totals: 118 110 94 110 106
Ratios: 1.26 1.17 1.00 1.17 1.13

Table 4: Maximum channel width required for a success-
ful routing using the various algorithms.

Xilinx 4000 Channel Wirelength Max Path
Circuits Width PFA T IDOM PFA [IDOM
alud 14 20.9 15.8 -15.2 -16.9
apex7 11 15.3 9.2 -4.2 -6.8
terml 9 11.4 12.0 -6.2 -2.0
example2 13 13.1 8.1 -4.6 -5.6
toolarge 12 17.9 15.2 -9.7 -9.4
k2 17 24.5 17.6 -7.1 -7.2
vda 14 18.7 11.9 -9.9 -11.5
9symml 9 18.3 11.4 -14.0 -14.4
alu2 11 23.9 14.1 -14.7 -18.0
Averages: 18.2 12.8 -9.5 -10.2

Table 5: Percent increase in wirelength and decrease in
maximum pathlength for PFA and IDOM (with respect to
IKMB) on the benchmark circuits.

tures; in particular, we modeled two distinct FPGA ar-
chitectures, the first corresponding to Xilinx 3000-series
parts [19] (Table 2), and the second corresponding to
4000-series parts [19] (Table 3) - these architectures are
identical to those used by the CGE router [3], and the
SEGA [13] and GPB [18] routers, respectively. The
3000-series FPGAs used to route the circuits in Table
2 have switch-block flexibility of 6 and 60% channel-
edge connectivity, while the 4000-series FPGAs in Table
3 have switch-block flexibility of 3 and 100% channel-
edge connectivity. We did not alter the fixed benchmark
placements. CPU times to completely route the circuits
on a Sun SparcServer 10/514 workstation varied from
several minutes for the smallest circuit to several hours
for the largest.

We route the nets one at a time, updating the
routing-graph edge weights as we proceed to reflect con-
gestion. We employ a net-ordering scheme with a move-
to-front heuristic: when infeasibility is encountered in
routing a particular net, that net will be routed earlier
in subsequent phases, thereby increasing the probability
of a successful routing of all nets. Only a few such passes
are required to completely route each benchmark.

For each of the circuits, we compared the maximum
channel width required by our router using the IKMB
algorithm to the best reported results from CGE [3]
using the 3000-series architecture (Table 2), as well as
to the best reported values for SEGA [13] and GPB [18]
using the 4000-series architecture (Table 3). For both
types of architectures we are able to route all of the
benchmark circuits using significantly smaller channel
width than CGE, SEGA and GPB (with these other
routers requiring an average of 22%, 26%, and 17% more
channel width, respectively, than our router).

To illustrate how minimizing maximum pathlength
affects wirelength (and thus channel width), Table 4
shows the maximum channel width required for a suc-
cessful routing using the IKMB, PFA and IDOM algo-
rithms for each of the circuits. As expected, both PFA
and IDOM require larger channel width than IKMB.
However, neither PFA nor IDOM require larger channel
width than SEGA or GPB (which do not directly min-
imize maximum source-sink pathlength). Thus, PFA
and IDOM simultaneously minimize wirelength and
maximum pathlength quite effectively.

Table 5 shows the average increase in wirelength vs.
the decrease in maximum pathlength for IKMB, PFA
and IDOM on the benchmark circuits. Here the algo-
rithms operate on FPGAs with the same channel width
(i.e., the smallest channel width that results in a suc-
cessful routing for all algorithms). The increase in wire-
length for PFA and IDOM (18.2% and 12.8%, respec-
tively) corresponds to the increase in channel width ob-
served in Table 4. Both PFA and IDOM effectively re-
duce the maximum pathlength (by 9.5% and 10.2% on
average, respectively). Figure 7 illustrates our router’s
solution for the smallest 4000-series benchmark circuit.

:
%

Figure 7: IKMB solution for the terml circuit.

7 Acknowledgments
We are grateful to Dr. Bob Grafton of NSF for his

support and encouragement. We thank Jonathan Rose
and Stephen Brown for their benchmark circuits.

References

[1] M. J. ALEXANDER, J. P. CoHooN, J. L. GANLEY, AND

G. ROBINS, An Architecture-Independent Approach to
FPGA Routing Based on Multz'-ﬁ/ez'ghted Gf"aphs, in

[14]

[15]

[16]

(17]

18]

[19

[t

[20]

Proc. European Design Automation Conf., Grenoble,
France, September 1994, pp. 259-264.

M. J. ALEXANDER AND G. RoBINS, A New Ap-
proach to FPGA Routing Based on Multi-Weighted
Graphs,in Proc. ACM/SIGDA Intl. Workshop on Field-
Programmable Gate Arrays, Berkeley, CA, February
1994.

S. D. BrowN, R. J. Francis, J. Rosg, AND Z. G.

VRANESIC, Field-Programmable Gate Arrays, Kluwer
Academic Publishers, Boston, MA, 1992.

Y.-W. CHANG, S. THAKUR, K. ZHU, AND D. F.

WonNG, A New Global Routing Algorithm for FPGAs,
in Proc. IEEE Intl. Conf. Computer-Aided Design, San
Jose, CA, November 1994.

J. Cong, K. S. LEUNG, AND D. ZHou, Performance-
Driven Interconnect Design Based on Distributed RC
Delay Model, in Proc. ACM/IEEE Design Automation
Conf., Dallas, June 1993, pp. 606-611.

E. W. DUKSTRA, A Note on Two Problems in Connec-
tion With Graphs, Numerische Mathematik, 1 (1959),
pp. 269-271.

J. L. GANLEY, private communication, April, 1994.

J. GrIrrFiTH, G. ROBINS, J. S. SALOWE, AND
T. ZHANG, Closing the Gap: Near-Optimal Steiner
Trees in]jolynomz'al Time, IEEE Trans. Computer-
Aided Design, 13 (1994), pp. 1351-1365.

F. K. Hwang, D. S. RIcHARDS, AND P. WINTER, The
Steiner Tree Problem, North-Holland, 1992.

A. B. KaaNG AND G. RoBINS, A New Class of Iterative
Steiner Tree Heuristics With Good Performance, IEEE
Trans. Computer-Aided Design, 11 (1992), pp. 893-902.

A. B. KaanGg AND G. RoBINS, On Optimal Inter-

connections for VLSI, Kluwer Academic Publishers,
Boston, MA, 1995.

L. Kou, G. MARKOWSKY, AND L. BERMAN, A Fast Al-
gorithm for Steiner Trees, Acta Informatica, 15 (1981),
pp. 141-145.

G. G. LEMIEUX AND S. D. BrRowN, A Detailed Rout-
ing Algorithm for Allocating Wire Segments in Field-
Programmable Gate Arrays, in Proc. ACM/SIGDA
%jghgfgsical Design Workshop, Lake Arrowhead, CA, April
S. K. Rao, P. SApAYAPPAN, F. K. HWANG, AND P. W.
SHOR, The Rectilinear Steiner Arborescence Problem,
Algorithmica, (1992), pp. 277-288.

Y. Sun, T. C. Wang, C. K. Wong, anDp C. L. Liv,

Routing for Symmetric FPGAs and FPICs, in Proc.
IEEE Intl. Conf. Computer-Aided Design, Santa Clara,
CA, November 1993, pp. 486-490.

S. M. TRIMBERGER, Field-Programmable Gate Array
Technology, S. M. Trimberger, editor, Kluwer Academic
Publishers, Boston, MA, 1994.

Y.-L. Wu AND D. CHANG, On the NP-Completeness of
Regular 2-D FPGA Routing Architectures and a Novel
Solution, in Proc. IEEE Intl. Conf. Computer-Aided
Design, San Jose, CA, November 1994, pp. 362-366.
Y.-L. Wu AND M. MAREK-SADOWSKA, An Efficient
Router for 2-D Field Programmable Gate Arrays,in Eu-
ropean Design and Test Conf., 1994, pp. 412-416.
XILINX, The Programmable Gate Array Data Book, Xil-
inx, Inc., San Jose, California, 1994.

A. Z. ZELIKOVSKY, An 11/6 Approzimation Algo-
rithm for the Network Steiner Problem, Algorithmica,
9 (1993), pp. 463-470.

