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Abstract

We present a novel 3D scanning system with the
potential for interactive acquisition and visualiza-
tion of dynamic scenes. Our system uses a spatio-
temporally adaptive sampling strategy, and can take
advantage of multiple simultaneous scanning devices
operating at different resolutions. We also employ
a level set framework for reconstructing potentially
dynamic scenes from multiple concurrent streams of
range data. In our framework, implicit surfaces are
reconstructed periodically from new samples on a
coarse grid, creating a sequence of reconstructions
from disjoint sample sets that is used to estimate mo-
tion in the scene. A high-resolution reconstruction
proceeds alongside, where the surface is evolved by
a convective flow that guides it towards the sample
set. We employ a spatially-varying distance metric
based on our motion estimate that adaptively con-
trols the contribution of older samples to the final
reconstruction.

1 Introduction

Our increasing ability to accurately measure real
world objects and phenomena has led to significant
recent advances in computer graphics. However, the
acquisition and reconstruction process for 3D ge-
ometry is still very time-consuming and computa-
tionally intensive, often generating gigabytes of data
and taking many hours to complete [16]. Most ac-
quisition systems employ a uniform sampling strat-
egy, which can lead to artifacts near silhouette or
crease edges. This assumption also leads to redun-

dant data in regions of the scene that are changing
slowly, which needlessly increases the required pro-
cessing time. Furthermore, if the scene being scanned
changes during scanning, most existing systems will
produce incorrect and unpredictable results. Laser
scanning systems produce highly detailed models, but
are far too slow to capture dynamic scenes, while
structured light approaches are fast but the fidelity
of their output is limited by the resolution of the
camera and structured light source.

In this paper, we present a novel 3D scanning sys-
tem to address these issues. Throughout the sys-
tem we stress adaptive allocation of scanning re-
sources, including sample placement, CPU usage,
and reconstruction effort. Our system consists of a
prototype scanner, adaptive scan control algorithms,
and spatio-temporally adaptive reconstruction soft-
ware. The scanner is based on a time-of-flight laser
rangefinder capable of sampling up to 50 KHz, cou-
pled with a fast, low-resolution depth camera.

We believe the combination of a low resolution
camera, either color or depth, and a highly accu-
rate laser rangefinder provides a good compromise
within the space of scanners. Structured light scan-
ners lie at one end of the spectrum, providing fast,
dense sampling but are limited in precision by the
camera and structured light source. Laser rangefind-
ers lie on the other end of the spectrum and produce
dense sampling along a given path but cannot cover
the entire field of view as quickly as structured light
scanners. Somewhere in the middle lie stereo vision
cameras which will often not produce a sampling den-
sity at the resolution of the capture device but are
very fast and cheap, and fixed arrays of time of flight
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rangefinders which produce low resolution depth im-
ages that are consistently dense. While any suffi-
ciently fast and densly sampling device could be used
to augment the laser rangefinder in our system, we
find the fixed array of time of flight rangefinders to be
an attractive choice because of the consistent sample
density and accuracy of the device. The low resolu-
tion depth camera is used both to guide sampling and
to initialize the reconstruction and the rangefinder is
used to generate very dense, accurate samples to use
as the destination for the reconstructed surface evo-
lution.

Our system is robust to noise and can cap-
ture dynamic scenes in real time by making ef-
ficient and adaptive use of available scanning re-
sources. Rangefinder-based devices typically can cap-
ture depth information at very fine resolution but
must compromise between uniform spatial and tem-
poral coverage. However our device, driven by an
adaptive scanning technique, is capable of capturing
geometry at rates much closer to that of structured
light scanning. Furthermore, our scanning and recon-
struction algorithms are easily parallelized, and even
support multiple simultaneous scanning devices.

To efficiently capture dynamic scenes, our algo-
rithms detect and focus on regions of spatial and tem-
poral change. In particular, we build on the frameless
sampling and reconstruction techniques introduced
by Dayal et al. [10]. We have extended their adaptive
sample-point selection ideas to choose entire sampling
paths for the laser to follow in order to maximize new
information to be gathered. In this way, scanning
resources can quickly find small features and object
edges to yield extremely high fidelity object recon-
structions, while simultaneously tracking moving ob-
jects and providing a real-time reconstruction of a
dynamic environment.

To address the issue of computational complexity
and interactivity, we exploit temporal coherence with
a reconstruction algorithm that is inherently paral-
lelizable and handles both rigid and deforming ob-
jects. The basic idea is that reconstruction filters are
shaped in three dimensions based on an estimate of
the local gradient. In this way, old samples are given
less weight in areas with a large temporal gradient,
since they are likely to be less representative of the

current surface. If the temporal gradient is low, old
samples can be reused, so static portions of the scene
quickly converge to a very detailed model. These
adaptive reconstruction filters are combined with a
level-set approach which is robust to noise and out-
liers, and produces very high quality 3D models.

The remainder of the paper is organized as follows.
Section 2 reviews related work. Sections 3 and 4 de-
scribe our sampling and reconstruction algorithms,
respectively. Section 5 shows our results. We con-
clude in Section 6 and and also describe areas of fu-
ture research.

2 Related Work

Surface acquisition and reconstruction is a well-
studied field; here we refer mainly to the most rel-
evant work to our own.

2.1 3D Scanning Techniques

Rusinkeiwicz et al. [22] present a system for acquir-
ing 3D models in real-time. The user holds an object
in front of a 60 Hz structured-light rangefinder and
the display is constantly updated showing the most
recent version of the scanned model. Because of the
immediate feedback, the user is able to quickly iden-
tify holes in the model and rotate the model accord-
ingly to acquire missing regions.

Blais et al. describe a method to recursively refine
a model obtained from sparse range data using the
iterated closest points algorithm. [6, 7]. Their sys-
tem also tracks the object to center scanning on the
object, resulting in an accurate, high resolution 3D
model of the moving object.

The DeltaSphere-3000 Scene Digitizer [FIXME:
cite] is a commercial 3D scanner. It can scan a very
wide field of view (360◦ horizontal, 290◦ vertical),
but is relatively slow, typically spending 12 minutes
to perform a high resolution 360◦ scan. The DeltaS-
phere treats reconstruction as a post-process, gener-
ating triangle meshes after the scan has completed.

Koninckx et al. describe an adaptively coded
structured light approach that is able to efficiently
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scan deforming surfaces by exploiting temporal co-
herence [13]. Our system has similar goals but can
produce much higher fidelity models due to the reso-
lution of our laser rangefinder.

2.2 Surface Reconstruction

Reconstruction of static surfaces has been imple-
mented in a number of fashions. Explicit schemes
have been used that triangulate data based on
Voronoi criteria [3, 11]. Implicit shemes have also
proven effective; a common formulation of the prob-
lem is to find a scalar-valued function with an isocon-
tour that approximates the surface, from either un-
organized points [12] or aligned range images [9, 26].
[12, 26] present strategies that compute the most
likely surface given a set of range maps. Zhao et
al. [28] present a similiar variational formulation of
surface reconstruction from unorganized points in
which they introduce a fast tagging algorithm to con-
struct an initial approximation of a minimal surface,
speeding reconstruction by an order of magnitude.

2.3 Level Set Methods

The approaches taken in [26, 28] are based on the
level set methods of [18] for stable and efficient de-
formation of implicit surfaces. Fast marching meth-
ods provide an efficient, non-iterative means to track
propagating fronts but are only applicable to mono-
tonically advancing fronts [23]. General level set tech-
niques are required for surfaces that do not meet this
criteria, such as those in this work. For iterative
level set methods, the narrow band [1] and sparse
field [26] approaches provide efficient solutions by
limiting computation to only those cells close to the
target level set, effectively reducing computational
complexity by an order of magnitude.

Techniques based on level set methods for segmen-
tation and tracking in video are similar to the tech-
niques described in this paper. The geodesic active
contour model iteratively refines a goal curve by min-
imizing an energy function; this process is equivalent
to finding the geodesic curve that best matches spec-
ified image characteristics [20]. Methods in [5] track
segmentations of interest across frames of video by

coupling their evolution to an image-based deforma-
tion.

3 Adaptive Sampling

Most previous scanning systems, especially those
based on lasers, offer only uniform sampling strate-
gies. Our system samples the target adaptively, fo-
cusing effort on spatial edges such as silhouettes and
geometric detail, as well as temporal edges such as
occlusion events and deformations. We find these
events using a low resolution camera (either depth or
color), and our sampling algorithm guides the scan-
ner towards these regions when appropriate.

The scanner effectively restricts sample distribu-
tions to fall along piecewise-smooth curves in the
scanner’s field of view. Although it would be possible
to generate discrete sampling patterns, this would be
inefficient because physical scanners scanner spend
the majority of their time repositioning the mirrors
for the next sample and very little time actually sam-
pling. For this reason, we cast the laser sampling
problem as a path planning problem. Specifically, we
seek the path γ(t) : [0,∞) → <2 from the starting
mirror orientation γ(0) that minimizes the following
cost function:

C(γ) =
∫ ∞

0

D(γ(t), t)
I(γ(t), t)

dt,

where D(γ(t), t) is a sample density estimate and
I(γ(t), t) is an importance measure. The calculation
and update of I and D are discussed in detail in Sec-
tion 3.2. Note that this problem is ill-posed because
even with global information the optimal path must
minimize the cost for all times in the future. Our
algorithm is a greedy approximation to the optimal
path.

3.1 Gradient Descent Path Planning

We use a multi-resolution gradient descent method
to greedily select the new direction to move the laser.
The base importance map I and density estimate D
are both maintained as image pyramids [27] without
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Figure 1: The gradient descent algorithm operates
by examining the neighborhood surrounding the grid
cell containing the current laser position at the finest
level of detail. If the importance of that cell is above a
threshold, the search stops and the laser is guided to-
wards the neighbor cell with the highest importance.
Otherwise, the process is repeated at the next coarser
level. If no motion is suggested by the importance
maps, the laser falls back on a raster-scan pattern.

the topmost level (e.g., the top level in our represen-
tation is a 2×2 image; see Section 3.2). Beginning
at the bottommost cell containing the laser location,
we ascend the pyramid looking for a neighboring grid
cell that would yield a path γ with low cost C(γ). A
low path cost indicates that the cell is insufficiently
sampled given its current importance estimate. If the
cost is below a user specified minimum then we stop
ascending the pyramid and choose to move the laser
towards that grid cell. If no neighboring grid cell sat-
isfies this condition at the current level, we continue
to the next level of the pyramid. If the entire pyra-
mid is traversed and no direction has been chosen,
we fall back on a raster scan pattern.

To produce a smooth curve, we interpolate the cho-
sen next direction with the current direction. This is

beneficial because the physical limitations of scanner
hardware make paths with high curvature very ex-
pensive, as the mirrors must decelerate to follow a
sharp turn. A smoother curve will therefore allow
the scanner to cover the field of view more quickly.

The primary benefit of using a multi-resolution
method is that the scanner will focus on spatially
coherent, highly important regions, but will also per-
form broad scans as distant regions become increas-
ingly important. Furthermore, it guarantees that
broad scans will be performed periodically. If a re-
gion is neglected, its associated sampling density will
drop and the resulting low cost will draw the scanner
away from other regions. In addition, a multireso-
lution technique allows the scanner to intelligently
allocate available samples by spending more time lo-
cally when other areas are relatively unimportant,
resulting in increasingly refined reconstructions.

3.2 Updating Importance and Den-
sity

A single user-specified parameter α ∈ [0, 1] con-
trols the relative importance of spatial and tempo-
ral change. Specifically, the importance function
I(θ, φ, t) is defined as

I = αT + (1− α)S + ε,

where S(θ, φ, t) and T (θ, φ, t) are measures of spatial
and temporal incoherence, respectively. ε is a small
constant used to ensure the importance function is
non-zero everywhere.

For α = 0, the scanner is responsive solely to spa-
tial incoherence; the scanner will focus only on edges
and will be slow to respond to moving objects. For
α = 1, the scanner is responsive only to temporal
changes; the scanner would focus almost entirely on
the dynamic regions of the scene, or, in the case of
a static scene, would degrade to a uniform raster
sampling pattern. In practice, we have found that
the value α = .7 provides an adequate balance be-
tween spatial and temporal adaptivity, although it
would likely be fruitful to dynamically update α as
the scanner learns about the varying ratios of spatial
and temporal change in the scene being acquired.
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With each image captured from the camera we up-
date S and T , and in turn I. The spatial importance
measure S is a simple Canny edge detection filter [8].
The temporal importance measure T is calculated us-
ing a motion history computed over a predetermined
length of time (we use 1 second). At each frame,
pixels with significant temporal change are found by
performing binary thresholding on the absolute dif-
ference of the current and previous video frame. The
motion history image contains either the most recent
time at which a significant color difference was de-
tected at each pixel or zero if the most recent color
difference is not within the tracked interval. This
motion history image is then scaled to fit the cor-
rect range of values for importance so that pixels for
which a change was detected will have the highest
temporal importance measure and pixels which have
not changed recently will have the smallest temporal
importance measure. Once new S and T images have
been computed, the base importance image and then
the entire importance pyramid are updated.

There are two steps to tracking the sample den-
sity estimation D. The first step occurs every time a
new goal position is selected. The path between the
current position and the goal position is traversed at
the base density image level. For each pixel inter-
sected by the selected path, we visit each level of the
pyramid and increment the density of the cell at the
level which contains the pixel, adjusting the increase
in density appropriately based on the current level.
Although this is only approximate (because the laser
path might be updated before or after it reaches its
goal), it avoids latency problems that would arise in
computing the true density. This way, the path plan-
ner can avoid getting stuck in local regions that will
not be updated for a long time.

The second update to the density estimation occurs
each time a camera frame is collected. This update
handles static decay of samples. As samples grow
older our confidence in them decreases, so older sam-
ples contribute less weight than newer samples. The
static decay rate, measured in samples/pixel/second,
accounts for this effect. We approximate this decay
by reducing the density values in the density map by
a constant decay rate R, scaled by the elapsed time

∆t since the last update:

D = D −R∆t.

Finally, we must account for regions of temporal
change. In regions where there was motion, the pre-
vious samples are no longer valid. When we detect
such a region, we set the corresponding density es-
timates to zero, using T from the above importance
map calcuation as a binary mask. After the the den-
sity is fully estimated, its associated mipmap pyramid
is regenerated.

4 Reconstruction

Our reconstruction algorithm extends the level set-
based reconstruction technique of [28] to dynamic
surfaces. Iterative level set methods are inherently
parallelizable, as demonstrated by implementations
in [4, 15]. While we have not parallelized our tech-
nique, this possibility motivated our selection of a
level set-based reconstructor over other methods.

The high level idea is to use fresh samples to recon-
struct a coarse approximation of the current scene.
Differencing successive coarse approximations pro-
vides a motion estimation over the domain, which
is then used to determine the contribution of future
samples to the high-fidelity reconstruction. To do
this, we employ an adaptive, non-euclidean distance
metric that allows old samples to contribute to static
regions of the scene, while pruning them from dy-
namic regions. The remainder of this section de-
scribes this algorithm in detail.

4.1 Level Set Methods and Static Re-
construction

Here, we briefly review level set methods and the rel-
evant details from [28], upon which our technique is
based. The level set method [18] provides a set of
tools for deforming implicit surfaces. Specifically, a
deformable surface Γ is modeled as the k-level set of
a time-varying scalar function φ(x, t) in 3D:

Γ(t) = {x|φ(x, t) = k},
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for k ∈ <, x ∈ <3, and t ∈ <+. In [28], for a gen-
eral data set S, they compute the distance function
to S, d(x) = dist(x, S), over the domain. A non-
iterative tagging algorithm finds an initial approxi-
mation of the surface, at which point the embedding
is evolved via the convection equation

∂φ

∂t
= ∇(d(x)) · ∇φ.

To smooth the reconstructed surface, evolution
proceeds according to their minimal surface model,

∂φ

∂t
= |∇φ|

[
∇d · ∇φ

|∇φ|
+ d∇ · ∇φ

|∇φ|

]
,

which contains an additional mean curvature term
that smooths the reconstruction in proportion to lo-
cal sample density. They employ the narrow band
algorithm [1] in their iterative solver, which restricts
computation to a band of cells around the zero level
set.

The level set approach to surface reconstruc-
tion and evolution automatically handles topologi-
cal changes such as merging and pinching, which are
difficult to handle with explicit surface representa-
tions. Moreover, it handles the relatively sparse, non-
uniform, and somewhat noisy sample sets generated
by our scanner with relative ease [28]. When evolving
the surface, this method computes geometric infor-
mation such as normals and curvature at each itera-
tion, yet computation at a given cell depends only on
that cell’s local neighborhood. So the SIMD nature
of these techniques can be exploited by parallel im-
plementations [4,14]; this idea is discussed more fully
in Section 6. Additionally, the narrow band approach
reduces both the storage and computational complex-
ity of reconstruction over an N3 grid to O(N2), mak-
ing it comparable to explicit surface representations
in this regard.

4.2 Dynamic Targets

For each set of incoming low-resolution depth maps,
we perform static reconstruction on the sample
points, similarly to the method discussed above, with
two exceptions. Like [28], we use a signed distance

function for our embedding φ, as it improves accu-
racy and efficiency of numerical computations. The
convection model does not maintain this property,
however, and requires periodic reinitialization to re-
store φ to a signed distance function–i.e., |∇φ| = 1.
An iterative approach to reinitialization solves the
reinitialization equation [25]:

φt + S(φ)(|∇φ| − 1) = 0.

S(φ) is the numerically smeared sign function
from [21]:

S(φ) =
φ√

φ2 + |∇φ|2(∆x)2

To avoid periodically reinitializing, we add a reini-
tialization term to the convection equation itself,
yielding

∂φ

∂t
= ∇(d(x)) · ∇φ− S(φ)(|∇φ| − 1)

Numerical error during reinitialization generally
causes the zero level set to move [19]. This addi-
tional term produces the same problem here, and
while there are more sophisticated reinitialization
techniques to avoid this, we have found the impact to
be minimal. We additionally omit the final minimal
surface step, whose mean curvature term requires a
prohibitively small timestep. We found that the con-
vection model alone produces sufficient results in our
tests.

The low-resolution depth maps alone do not pro-
vide a sufficient sampling of the target; however, they
provide enough information to capture low-frequency
geometric features. Most importantly, we can ap-
proximate motion of the target surface by differencing
successive low-resolution static reconstructions. On
the zero level set of φ at world-time τ , this differenc-
ing, ∆φ∆τ , approximates the motion in the normal
direction, and is conveniently defined across all level
sets.

After the differencing step, we update the unsigned
distance function d(x) for the full reconstruction with
both the low-resolution depth maps and with new
samples from the range scanners. During this step,
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Figure 2: The sample static scene, the associated low resolution depth image, and the sample distribution
using our adaptive technique. Note that important regions, i.e. depth discontinuities, are sampled at a
higher rate than geometrically uninteresting areas.

we employ the following distance metric based on
the previous differencing step. For space-time points
a, b ∈ <4,

dist(a, b)2 = (ax − bx)2 + (ay − by)2 + (az − bz)2

+k|∆φ(a)
∆τ

∆φ(b)
∆τ

|(at − bt)2,

for a user-defined scale factor k. We store d for
the high-resolution sample distance field in a regu-
lar grid, and additionally store the range sample that
is closest to the given cel In particular, we update
d by placing each new sample into its corresponding
grid cell, placing these sample-cell pairs into a queue,
and computing distance based on the above metric.
For each updated cell-sample pair, the new sample is
tested against the cell’s six neighboring cells in a sim-
ilar fashion. This process continues until the queue
is exhausted.

The convection model assumes a euclidean metric,
and additionally requires that samples are bounded
by the initial surface in order to converge on a reason-
able reconstruction [28]. We perform two additional
steps so that we can use the convection model. First,
we evolve φ in the normal direction for some distance
δ, so that the zero level set contains the previous in-
terior region and the new samples.

Then, we perform an iterative reinitialization of d,
iterating over only those cells in the current narrow
band. This restores d to an unsigned distance field for
the purpose of reconstruction; however, each cell still
contains the position and time of the closest sample
for use in the next d update. Once this is complete,
we evolve φ via the convection model to obtain the
current reconstruction at world-time τ .

5 Results

Although we built a prototype scanner, it is necessary
to use multiple scanners to capture and reconstruct
dynamic scenes using our reconstruction technique.
We chose to simulate multiple scanners in software
with objects represented by highly detailed meshes.
The simulated scanner consists of a laser rangefinder
with performance roughly identical to that of the
hardware as well as a low resolution depth camera,
providing a compromise between spatial and tempo-
ral resolution. We examine the two parts of our sys-
tem with two scenarios: a static target and a dynamic
target.
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Figure 3: A frame from the original animation and two sample frame results sampled and reconstructed
using our system.

5.1 Static target

Here we show the effectiveness of our adaptive sam-
pling technique by scanning a static object. We scan
a sample scene, a room from Monticello, using a stan-
dard raster sample pattern and our adaptive sam-
pling approach. The raster pattern produces uni-
formly distributed samples as we would expect from
any standard laser rangefinder scanner. We run the
scanners for the same amount of time to generate the
same number of samples. The results of a 3 second
scan using our adaptive method is shown in Figure 2.

Note that the raster pattern wastes samples in ar-
eas with no geometric detail whereas our system in-
telligently dedicates more samples to geometrically
important regions and therefore collects more useful
information using fewer samples.

5.2 Dynamic target

To test a dynamic target we use a Stanford bunny
with animated ears. This represents a difficult case:
a balance must be struck between static areas and
dynamic areas, both with high geometric detail. The
static geometry must be scanned enough to improve
reconstruction detail, but the dynamic region must
be scanned often enough to maintain at least a rough
approximation of the surface.

We arranged four virtual scanners around the

bunny in physically plausible positions and orienta-
tions. Each scanner roughly matches the specifica-
tions of our prototype scanner.

The simulated scanners were arranged about the
bunny such that no scanner was covering the bottom
of the bunny. This is analogous to the object being
placed on a surface for scanning, obscuring the base
of the object. This leaves a large region unsampled
and thus a large hole in the set of samples. We add a
constraint such that the plane upon which the bunny
rests blocks the evolution of the surface in the area
beneath the bunny. Results from this simulation can
be seen in Figure 3.

Our sampling density must meet a number of crite-
ria in order to resolve fine features of the surface. In a
simple static reconstruction, sampling densities must
satisfy conditions similar to those in [2,28]. However,
we must extend these ideas into the temporal dimen-
sion as well since we are capturing dynamic surfaces.
Because we rely on a video signal from an on-board
camera, temporal aliasing can occur if there are mo-
tion features that cannot be resolved at the camera’s
refresh rate.
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6 Conclusions and Future
Work

We have presented an spatially and temporally adap-
tive 3D scanning system. The system has a combi-
nation of the best aspects of previous scanning solu-
tions: high resolution output characteristic of previ-
ous laser rangefinder-based systems and the speed of
structured light solutions.

Although the results presented in this paper use
simulated range data, we have built a prototype scan-
ner that is capable of following the paths computed
by our sampling algorithms (Figure 4). We have not
yet integrated this device fully into our scanning sys-
tem; this remains for future work.

Figure 4: Our prototype scanner is composed of an
infrared 780nm laser rangefinder capable of produc-
ing range samples at 50 KHZ. A pair of galvonometer-
mounted mirrors control sampling direction.

Our scanning system is inherently parallelizable.
An arbitrary number of physical scanners can be
used, each operating independently based on its own
importance map. The reconstructor can also be par-
allelized and accelerated using programmable graph-
ics hardware; fast distance field computation and a
narrow-band level-set solver have been implemented
on the GPU [15,24]. Level set solvers have also been
efficiently parallelized on multiprocessor systems [4].
Proper implementation of a scalable system will re-
quire attention to load-balancing, routing samples
to appropriate solvers, and minimizing the need for

inter-block communication in the solvers. This paral-
lel system would also benefit from the loose coupling
between sampling and reconstruction in our system.

Although the narrow band level set method pro-
vides an efficient method for surface evolution, other
implementations may prove more suitable for our
adaptive sampling approach. For example, the octree
representation used by Losasso et al. [17] aligns well
with our spatially adaptive approach. Another pos-
sibility would be to represent the surface embedding
with a spatially adaptive tetrahedral mesh. However,
extending these methods to parallel implementations
is an unsolved problem.

Our reconstruction technique could be enhanced
by various computer vision techniques such as image
segmentation and motion tracking. For example, cer-
tain optimizations could be made if we could classify
the motion. If we could determine an object is under-
going only rigid body transformations then it might
be possible to find the transformation directly and
arrive immediately at a converged solution.

Another possible extension of our techniques would
be defining importance as a function over the space
being scanned rather than the fields of view of the
scanners. This requires collaboration between the
scanners but would also allow us to evaluate the next
best view and dynamically allocate scanners to the
positions and orientations they are most needed.
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