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ABSTRACT

Programming Language Facilities
for
Backward Error Recovery
in

Real-Time Systems

Digital computers are being used increasingly in dedicated conirol applications that require high
reliability. These applications are often embedded, concurrent, and operate in real time. Strategies are
employed in hardware and software to tolerate hardware fauits. Some work has also been done on
methods of enabling the applications softwﬁe to tolerate its faults. This dissertation researches the latter
area, and focuses on mapping the ideal world of the theoretical software fault-tolerance proposais onto
the real world of programs as influenced by their languages of expression, thus making software fault-

tolerance proposals more amenable to use in real programs.

Issues involved in language facilities for backward error recovery in critical, real-time systems are
examined. The previous proposals are found lacking. The dialog, a new building block for concurrent
programs, and the colloguy, a new backward-error-recovery organization, are introduced to remedy the
sitiation. The colloquy is a general linguistic approach to backward error recovery. It solves the
problems raised with all previously proposed language structures for backward error recovery in both
sequential and concurrent programs. Implementable programming language facilities are presented o
embody the colloquy. The previous proposals are shown to be special cases of the colloquy. Thus, the

colloquy provides a general framework for describing backward error recovery in concurrent programs.

We next examine the problem of providing backward emor recovery in realistic programming

languages of which Ada is an example. This examination reveals several new problems that have not



been addressed previously. We show that the source of the problems is the continuous need to be able to
define a recovery line so as to be able to perform state restoration. Many language facilities that have not
been addressed by other researchers, such as shared data, process creation and destruction, and pointers,
make the establishment of a recovery line extremely difficult. Facilities designed to encourage use of
certain programming methods also contribute to this difficulty. We present solutions to some of the

problems identified.

The fragility of these solutions and absence of solutions to many of the problems bespeaks the need
to include backward error recovery as a basic design goal of a programming language rather than

merging it into an existing Ianguage.
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CHAPTER 1

Introduction

There are applications of computers thai require a very high degree of reliability. Many such
applications operate in real time and are often embedded. A real-time, embedded system is termed
crucial if a failure to provide its service at an acceptable level could endanger human life or equipment
under the system’s control. Examples of crucial systems include control systems for aircraft, nuclear

power plants, and spacecraft.

The reliability required of crucial systems often entails the provision of service over long periods
without human intervention. This might be achieved via the combination of two approaches. First, the
systems are designed and built using every available means of fault avoidance followed by faulr
removal [Ande81], so as to eliminate as many fauits as possible. This approach is practiced often for the
software components of these systems. The second step is to prepare the system to tolerate those faults
which will assuredly escape detection during &e fanlt avoidance activity. This approach, called fault
tolerance, is being employed only minimally and haphazardly in the software components of crucial
systems. This dissertation examines the consistent, organized use of one approach to fault tolerance in

the software components of crucial systems.

The traditional methods of tolerating faults in general all employ some kind of redundancy.
Multiple instances of parts of the system {or of the system itself) are included. When a fault is detected
in one instance, that instance is replaced by another in the hope that the new instance will not contain the

same fault. This general method influences the design of the software.

Software does not wear out or otherwise deteriorate, nor in general do accidents affect it. Software

faults are exclusively design faults, and as such are not treatable by simple replication of the software.
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The overall problem, then, is one of designing embedded real-time software systems in a manner that will

allow them to survive and tolerate faults in that design.

On the face of it, the idea of designing software to tolerate fauits in its design seems self-
contradictory. It is not. In the remainder of this chapter, we develop the problem’s context. We first
survey sample applications for which the problem needs to be solved. Next, some of the consequences of
not solving the problem are outlined. Some assumptions are made concerning the targeted systems and
about very low-level software support. The existing notation of the research community in fault
tolerance is then reviewed before a detailed description of the problem is provided with considerations

motivating a search for its solution. Finally, we outline the rest of the dissertation.

1.1. Applications Providing Context

An embedded system is a computer system that is part of a Jarger system that it controls in real
time. Certain applications of embedded systems that give the context of our problem are described

bricfly below.

1.1.1. Aircraft Control

In some present [Meye81] and many future [Groo82] aircraft control systems, a computer system
takes advice from the pilot through his actions. The joystick, pedals, and throttle are connected to
transducers being read by the system rather than to pressurized hydraulic lines. The pilot is totally
dependent upon the computer system for correct operation of the vehicle, The replacement of redundant
hydraulic control lines by electrical wires or fiber-optic cable will have greatly reduced the overall weight
already. In extreme cases, the airframe will have been weakened for weight reduction, hence fuel
savings. Lighter materials being considered, such as composites, and thinner sheets and structural

members of the traditional metals leave an airframe too flexible for stability under the enormous stresses



of flight {Ande81]. The computer system will be responsible for compensating for this increased
flexibility by sensing mounting stresses and adjusting small control panels to re-adjust air flows over the

airframe,

1.1.2. Nuclear Power Plant Control

Although current regulations prohibit full-authority, computerized control of nuclear power plants
in the United States, such control is being evaluated here and is being employed elsewhere. Control of
nuclear power plants would present a situation with similarities to that of aircraft [Long77]. In other
countries [Neum81], regular control has been transferred 10 the computer system with the operators
giving advice and acting as a check on the computer system. The programmed control must be on time
and correct or ready to and capable of backing the power plant into a relatively safer state, i.e. provide a

degraded yet acceptable service,

1.1.3. Spacecraft Control

Spacecraft control is similar in many respects to aircraft control. An example of an existing system
is the NASA Space Shuttle. ‘‘The Space Shuttle is a vehicle which is totally dependent on the proper
operation of its computers; a mission cannot even be aborted if the computers fail.”” ( [Ande81] p.2)
““Note that landing cannot be achieved manually.” ( [Neum84] p.4) On manned spacecraft, the computer
system is responsible for controlling and maintaining the environment which supports human lives as
well as controlling the craft itself {Ande83a). Faults on unmanned craft might cause direct damage to the
craft, cause it to go off course, or cause it to misalign its antennae so as to prevent future human

intervention [Eber831.



1.2. Consequences of Failure

If faults manifest themselves and alternate actions are not provided and imposed, each of these
applications could experience failures which would result in deaths or injuries, Other results could be
damage to or loss of equipment of great value. Value, here, can be in terms either of money or of time

and effort required to replace or reinstall the equipment.

Failure of the controlling software in an aircraft severs what little influence the pilot had. Further,
in the case of an airframe employing active controls, true manual controls would be useless to a pilot
since the air surfaces must be adjusted at rates far faster than human reaction times. We have already
heard of several instances in which failed hardware devices have brought the world close to
war [Neum80]. Failing software might not be so easy 10 detect externally. A failing system might try to

launch missiles without human direction or refuse to launch when so directed.

1.2.1. Actual Failures Due to Computer System Faults

Many of the major problems in the Apollo series of space missions were direct results of software
design faults [Bohe73, Ulsa73]. An invalid sequence of actions by the astronauts on board Apotlo 8 was
allowed to destroy data in the computer’s erasable memory. A data overload from the rendezvous radar
during the last seconds of the Apollo 11 lunar landing resulted in the need for a blind, manual
landing [Bens84]. Eighteen (unspecified) bugs were found during the ten-day flight of Apolic 14, In
1971, a French satellite, rather than interrogating over one hundred weather balloons for their data, sent
destruct commands to seventy-two of them. An early U.S. Mariner mission’s loss is also attributed 10
software faults. The first launch of the NASA Space Shuttle was delayed for two days due 1o a software
fault [Garm81]. In that case, the software system’s recovery action of disabling further mission progress
was Qalid. However, had the fault appeared after launch, the same response would have been

catastrophic. One Space Shuttle fault, which was fortunately caught during a simulation exercise, would



have locked the software into a tight loop had the astronants been required to abort a mission after a prior
canceled abort [Neum82). There is a case of an attempted missile firing from the wing of a jet fighter in
which the software re-closed the supporting clamp before the missile could get clear [Neum83]. A
nuclear reactor vented radioactive material into the atmosphere after a false alarm had caused the
controlling software to stop all mechanical motion within the reactor at a time when that policy was

inapplicable [Neum83]. Myers gives a further list of failures due to software faults [Myer76].

1.3. Assumptions

1.3.1. Hardware Fault Tolerance

The people proposing and building crucial systems recognize that the hardware comprising them
will tend to wear out or will be subject to accident or deliberate damage during the systems’ useful
lifetimes. To protect against this, multiple instances of devices are employed. To guard against similar
failure modes such as might appear due to hardware design faults or design weaknesses, the different
computers may even be of different manufacture. Anderson and Lee [Ande81] give some reasons

tolerance of hardware design faults is not always provided in practice.

Our focus is on software tolerating applications software faults. It is assumed that measures have
been taken to mask any hardware faults from the application software [Com82, Commn83). One of the
issues arising from this assumption is the possibility of untoward effects of a processor failure anywhere
in the system during the handling of a software fau{t. The possibility of hardware tolerating software
faults seems rather meaningless. The field of architectures for reliability scems largely concerned with

fault detection with little regard for responses allowing continued service.



1.3.2. Language Support

We realize that the programming language implementation can be a source of faults in the overall
software system. Assuring the correct operation of this form of large and complex system is a recognized
and open problem. However, in order to say anything meaningful we must assume that failures from this
source will not befall us. To an application software system, a fanlty language support system would be
essentially indistinguishable from a processor that incorrectly interprets instructions. ‘‘Because of the
powerful nature of interpretive interfaces it cannot be hoped to protect a process from the underlying
interpreter.”” ( [Ande81] p.164) We must assume that fanlt-tolerance measures are taken within that

system so that we are provided with a fault-tolerant interface.

1.4. Fault-Tolerance Terminology

The duplication of code units and the reconfiguration duties of the software in response to different
forms of failures is generally called software fault tolerance. Strategies (in most cases redundancy) are
adopted to enable the system to folerate or survive, with perhaps lessened or degraded capabilities for

providing the intended service, faults that, for whatever reasons, develop in the component software.

Up until this point, we have been using terms like “‘fault’* without definition, relying upon
colloquial or intaitive understanding. The study of fault tolerance has produced a certain terminology

which will be useful in further discussion of this subject.

A system is a set of interacting components and a design that prescribes and controls the pattern
of interaction; as a unit in larger context, a system is a component that maintains a pattern of
behavior at an interface between it and its environment [Ande81}.

An interface is simply a place of interaction between two systems [Ande81].

At the Jowest level, a software system’s components are the hardware instractions and the design is the

arrangement of their use. Since we assume hardware fault tolerance, all faults will be found in the



designs at various levels of systems.

A measure is a construction within the design of a system intended to perform a specific
task [Ande81].

A measure deals with the interaction of components of a system, and only indirectly affects its exterrial

behavior.

A mechanism is a construction within an interpreter that provides a specific facility available on
the interpretive interface [Ande81].

When a system is viewed as a black box, its behavior is analogous to an interpreter or a stimulus-
response machine. Some subset of the stimulus-response pairs are often due to a small group of the
system’s components and part of its design. Such a group of components and part of the design together
qualify as a mechanism. Thus, a mechanism directly affects a system’s external behavior. A mechanism

may be constructed intentionally or by happenstance; whereas a measure is only intentional.

A failure is a deviation of a system’s external behavior from its specified behavior [Ande83b].

There is an assumption here, as in discussions on testing and verification, that there is a formal, detailed,
and complete specification of what the system’s external behavior should be. A consequence of this
definition and that of a system, is that a failure can occur in a subsystem or component and be tolerated

by a larger system without bringing about a failure of the larger system,

An error is a state of a system that could lead to a failure if not corrected [Ande83b].

An error might not actually lead to a failure. Pairs of “bugs’’ that have the effect of compensating for
cach other in certain circumstances are well known in the computing folklore. In the case of mutually-

correcting pairs of “bugs’’, the error(s) might never be detected, but exist nonetheless.

Tolerating a fault (see below) is the process of correcting a system’s state so that it does not lead to

a failure. By correcting a system’s state, we do not mean correcting the system. Rather, we mean



bringing the system’s set of variable values (including current point(s) of control) into a configuration
that is consistent and unlikely to lead directly into another erroneous configuration. The repaired state

may be an actual former state or a newly-constructed one.

A fault is the adjudged cause of an error [AndeR3b]. This can be thought of as a defective
value in the state of a component or in the design of a system [Ande81].

A fault in a system may be the failure of one of its components. Colloquially, a failure is an execution-
time thing while a design fault actually exists long before execution-time. The expanded definition
allows us to take advantage of the multitude of levels of systems and subsystems so that if a fault is not
tolerated at one level, it might be tolerated at a higher level. We are using the word ‘‘design’ in a

broader sense than is usual. A mistake in coding or implementing software is considered a design fault.

Tolerating faults is a process that involves certain activitics. These are: error detection, damage

assessment, error recovery, and continued service fAnde83bl.

Error Detection

Error -detﬂction involves checking values in the system’s state for consistency and
reasonableness. This includes hardware checks as in the canonical example of a division by
zero. In soft‘lvare, acceptability checks are placed within the code. If the checks are on inputs,
they are called defensive checks. Other checks occurring after an activity detect erroneous
results before they are passed on. Another kind of check is the use of a timer, It may be
specified that, if an activity takes more than a reasonable length of time, that activity should be
terminated and an error signaled. In a reasonably complicated system, checks for acceptability,
consistency, and reasonableness would test more high-level relationships between values in the
state than checks on single variable values. Checks for specific malfunctions are considered
checks for anticipated faults. There is some argument that, if a software design fault can be

anticipated, it should be eliminated during design rather than checked for and tolerated under
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service [Mell771.

Software fault-tolerance research aims at unanticipated faults. 'We assume faults exist,
but do not know what or where they are. Hence the generality of the checks for any erroneous
states that the faults may have caused. As an exaggerated example of a reasonableness check
for unanticipated faults, consider a procedure that computes altitudes from pressure and radar
sensor readings. A difference of several thousand feet between the new value and that derived
on the previous call when the frequency of calls is on the order of milliseconds is wholly
unreasonable. Even during a powered dive, aircraft simply do not change altitude that quickly.
The check is not for any particalar fanit, nor does it pinpoint the fault. We have detected an

erroneous state in the system and know that the canse may be somewhere in that procedure.

Damage Assessment

The act of damage assessment is the determination of how much of the system’s state is
affected. This may be through additional checking or assumptions about the communications
structure or the system’s structure. Assessing the damage to the state of a system (or
component) can thus use information about the system’s design. This method employs
redundancy in that the implementation of the intended design is involved in what went wrong,
but the intended design (a different ‘‘implementation’ or statement of it) is involved in
tolerating the faults of the first. Often, “‘damage confinement’’ is included under this activity, If
affected information has been sent to other parallel activities, it may be possible to intercept it
before those activities’ states are also contaminated. If the damage can be contained or

determined to be limited, Jess drastic recovery activities can be appropriate.
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Error Recovery

The error recovery activity changes the error into a well-defined state that is not an error.
Faults are not corrected. Faults are tolerated by correcting the errors they cause. Methods may
be to restore a prior state, to impose another predesignated state, to transform the error into a

valid state, or to create some state that might have been.

Forward error recovery is the construction of a new state from the error. 'This may be an
ad hoc operation. Information about the specific check that detected the error and information
gathered during damage assessment may be used. A forwardly adjusted state may itself turn out
to be erroneous, necessitating either another (different) attempt at recovery or the signaling of

another, larger “‘error”’.

Backward error recovery involves the re-use of a prior state, perhaps with some changes
due to intervening changes to unrecoverable objects. A prior state must have been saved
previously. We speak of both the code location and the point in time when a state is saved as a
recovery point. A recovery line is a set of recovery points, one in each of several processes, that
can be used to establish a prior state (or what could have been a prior state, had the scheduling

been slightly different) for a system of processes.

Continued Service

Continued service allows the application to continue providing service. It also involves
adjustment of control points to avoid the fault lest the error recur immediately, This is often
achieved via reconfiguration. Using an alternate code section while avoiding the one blamed for
the error may produce a lessened service, but part of the philosophy of software fault tolerance
is that degraded or lessened servic_e is preferable to no service at all. Reconfiguration may be

replacement of a code segment. It may mean replacement of entire procedures with ones that
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use the same components under different algorithms or ones that use none of the same
components, Whole processes or groups of processes may be destroyed and alternate processes
started to take over the provision of their service. The replacement may be permanent or only
for the current ““use’” of the affected subsystem. The idea behind non-permanent replacement is

that the fault in the component may be limited to a few data combinations.

Design faults exist at execution pecause they were not discovered and removed before the system
was placed into service. Thus, they are bound to be unanticipated. This fact drives the generality of
many fauli-tolerant strategies. Some of these stages are performed before the system is placed into
service, both to save time and space and to reduce the complexity of determining a response at execution
time. This a priori performance of fault tolerance also re;;uires general-case responses to errors. For
example, the N-version programming scheme detects errors when there is a minority in the vote on
versions’ results. Damage assessment rests on the assumptions that the minority is wrong and that no
version was pc*;nnitted o have non-local effects. Recovery is the same as if there were no errors. The

results of the majority are used to construct a new state for use in subsequent activity.

.

As was mentioned, the initial thought of software tolerating faults in its own design seems
Judicrous, but hardware fault tolerance has provided the model for software faﬁlt tolerance. For example,
experience with hardware has given us replication, timing, reversal, coding, reasonableness, structural,
and diagnostic checks [Ande81]. Since software faults are design faults, redundancy must be in terms of
different designs. An atomic action (all or nothing computation) models the hardware fail-stop processor
in that it either works as specified or it does not affect the remainder of the system. As we shall see,
software fault-tolerance schemes proposed to date are modeled on hardware-fault tolerance strategies but

are incomplete as guides for those who would build crucial systems.
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1.5. Why Software Fault Tolerance?

Crucial systems as described above are being given serious consideration or are .actualiy being
built. Yet the people proposing and/or building them seem little concerned about or have little guidance
in making the controlling software tolerant of its faults. We know humans will make mistakes in
designing and implementing this controlling sofiware. Proponents of software fault tolerance do not
presume that we can forego debugging and testing of software. Every possible means is to be employed
to eliminate the faults in the software. But the software’s designers should also realize their fallibility,
and the fallibility of fault-avoidance and fault-removal technologies. They should admit the inadequacies
of the fault-avoidance effort, and prepare the software to tolerate the residual faults when they appear (as

they are sure to do) once it is in operation.

Research into formal derivation of programs [Dijk76] and verification [VERkEO0, VERKS1] and
testing [Good75a) technologies is vital, yet there are real dangers in felying upon fault avoidance
alone [Tane76]. If faults exist in a “‘proof”” of a program, the program may still have fauits, Naur
developed a simple, one-page program with an informal proof [Naur69]. Later, some faults were found
in the program, it was corrected and proved again [Lond71]. Still later, other faults were found, and a
proof given of the revised version [Good75a]. Since then, still more faults have been found in the
program [Myer78]. Another example of a faulty program with swo invalid proofs is given by

Geller [Geli78].

If the application of testing technologies is incomplete or test results are not thoroughly examined,
faclts may rtemain undetected until the software is placed into service. An experiment in
testing [Myer78] found that, of three different testing technologies used by independent teams, none
uncovered more than about a third of the faults. Some work has been done on developing a theory of

testing [Good75a], but it is only a beginning.
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The current design, testiig, and verification technologies are not sufficiently advanced to rely
totally mpon them for crucial systems. Knight and Gregory {Knig83} have examined the available
technologies and their shortcomings. Even were these technologies more advanced, their faulty
application could allow faults to be created and to remain in a crucial system. A design for software

tolerance of residual software faults could provide a last barrier to costly system failures.

1.6. Qutline

The previous work in the area of software fault tolerance is reviewed in Chapter 2. Concepts that
have been proposed previously are explained, and their disadvantages ar¢ examined, These are the
problems that are well-known by the community and have been detailed in the literature. From that point

on, we concentrate on backward error recovery.

Chapter 3 describes a syntax and the semantics of our solution to the problems identified in the

previous work.

The programming language Ada® [Ada83] was designed specificaily for embedded real-time
applications and with the advice and cooperation of some of the best available talent in both language
design and design of these applications. It is also expected to be the required vehicle of expression for a
Iarge subset of future applications in this area. Since Ada was specifically designed for these applications
areas, it represents as good a choice as any real-time or concurrent programming language for illustrating
ideas due to this and other software fault-tolerance research, Hence, Ada is used as the language of
expression when illustrating concepls involved in this work. Further, Ada is expected to go through a
revision in the 1990"s. Thus, linguistic proposals due to this research are expressed as extensions or
improvements to Ada. A certain familiarity with the semantics of Ada is assuxﬁed when examples of Ada

text are given.

®Ac§a is a registered trademark of the U.S. Government {Ada Joint Program Office)
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Chapter 4 describes an implementation of the solution presented in Chapter 3.

Once a solution to the problems of the previous work is achieved, we recognize other, more
fundamental, problems. Chapter 5 describes these previously unidentified problems in general, They
have to do with communication through shared data and process manipulation, and the structural

constraints imposed upon processes by backward error recovery.

Chapter 6 examines the problems of communication through shared data and proposes a solution
thereunto. Chapter 7 examines the problems of communication through process manipulation and
proposes solutions for them. Chapter 8 examines the structural constraints imposed upon processes by
backward error recovery. Some non-solutions to this problem are presented, and a potentially fruitful

approach to a workable solution is suggested but not followed.

Chapter 9 summarizes what our strategies do for software fault tolerance and discusses where

fature extensions of this work might be expected to lead.

The appendices contain detailed information concerning the ideas presented in the chapters. They
are pot extraneous. This information is important, but too much detail was considered distracting from
the main thrust of the new ideas. Appendix A details syntactic extensions to a successor to the Ada
language that would include backward error recovery facilities based on Chapter 3 and Chapter 4. The
syntactic description is accompanied by the specialized semantics of these facilities. Appendix B proves
by example the contention that all of the previously proposed facilities for backward error recovery can
be programmed as special cases of those described in Chapter 3, Chapter 4, and Appendix A. Finally,
Appendix C provides an example application programmed using these facilities. This both demonstrates
the use of the facilities of Chapter 3 and Chapter 4, and illustrates some of the further problems dealt with

in the later chapters.



CHAPTER 2

Previous Work in Software Fault Tolerance

The previous work in the field of software fault tolerance is surveyed in this chapter. Most of the
software fault-tolerance schemes discussed below contain very powerful ideas that could be useful in our
own-strategy-although criticisms are raised. We do not condemn a software fault-tolerance strategy by
listing its weak points; rather, this should be viewed as evidence that the problem of providing usable
language facilities for implementing fault-tolerant crucial systems is unsolved, Exiensive bibliographies
on hardware and software fault tolerance are given by Anderson and Lee [AndeB1], including the many

applications areas excluded from consideration in this research.

2.1. Description of Previous Work

The major distinguishing characteristic among software fault-tolerance strategies is the mode of
recovery. We describe forward error recovery schemes first, then backward error recovery schemes.
"There have been efforts that do not fit neatly into either of these categories. They may employ
combinations of forward and backward error recovery, or their major contributions may have been

concentrated upon other aspects of the problem. These are described separately.

2.1.1. Forward Error Recovery

Recall that forward error recovery involves creating a new system state based upon information in
the erroneous System state and the analysis done in the damage assessment activity. Exception handling
in an unorganized sense has actually been employed in many programming languages to modify an

erroneous state into one that is hoped to be correct. The other major proposal in this category, N-version

15
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programming, involves creating a new system state based on the system’s state augmented by a majority

or consensus of the results of multiple versions of the software.

2.1.1.1. Exceptions

Exceptions {Good75b, MacL77] in programming languages are modeled on the hardware interrupt,
A check in an underlying interpreter triggers a branch to a code section designed especially to deal with,
or handle, that specific kind of situation. The handler is expected (to be able) to examine the whole
machine’s state to determine what needs to be done and to carry this out. The canonical example of an
exception is an attempted division by zero. In exception handling, one attempts to deal with all possible

faults by enumerating failure modes of components and providing one handler for each Mell77].

Here we view an exception as a signal from a component of a system at some level. The signal
indicates that a requested action was a violation of the interface between the using and used systems, and
that the requested action has not been performed. That the action has not been performed does not imply

atomicity, there is no guarantee that the used system was left in a consistent state.

Cristian advocates using excepﬁons for software fault tolerance [Cris82]. He deals in his own
notation for exceptions. An example is given in Figure 2.1. Each procedure declares (Figure 2.1c) all
exceptions that can be raised in the user of that procedure as a result of that use, and it is assumed that the
programiming language definition similarly lists all exceptions that can result from the use of any
language construct. An exception can be raised explicitly (Figure 2.1(1}*. A handler or set of handlers
can be attached to each statement. Boolean (8) acceptability or consistency checks follow the form of
Figure 2.1a, and other statements (0), which can be language constructs or procedure calls, follow the
form of Figure 2.1b. If the exceptional condition (b) occurs during this use, control branches to the

handler &, and follows the semicolon otherwise. Cristian says that the handler should undo what has

Actually, instead of the keyword RAISE, he uses & symbol that is a tilted iriangle with one cotner pointing to the right. We
find RAISE more instractive.
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(a} [B->H];

(b} o[p->H];

te) PROC P SIGNALS E;

(d) RAISE E;

Cristian’s Exception Syntax
Figure 2.1

been done in the procedure so far if the procedure is going to signal an exception in its caller, i.e. the
handlers in a procedure should make it atomic. Exit from = can be by having it simply end, allowing
control to continue after the semicolon, or having it signal in the caller an exception declared by the

surrounding procedure.

To accompany his exception notation, Cristian has created a proof system (Figure 2.2) for single-
entry/muitiple-exit programming language constructs and with data types other than ‘‘the
integers’’ [Cris84] to help ensure that all possible cases are covered by the normal flow of the program
and the flow through any exception handlers. In the proof system, 2 procedure’s input space consists of
three sets, called domains. The standard domain is the set of inputs for which the procedure can be
shown to perform its intended service without signaling an exception. The expected exceptional domain
is the set of inputs for which the procedure can be shown to signal an exception. The unexpected

exceptional domain is the set of inputé for which no preparation has been made.

2.1.1.2. x-Version Programming

The idea of N-version programming [Aviz77,Chen78] is 1o apply software redundancy by actually

allowing multiple versions of the software to execute in parallel and by voting on their results. The
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sp = Standard Domain
£p = Anticipated Exceptional Domain
up = Unanticipated Exceptional Domain

Prove:
D=0

2) Vi€ (sb(JED) EXECUTION(i) = INTENDED (i)

where ExecuIoN is the service provided by the program
nrENDED iS the intended or specified service

Cristian’s Proofs

Figure 2.2

results of the majority are then used. N-version programming derives from the hardware fault-tolerance
technique of § modular redundancy (NMR) (Figure 2.3). The multiple versions are all derived from the
same requirements specification but, as far as possible, are designed and coded independently. The effort
is to ensure that, although there will be faults in each version, no fault will exist in a majority of the

versions.

The requirements specification is expected 1o give some indication of the kind of result that would
be acceptable. An acceptability testing procedure is provided for each version to use before it allows its

results to participate in a vote.

Each version executes in its own data space. The surrounding data space is only updated after the

vote and only using the results computed by the majority of the versions.

The points at which a version submits results are called cross-check points. The results are
formated into campafz’son vectors for use in the voting algorithm, Comparison vectors may contain
status flags 1o indicate such things as a failure of the version’s local acceptability test or that an exception
was raised but not handled in this version, information that could save time for the voting mechanism by

directing it to ignore results from this version.
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A Component (a) and its Realization as 3-Versions (b}

Figure 2.3

An ¥-version programming system’s operation is controlled by a driver component. A duty of the
driver is to format inputs for the versions. If the versions are actually programmed in different languages,
this might be extremely difficult. The driver must synchronize with each version to start it, to give it its
inputs, to accept its results, and to destroy it should the version need to be replaced. Finally, the driver is
responsible for performing a vote on the various results and updating the surrounding system state based

upon the majority.

The most important part of an N-version program is the voting mechanism. A check for equality
among results would only be appropriate for a small number of applications. Differing algorithms in the

versions, and floating point calculations, contribute to a need for inexact voting techniques (see Figure
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2.4). Besides arriving at a majority set of results, the voting mechanism must determine a single result,
representative of the majority group, with which to update the system state. This may be as complicated

as determining the majority set itself.

The versions whose results are in a minority may be removed from a system, or just have their

results ignored for the current *‘use”.

The wn-version programming scheme detects errors when there is a minority in the vote on
versions’ results. This information is used for reconfiguring the set of versions, but has little effect on the
immediate outputs. Recovery is the same as if there were no efrors. The system’s state and the results of
the majority of versions of the software component are used to construct a new state for use in

subsequent activity.

2.1.2. Backward Error Recovery

Recall that backward error recovery involves replacing the erroneous state by restoring a previous
state that is presumed not to be erroneous or by creating such a state that might have existed previously.

The major research efforts have produced recovery blocks, which organize this approach in sequential

(a) R := Wl X 1 + w2 x £2 + w3 X x3; (wl + w2 + w3 = 1)
{(by R = if abs(rl-r2) < threshold then average (zl, x2)
else if abs{rl-r3) < threshold then average {rl, r3)

elga i1f abs (r2-r3) < threshold then average (r2,»3)
else pignal error;

Adaptive (a) and Non-Adaptive (b) Voting for 3 Versions

Figure 2.4
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programs O program segments, and conversations, which attempt to make this approach amenable to use

by paralle} processes.

2.1.2,1. Recovery Blocks

A common technique for providing tolerance of hardware faults employs stand-by spares (Figure

2.5). This is the basic idea of a recovery block (Figure 2.6) [Horm74, Shri78a, Shri78b]. A recovery

block encases redundant versions of a software component between a recovery point and a boolean

acceptance test.

Upon eniry 1o a recovery block, a recovery point is established by making a copy of the system’s

state. The primary version of the software component is then executed. At the end of the primary, the

acceptance test is evaluated. If the acceptance test is successful (evaluates TrUE), the recovery point is

discarded, thus committing the system to the effects of the primary version’s execution, and control

/ Component
Rest
of R Swiich
System
\ Spare

A Component and a Stand-by Spare

Figure 2.5
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<statement> = ... | <recovery block>
<recovery block> i:i=
ENSURE <boolean expression> BY
<primary>
{ BLSE BY
<alternate> }
ELSE ERROR

"The Recovery Block Syntax

Figure 2.6

leaves the recovery block. Should the acceptance test fail (evaluate Favs), the effects of the primary
version’s execution are discarded by restoring the system’s state from the recovery point, and execution
begins anew at the first alternate version of the component. At the end of the first alternate, the
acceptance test is evaluated again. If the acceptance test is successful, the recovery point is discarded,
and control leaves the recovery block. Should the acceptance test fail, the system’s state is restored again
from the recovery point, and execution begins anew at the next alternate. The process continues until the
effects of one of the alternate versions pass the acceptance test or until the sequence of alternates is
exhausted. If neither the primary nor any alternate version produces a state that passes the acceptance
test, the system’s state is restored from the recovery point and the recovery point is discarded; further, the

recovery block statement signals failure of that component within the surrounding system,

When a recovery block’s alternates are exhausted, none of the versions of the software component
was able to perform the requested service. This could be due to an already erroneous state existing on
entry to the recovery block, or due to improper use of the software component. In either case, the fault is
external to the recovery block. Thus it is deemed appropriate to signal failure when a recovery block’s

alternates are exhausted.
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Recovery blocks can be nested. If the nested recovery block signals its failure, execution of the
primary or alternate in which it is nested ends. Subsequent actions are as if that primary or alternate had
failed the acceptance test. Other component failures are similarly defined. For example, an unhandled
exception raised within or propagated into the primary or an alternate is a failure of that primary or
alternate. Should an exception occur during evaluation of the acceptance test, the exception is not
handled or propagated. Rather, the primary or alternate for whose effects the acceptance test was being
evaluated fails the acceptance test. If a control system’s outermost recovery block signals failure, that

situation must be treated as some form of anonymous exception.

The acceptance test is an overall check for acceptability of the state produced by execution of some
version of the component as regards the goal of the statement. The fact that the alternates are allowed to
provide degraded services with respect to the primary constrains the acceptance test. It must be possible
for any results of the primary or any alternate (assuming they are correct) to pass the test, yet the test
must be strict enough to detect errors produced by any of the primary or the alternates. The construction
of acceptance tests is very application-specific, but a few attempts have been made to point the way for
acceptance test construction [Lee78]. For example, an adjunct facility would permit retrieval of original
values of variables. In Figure 2.7, whether or not the variable speed has been changed, the value of
PRIOR speed would be the value of speed before the recovery point was established (the notation x- has

sometimes been used for PRIOR X).

ENSURE
abe (PRIOR gpead -~ gpeed}/t <= (maxthrust + gravity}
BY ...

Use of Prior Values in Acceptance Tests

Fignre 2.7
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Damage assessment is based on the assumption that no part of the state affected by execution of the
current alternate is usable. The response is always to discard the error in favor of a previous state that is

presumed to be correct.

'The hardware recovery cache has been proposed to answer criticisms about the inefficiency of

establishing recovery points and state restoration {Lee80].

Reconfiguration in a recovery block is achieved by replacing the faulty component with an
aliernate version of the component. The replacement occurs only for the current execution of the
recovery block. On subsequent executions, the original primary is again attempted first. The reasons for
this are that it would be difficult to specify statically the aiternative dynamic reconfiguration, that the
primary was written as the preferred algorithm for providing the component’s service, and that the fault

in the original version may be limited so that later executions with other input values would avoid it.

Aliernate versions will have been constructed to perform the same or slightly degraded service as
the primary. The service is *‘slightly degraded”” if for no other reason than that some amount of time has
been wasted in executing the primary. The alternates must not be copies of the primary. If they were,
they would contain the same fault and in all probébility create the same error. One proposed
method [Lee78] of generating the alternates after the original primary is constructed, is to save all
algorithms uvsed during the development and maintenance of the system, making each new replacement

the primary and demoting the old primary to first alternate.

Unrecoverable objects are variables whose values, unlike the rest of a system’s state, cannot be
restored by strict backward recovery. An example would be a variable at a memory address that has been
mapped to a missile’s firing mechanism. Once changed (say from zero to one), the missile has been

launched, and no replacement of the original value in the variable will call it back.
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Several approaches to dealing with unrecoverable objects have been proposed. For example, the
actual unrecoverable objects could be hidden behind recoverable facades. In the missile example, the
actual memory location would not be updated until execution had left the outermost surrounding recovery

block. This would ensure that the control system was committed to the change before it took place.

2.1.2.2. Conversations

The concept of a conversation [Rand75] is the canonical proposal for dealing with communicating

processes via backward error recovery.

When two processes communicate, obviously information is passed between them. When two
processes merely synchronize without explicitly passing data values, they still pass information. The
information garnered by each process in that case is (at least) that the other process has made a certain
amount of progress. The utility of that kind of information depends upon the amount of knowledge about
one process’ design that was incorporated into the other process’ design. Any form of synchronization or

message passing or shared variable update allows information to pass from one process 10 another.

Suppose two processes communicate between the time that a fault in one of them produces the first
error and the time that an error is detected. Since the information transfer is two-way, whichever process
has developed the exror may have spread that error to the other. Further, the error detected may not be in
the process containing the fault. A solution to these problems is to roll back or perform backward error
recovery on both processes. If the recovery points for all of the processes involved do not form a

recovery line, the domino effect [Rand75] could result.

Figure 2.8 illustrates the domino effect with three processes 1, 2 and 3 progressing with time to the
right, and recovery points A, B, C, D, and E. The vertical dashed lines represent communications
between the processes. An error detected in 1 atF “causes’” 1 1o roll back to E and 2 to roll back to D.

But this rollback invalidates information exchanged between 2 and 3, so 3 must also be rolled back to C.
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Figure 2.8

Since 1 and 3 communicated between points C and E, 1 must again be rolled back to B. The effect could
conceivably spread to other processes and continue until the entire software systemn was rolled back to its
initial state, thus discarding all information gathered during its operative life. Thus the backward error
recovery method' employed must coordinate the establishment of recovery points for communicating
processes and limit the ‘“distance” they can be rolled back. The use of conversations avoids the domino

effect.

In a conversation (see Figure 2.9), a group of processes establishes a recovery line and they begin
communicating. At the end of their communication, which may include the passage of multiple distinct
sets of information, they each wait for the others to arrive at an acceptance test for the group. If they pass
the acceptance iest, they commit to the information exchange that has transpired by discarding their
recovery line and proceeding. Should they fail the acceptance test, all restore their states from the
recovery line. No process is allowed to smuggle information out or in by communicating with a process

that is not participating in the conversation.

Conversations may be nested as is illustrated in Figure 29. From the point of view of a

surrounding conversation, a nested conversation is an atomic action. The encased activity seems either



27

R = recovery line A = acceptance test

Rlevsnerorsnneeemanenesenaerensustmissanansttonesuseoumestansusttesnins: A
Revverrnrerees A :
3 T T T T T S
’ I i ' 1
| ' 1 1 I
1 : i 1 1
i 1 | t
\ |: IR A 1 p ' 1
' : : 1 I i
1
2 1 T ¥ 1 : : : T 1 o
1 I ! I X !
I : I ' A TOUPPOPUPPPP !
i I i I 1 1
Do i | i ' |
T I 1 I i 3
Do i I ' I I
1 M i | i 1 ] i [
Three Nested Conversations -
Figuwre 2.9

not to have begun or to have completed, and no information that would be evidence to the contrary
escapes. The dotted rectangles represent the recovery lines on the left verticals, the acceptance tests on

the right verticals, and the prohibition of smuggling on the horizontal portions.

The recovery lines are shown as simultaneously established, but that is not required. Note that, if
an error were detected in process 1 while processes 2 and 3 were conversing, all effects since the larger
recovery line (including the already-completed conversation between 1 and 2) would be undone. Once
individually rolled back and reconfigured, the same set of conversant processes attempt to communicate
again, and eventually reaches the same acceptance test again. Also any other failure of one of the
processes is equivalent to a failure of the acceptance test by all of them. Thus, a conversation is a kind of
parallel recovery block where each of the primary and the alternates are execution segments of a set of

processes.
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Conversations were originally proposed as a stracturing or design concept without any syniax that
might allow enforcement of the rules. Russell and Tiedeman [Russ79] have proposed the Name-Linked
Recovery Block as a syntax for conversations. As illustrated in Figure 2.10, the syntax appropriates that
of the recovery block. What would otherwise be a recovery block, becomes part of the conversation
designated by the conversation identifier. The primary and alternate activities of the recovery block
become that process’ primary and alternate activities during the conversation, and the recovery block’s
acceptance test becomes that portion of the conversation’s acceptance test appropriate to this process.
The conversation’s acceptance test is evaluated after the last conversant reaches the end of its primary or

alternate. If any one or more of the processes fail their acceptance tests, all conversants are rolled back.

In other work [Russ77], Russell loosens the structure of conversations. He proposes that the
establishment, restoration, and discard of recovery points for processes be under the dynamic control of
the applications programmer rather than encased in a more rigid syntax. He gives three primitives for
these operations: MARK, RESTORE, and PURGE respectively. They are all parameterized to designate the
subject recovery point, and they apply to an individual process. This allows the programmer to save
many states and restore the one he chooses, rather than the most recent. In contrast to the recovery cache,
the recovery information saved by each Marx primitive must be complete. This is because recovery
points are not constrained 10 be REsToREd in the reverse of the order saved. The proposal assumes
message buffers for inter-process communication. As part of backing a process up to a recovery point,

previously received messages must be placed back into the message buffers.

CONV <conversation identifilexr> : <recovery block>

Russell’s Conversation Syntax

Figure 2,10
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Kim has examined several more possible syntaxes for conversations [Kim82]. His approaches
assume the use of monitors [Brin77] as the method of communication among processes. He examines

the situation from two philosophies toward grouping.

In one scheme, the Conversation Monitor (Figure 2.11), the conversing activities are grouped with
their respective processes’ source code, but are well marked at those locations. In another scheme, the
Conversation Data Type (Figure 2.12), the conversing actions of the several processes are grouped into
one place so that the conversation has a single location in the source code. The issue he is addressing is
whether it is better to group the text of a conversation and scatter the text of a process or to group the text

of a process and scatter the textof a conversation.

A third scheme, the Concurrent Recovery Block (Figure 2.13), attempts to resolve the differences
between the first two by enclosing the entirety of the processes within the conversation. Here, a
conversation is a special case of a recovery block, within a single parent process, in which the primary

and the alternates consist solely of initializations of monitors and activations of processes.

ENSURE <boolean expression>
USTNG-CM <conversation monitor identifier>
{ <conversation monitor identifiexr> }

BY

<primary>
ELSE BY

<alternate 1>
ELSE BY

<alternate n>
ELSE ERROR

Kim’s Conversation Monitor Syntax

Figure 2.11
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TYPE ¢ = CONVERSATION( <conversation names > )}
‘ PARTICTIPANTS proca( <formal parameters> );
proch( <formal parameters> Y:
<gonversation monitor type> ;
<conversation monitor type>;

:
s

ERSURE <acceptance tast> BY
BECIN proca : <statements>
proch : <statemants>
END
ELSE BY BEGIN
proca @ <astatements>
procd : <statements>

ELSE ERROR
BEGIN
INIT eml, om2...
EXD
VAR convl ¢ C;
{a)

convl.preca( <actual parameters> '

{b)

Kim’s Conversation Data Type Syntax

Figure 2.12

2.1.3. Other Work

The consensus recovery block [Scot83] is an attempt to combine recovery blocks and w-version
programming. A syntax would closely resemble that of a regular recovery block. The primary and all of
the alternates are executed in parallel in their own data spaces and the results are voted upon. If thereisa

clear majority, the results represented by the majority are used. If there is no clear majority, the results of
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ENSURE <boolean expression> BY BEGIN
INIT monitor.l;

INIT processl.l( <actual parameters> )
INYIT process2.l( <actual parametars> };

R

END
ELSE BY REGIN
INIT monitor.2;

INIT processl.2( <actual parameters> );
INIT process?.2( <actual parameters> };

END
ELSE BY BEGIN
INIT monitor.n;

INIT processl.n{ <actual parameters> y:
INIT process2.n{ <actual parameters> I

END
ELSE ERROR
Kim’s Concurrent Recovery Block Syntax

Figure 2.13

the primary and alternates are used in evaluating the acceptance test with preference following the Listed
order. The first set of results that passes the acceptance test is used. The scheme affords a second chance
after an inconclusive vote and avoids reliance upon a potentially faulty acceptance test unless absolutely

necessary.

In an attempt to adapt conversations to the structure of many actual real-time applications,
Anderson and Knight proposed exchanges [Ande83b). An exchange is a conversation in which all of the
communicants are created at the recovery line and destroyed at the acceptance test. The real-time
program structure being applied is the cyclic executive under which time is divided into ‘‘frames’.
Inputs are accepted at the beginning of each frame. Outputs are produced at the end of each frame. The

beginning of a frame represents the ‘‘recovery line”’, and the acceptance test is at the end of the frame.
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Failure of the acceptance test causes alternate outputs to be used for the current frame, e.g. those of the
previous frame. The only information saved at the “‘recovery line”’ is that needed to provide the

alternate outputs.

Campbell, et al proposed what is called the Deadline Mechanism {Camp79]. When a goal mast be
achieved before a certain amount of time passes, a preferred algorithm is supplied along with an alternate
algorithm and a duration. The alternate algorithm is assumed to be correct and deterministic so the
amount of time it requires is known a priori. The underlying scheduler is responsible for ensuring that, if
the preferred algorithm cannot be completed before the deadline (duration plus time the preferred
algorithm started), the alternate algorithm will be. Several simulation studies have been performed

showing a reduction in timing failures when such a mechanism is employed [Camp79, Wei80, Lies83].

A field related to our problem is software safety [Leve82]. The work being done on software fault
tree analysis [Leve83] could be of use in developing acceptance tests. As many of the potential physical
hazards are identified as is possible, then a fault tree analysis is performed. ““The basic procedure is 0
assume that the software has performed in a manner that [...] will lead 1o a catastrophe and then to work
backward to determine the set of possible causes for the condition to occur.” ( [Leve83} p.571) Fault tree
analysis could be used to determine where software checks need to occur to avoid safety hazards, and the
study of software safety can influence what forms of degraded service are appropriate for a particular

application,

2.2. Shortcomings of Previous Work

A general consideration for crucial systems is time. Acceptance tests and voting codes must be
reached and reached on time for the results to be useful at all. The unexpected delay problem is that
some unanticipated circumstance may cause a particular section of code to be executed too late for its

results to be useful or not to be executed at all. For example, an infinite loop would cause a section of
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code not to be executed. A real-time program need only be late to be considered faulty. A scheme for

providing software fault tolerance must address the unexpected delay problem.

Another consideration is the management of complexity. If the use of a scheme involves too much
effort on the designer’s (programmer’s) part, it may be counter-productive in that more faults will be
geﬁerated through the nse of the scheme than would otherwise occur. Furthermore, a fault in the
application of the scheme might make the system more dangerous than if fault-tolerance efforts had not
been applied at all. A scheme supported by a rigid, encasing, structured syntax allows design-time
(compile-time) enforcement of the accompanying semantic rules. Such a quality in a scheme allows for

added complexity without added faults.

2.2.1. Forward Error Recovery

A major drawback of any forward error recovery scheme so far proposed is the complexity that
must be involved in creating a new state for the system from the ruins of an error. Because a state is so
specific to the application system, this activity must be done under the application’s direction. There is
very litle a language support system can do to help. There are few rules to enforce, and it is difficult to
determine what special functions should be made available whose misuse would not bring about
immediate failure of the entire control system. The code that directs the new state generating activity is
as subject to faults as the code whose faults caused the error. Further, the information with which this

code must work is, by definition, erroneous,

Neither exceptions nor N-version programming provides a solution to the unexpected delay
problem. Nor is either a concept or construct for dealing with parallel programs. Proponents of
backward error Tecovery view exceptions as complimentary to the backward error recovery approach
rather than sufficient for tolerating faults [Mell77). There have been experiments which call inio

question a basic assumption of N-version programming - the independence of
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versions [Neum81, Knig85].

We will not pursue forward error recovery further. Our focus will be upon backward error

recovery.

2.2.2. Backward Error Recovery

Backward error recovery seems [Mell77] to be the more general approach (than forward) since the
error is thrown away in favor of what is presumed to be a valid state. On the other hand, if the latency
interval between the first error due to a fault and the first detection of an error is beyond a commitment

interval, none of the backward recovery schemes so far proposed can handle the error [Cris82].

2.2.2.1. Recovery Blocks

In a recovery block, there is only one test for acceptability of results. How to program the
acceptance test to be both meaningful and allow a wide range of alternate algorithms to pass it is
unspecified. Design diversity in the primary and the alterates, combined with the possibility of degraded
service from the alternates, implies that the acceptance test must not be made very strict. It must be
possible for any results of the primary or any alternate (assuming they are correct) to pass the test, yet it
must be strict enongh to detect errors produced by any of the primary or the alternates. This combination
may not be possible. A test that is general enough to pass all valid reéults might not be specific enough to
actually detect all errors within the construct. The strategies involved in the pﬁmary and in the many
alternates may be so divergent as to require separate checks on the operation of each “‘try”” as well as an
overall check for acceptability as regards the goal of the statement. The recovery block really needs

multiple tests, one for the primary and one specific to each of the aliernate algorithrnsT. perhaps with a

T’I‘his has been noted previonsly and an inelegant ad hoc solution proposed [Lee78].
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general overall test as a check on the various individual tests,

The recovery block is strictly a sequential programming construct. It gives no hint about recovery
after inter-process communijcation. The conversation concept was an appropriation of the recovery block

concept, not an integral part.

There is the question of when a recovery block should be used. There is little indication as to what
portions of a program should be protected by recovery blocks. If used on every routine and every
statement sequence, the tests may become trivial and fail to offer any benefit. If recovery blocks are only
used at the outermost levels, the acceptance tests may be so complex as to duplicate the complexity of the
primary ot alternates. This may introduce more faults in the acceptance test than the primary alone, or it

may squander processing resources so that execution of an alternate would bring about a timing failure.

The unexpected delay problem, specifically the timing of controf program activities, has remained
Jargely unaddressed by the recovery block scheme. It has only been mentioned once [Hech76], and not

incorporated into subsequent writings on the subject.

We must rectify the use of unrecoverable objects with the backward fecovery strategy. As was
pointed out earlier, there is some discussion in the literature on how recovery blocks could be reconciled
with nested recovery block commitment to unrecoverable objects. A useful scheme will not ignore this

issue.

The problem of the latency intervals for fault detection being longer than commitment intervals is
not addressed. That is related to the problem of how to construct meaningful acceptance tests. Itis
assumed that acceptance tests can be constructed that can detect emors before they become so
widespread, or that multiple layers of nested recovery blocks’ acceptance tests can together detect them.

The possibility of nested recovery blocks allowing such errors to “‘escape’’ should not be permitted.
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How acceptance tests should be designed is not made clear in the literature, although a few
attempts ﬁave been made to point the way [Lee78]. We do not advance that work beyond suggestions
about incorporating the software safety work. The problem of acceptance tests being subject to single-
point failures could be alleviated by the nesting of recovery blocks and the inclusion of separate tests for

each algorithm within a recovery block.

2.2.2.2. Conversations

Major shortcomings of the conversation scheme and of all its follow-up syntactic proposals lie in
the acceptance test(s). Here we find the same shortcomings we found in recovery blocks. The strategics
involved in the primary and in the many alternates may be so divergent as 10 require separate checks on
the operation of each “‘ry’’ as well as an overall check for acceptability as regards the goal of the

statement. An example of diverse strategies will appear shortly.

Another shortcoming appears when we consider that each process in a conversation has its own
individual reasons for communicating while the system of which these processes are a part has more
global concems for bringing them together. A single, monolithic acceptance test, as in the original
conversations proposal, would be too concerned with acceptability in terms of the surrounding system to
detect errors local to the component processes. Similarly, the combination of local acceptance tests of
the individual processes is insufficient since it does not acknowledge the design of the surrounding
system. A conversation needs a check on satisfaction of the surrounding system’s goal in the

communication as well as checks on satisfaction of the component processes’ goals.

Desertion is the failure of a process to enter a conversation when other processes expect its
presence. Whether the process will never enter the conversation, is simply late, or enters the
conversation only to take too long or never arrive at the acceptance test(s), does not matter 0 the others if

they have deadlines to meet, as is likely in a crucial system. Thus, desertion is another form of the
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unexpected delay problem. The processes in a conversation must be extricated if the conversation begins
to take too long. Each process may have its own view of how long it is willing to wait, especially since
processes may enter a conversation asynchronously. Only the concurrent recovery block scheme even
addresses the desertion problem. The solution there is to enclose the entirety of each participating
process within the conversation. Not only cannot a process fail to arrive at a conversation, it cannot exist

outside of the conversation,

The original conversation proposal made no mention of what was to be done if the processes ran
out of alternates. Two presumptions may be made: that the retries proceed indefinitely, which is
inappropriate for a real-time system, or that an error is to be automatically detected in each of the
processes, as is assumed in all of the proposed conversation syntaxes. What the syntactic prbposals do
not address is that, when a process fails in a primary atiempt at communication with one group of
processes to achieve its goal, it may want to atiempt 10 communicate with an entirely different group as
an alternate strategy for achieving that goal. This is the kind of divergent strategy alluded o a;bove. The
presentations of the name-linked recovery block and the conversation monitor schemes do not mention
whether it is an error for different processes to make different numbers of attempts at communicating.
Although those schemes may assume that is covered under the desertion issue, that may not necessarily

be true if processes are allowed to converse with alternate groups.

Russell’s work permitting the application to have direct control over establishment, restoration, and
discard of recovery points has its own set of problems. First of all, his premise ignores the possibility that
the information within a message can contaminate a process’ state, When the receiver of a message is
rolled back, he merely replaces the same message on the message queue. Russell’s application area is
that of producer-consumer systems. The control systems we are considering are often feedback systems.
A producer almost always wants to be informed about the effects of the product, and a consumer almost
always wanis to have some influence over what it will be consuming in the future. The relationships
between sensors and a control system and between a control system and actuators can be viewed as pure

producer-consumer relationships, but sensors and actuators are more accurately modeled as



38

unrecoverable objects. Russell's scheme allows completely unstructured application of the MARK,
RESTORE, and PURGE primitiws. This fact, along with the complicated semantics of conversations, which
they are provided to create, affords the designer much more opportunity to introduce faults into the
software system. For example, it is noted that the use of the purGE primitive on a recovery point
represents a promise never o use 8 RESTORE primitive on that recovery point. There is no enforcement of
this “‘promise’”. Also, the utility of the ability to save two recovery points A and e and later restore a

before restoring B is unclear.

None of Russell’s or Kim’s conversation schemes enforce the prohibition against smuggling. If
processes use monitors, message buffers, or ordinary shared variables, other processes can easily *‘reach
in’* to examine or change values while a conversation is in progress. Since the name-linked recovery
block proposal makes no mention of the method of communication among processes within a
conversation, it remains open to charges of permitting smuggling. The conversation monitor is designed
to prevent smuggling but, as ‘Kim’s description stands, it allows a problem that is even more insidious
than smuggling. A monitor used within a conversation is initialized for each use of the conversation, but
not for each attempt within a conversation. This allows partial results from the primary or a previous
alternate to survive state restoration within the individual processes. Since such information is in all

probability erroneous, it is lkely to contaminate the states within this and all subsequent alternates.

The concurrent recovery block is not even a construct for programming concurrent Sysiems.
Rather, it is a construct for programming sequential systems in which a particular execution order for

occasional statement sequences is not required.

Most other shortcomings are more like open questions for the designer. When should a
conversation be used? How should one determine which processes should be included in a conversation
and which should use their own separate conversation? There is litfle discussion in the literatare on how
conversations could be reconciled with nested conversation commitment to unrecoverable objects. Noris

the problem of the latency intervals for fault detection being longer than commitment intervals addressed.
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Related to that is the recovery block problem of how to construct meaningful acceptance tests.

Smuggling in conversations and the unexpected delay problem also remain unresolved.

2.2.3. Other Work

The consensus recovery block requires more resources than either N-version programiming or
regular recovery blocks. Considered as an N-version programming variant, it imposes the additional cost
of deriving the acceptance test. Seen as a recovery block variant, it requires the alternates to be designed,
not for degraded service, but for the same level of service. This is because their results will be voted
upon to find a majority. Further, a voting algorithm must be designed. Also, more processing time will
be expended on average since the primary and all alternates must be executed to completion before the
results of any of them are checked for usefulness in the surrounding environment. And, like both the
recovery block and H—versioﬁ programming schemes, this scheme still fails to address the unexpected

delay problem.

The idea of exchanges has direct utility only in systems employing the scheduling regime known as
the cyclic executive. The proposal does not address systems of fully asynchronous processes or systems
employing mixed disciplines. The exchange concept. thus imposes a cobegin ... coend programming
structure [Dijk68], which may not always be suitable. For example, it becomes very difficult to program
multiple frame rate systems, the first variation that is often imposed on the cyclic executive

theme [MacL80].

Campbell’s deadline mechanism assumes that the alternate algorithm is correct. Nothing is said
about checking the acceptability of the preferred algorithm’s results if it does complete on time. The
proposal assumes that the amount of time required by the alternate algorithm is known a priori, yet
provides no method of communicating this information to the underlying scheduler. The additional

(alternate) processes in the scheduling mix could even be the cause of a failure of a preferred algorithm to
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complete on time, No mention is made of how the data states of the preferred and alternate algorithms
are to be kept separate. Does each get a complete copy as in w-version programming, or is there a form
of backward recovery? Either method would require some time that must be considered in the
satisfaction of the timing request. This proposal focuses too narrowly upon only one issue, that of timing,

and provides incomplete coverage of that.

To mention software safety again, we do not consider it 2 panacea for the problem of constructing
acceptance tests, nor for that of determining placement of fault-tolerance constructs within an application.

The safety hazard analysis is every bit as likely to be prone to human error as is any other design method.

2.3. Summary

The overall problem is to create a strategy for organizing the design of the software for real-time
concurrent systems so as {o enable it to tolerate its own faults. A realistic, comprehensive approach to
software fault tolerance has never been brought forth that could be used in guiding designers of the
applications that are most in need of it. As we have seen, systematically thought-out software fault-
tolerance proposals are all lacking and/or out of touch with how real systems are constructed or with their
requirements. The first step is to adapt to reality the systematic proposals that do exist while answering
objections to them and correcting for their problems. Shortly, we show how to adapt these as facilities in
a programming language to aid the designer (programmer} in applying backward error recovery. Only
then will it be possible to try building systems with software fault tolerance in mind. This will in tarn
permit the determination of appropriate placement of these facilities and evaluation of the efficacy of the

backward error recovery approach to fault-tolerant software.

The shortcomings of the previous work generalize into eight issues.

(1) A general consideration for crucial systems is time, Boolean acceptance tests and voting codes

must be reached and reached on time for the results to be useful at all. If a scheme does not
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address the unexpected delay problem, then it is insufficient for providing software fault tolerance
in a real-time program since a program in that context needs only to be late o be considered faulty.
Time also needs to be considered in designing the programming language facilities to support a

software fault-tolerance strategy.

Another consideration for a fault-tolerance scheme is the management of complexity. If the use of
a scheme involves too much effort on the designer’s (programmer’s) part, it may be counter-
productive in that more faults will be generated through the use of the scheme than would
otherwise occur. Furthermore, a fault in the application of a fault-tolerance scheme might make

the system more dangerous than if fault-tolerance efforts had not been applied at all.

[A] well-structured approach to the design and inclusion of fault-tolerance techniques is
a prerequisite for their success; an unstroctured approach could easily reduce system reli-
ability by introducing more faults than those to which tolerance was provided.
( [Ande81] p.15)

A scheme supported by a rigid, encasing, structured syntax allows design-time (compile-time)
enforcement of the accompanying semantic rules. Such a quality in a scheme allows for added
complexity without added faults. By embedding the strategy within the programming language, we

can shield the programmer from much of the added complexity.

A scheme must deal with parallel processes. A control system based on a sequential program
could be a very poor design and would certainly be limited. The scheme should not be overly

restrictive of the antonomy of processes, as is the forced retry of the conventional conversation.

A complete scheme will have its semantics fully specified. Many of the shortcomings we noted for
the individual schemes in Chapter 2 have to do with incomplete specification. An incompletely

specified scheme allows mistakes to be made in its use, rendering it ineffective if not dangerous.

The overall strategy may involve specialized features to be placed at different levels within a

system. A scheme should be accompanied with instructions for placement of its various parts



(6

N

®

42

within the control system.

A scheme must take the constraints of real applications into account, even take advantage of them
if possible. One of the constraints we have already identified is the existence of real-time

deadlines.

A scheme must address the problem of dealing with unrecoverable objects in a fault-tolerant
manner. The control system must deal with sensors and actuators as unrecoverable objects. This is
a very special case of taking reality into account, but deserves separate attention. The goal of fault
tolerance is to prevent failures of the control system. Erroneous settings of unrecoverable objects

can be nothing other than failure.

A scheme must deal with the problem of the latency interval between the first error due to a fault

and the first detection of an error being beyond a commitment interval.

Of these, issues 5 and 8 are not addressed within this work. In particular, solution of issue 5 must

await experimentation with the solutions to the other issues as proposed in the following chapters. Issue

7 is addressed somewhat in Chapter 6. The aspects of issue 1 relating to efficiency of the scheme itself

must await refinement in future work as must the aspects of issue 2 relating to programming of

acceptance tests,



CHAPTER 3

A Unifying Structure for Fault-Tolerant Software

In this chapter, we introduce a new building block for concurrent programs called the dialog and a
new backward-error-recovery primitive called the colloquy. The colloguy is constracted from dialogs.
Together, they remedy the various limitations of the previous fault-tolerance proposals. The previous
proposals are special cases of the colloquy. Thus, the colloquy provides a general framework for

describing backward error recovery in actual crucial programs.

The dialog and colloquy are proposed as general concepts but a specific syntax for their use is
given as extensions 10 Ada. That syntax borrows from that language and is detailed in Appendix A. This
syntax has been chosen for illustrative purposes. The actual syntax is irrelevant; the concepts could be
used in many other programming languages. However, once chosen, a rigid syntax can allow a compiler
to enforce certain of the semantic rules. Such enforcement by a language processor has the potential to

catch additional faults which might otherwise be introduced through the use of a complex framework.

3.1. Overview

There are several concepts not previously employed effectively in backward error recovery
strategies. These are identified in the following paragraphs before their specific application to the dialog

and colloguy is discussed.

Recall that desertion is the failure of a process to enter a communication when other processes
expect its presence. The process might enter the communication and still fail to arrive at its exit, thus

preventing others from exiting. Whether the process will never enter the communication, is simply Iate,
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or enters the communication only to take too long or never arrive at the acceptance test, does not matter
to the others if they have real-time deadlines to meet. Each process may have its own view of how long it
is willing to wait, especially since processes may enter a communication asynchronously. Whether they
protect inter-process communications or sequential parts of processes, acceptance tests must be reached
and reached on time for the results to be useful. Meeting real-time deadlines is as important to providing
the specified service as is producing correct output. In order to deal effectively with desertion, especially

in critical systems, some form of timing specification on communication and on sequential codes is vital.

After an error during a communication activity is detected, a process should not be forced to
continue to re-try communication with the same set of processes. We will use conversations to illustrate
this. When it needs to communicate, a process enters a conversation and stays there, perhaps through
many alternate algorithms, until the communication is completed successfully. The same group of
processes are required to be in the alternate interactions as were in the primary. The recovery action
merely sets up the communication situation again. In the original form of conversation, once a process
enters the construct, it cannot break out but must continue trying with the same set of other processes,
including one or more which may be incapable of correct operation, The rules for conversations force
the saved state in each process to be one present after the process has committed to the beginning of
communication. Hence, upon rollback after failure of an attempt, a new attempt with the same set of
participants begins. The only difference is that the process may use a different algorithm in the new
attempt. In practice, when a process fails in a primary attempt at communication with one group of
processes 1o achieve its goal, it may want to attempt to communicate with an entirely different group as
an alternate strategy for achieving that goal; in fact, different processes might make different numbers of
attempts at communicating. Conversations do not allow this, although it would not be desertion were it
systematic and intended. By reordering the entrance into a beginning-of-communication state and the
establishment of recovery points, we can introduce the possibility of processes coinmunicating with

entirely different groups of other processes during alternate attempts than during the primary.
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In a conversation or recovery block, once rolled back and reconfigured, a process attempts to
achieve its goal again, and eventually reaches the same acceptance test again. True independence of
algorithms between primary and alternates, within the context of backward error recovery, might require
very different acceptance tests for each algorithm, particularly if some of them provide significantly
degraded services. A single test for achievement of a process’ goal at a particular point in its text would
of necessity have o be general enough to pass results of the most degraded algorithm. This might be too
general to enable it to catch errors produced by other, more strict, algorithms. These considerations
suggest the need for separate acceptance tests specifically tailored for each of the primary and alternate

algorithms.,

It must be remembered that, although each process has its own reasons for participating in a
communication activity, there is a goal for the group of processes as well. Rather than combine the
individual goals of the many participants with the group goal in a single acceptance test (perhaps
allowing the programmer to forget some), and rather than replicating the test for achievement of the
group goal within every participant, there should be a separate acceptance test for each participant and

another for the group.

A final problem with many previous backward error recovery proposals is that if a process runs out
of alternates, no scheme is provided or mentioned for dealing with the situation. Such a scheme has not
only to be provided but to be enforced so the programmer must explicitly (consciously} avoid it for those

cases in which that is legitimate. In fact, exercise of any option should be made explicit.

3.2. The Dialog

A dialog is an occurrence in which a set of processes:

(a) establish individual recovery points,
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(b) communicate among themselves and with no others,

(¢) determine whether all should discard their recovery points and proceed or restore their states from
their recovery points and proceed, and

(d) follow this determination.

Success of a dialog is the determination that all participating processes should discard their
recovery points and proceed. Failure of a dialog is the determination that they should restore their states
from their recovery points and proceed. Notice that nothing is said about what actions the processes take

after the dialog. Specifically, nothing is said about actions to be taken in the case of failure.

It follows from the definition that dialogs may be properly nested, in which case the set of
proéesses participating in an inner dialog is a subset of those participating in the outer dialog. Success or
failure of an inner dialog does not necessarily imply success or failure of the outer dialog. Figure 3.1

shows a set of three processes communicating within a dialog,

If we want a program to use dialogs, we need a syntactic facility for enforcing that protocol. To
meet the definition, the syntactic facility must address the following issues:
(1) membership in the set of dialog participants,
(2) establishment of individual recovery points,
(3) communication among participants,
(4) communication with no other processes,
(5) how to determine whether to succeed or fail,
(6) restoration or discard of recovery points,
(7) ensuring proper nesting,

(8) what to do after making the determination.

We introduce the discuss statement as such a syntactic facility. The activities of a given process
relative to a dialog would be denoted by a piscuss statement. Figure 3.2 shows the general form of a

DISCUSS stalement.
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DISCUSS dialog name BY
sequence_of_statements

TO ARRANGE Boolean expression;

A pIscuss Statement

Figare 3.2

A recovery point is established for a process as it begins execution of a pIscuss statement (issue
2), and state restoration or discard of the recovery point occurs as the process “‘leaves™ the piscuss

statement (issue 6). We assume that the machine(s) on which programs are to execute can be made 0
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establish, restore from, and discard recovery points on a process-by-process basis. This may be by a
recovery cache or one simulated by compiler-generated software. The mechanics of this for a single

process are discussed clsewhere [Lome77, Lee78].

The syntax itself ensures proper nesting (issue 7) of dialog entry and exit for any one process.
Chapter 4 describes a method by which an implementation can ensure that proper nesting of dialogs is

maintained across processes.

The dialog name associates a particular pIscuss statement with the prscuss statements of the
other processes participating in this dialog (issue 1), dynamically determining the constituents of the
dialog. This association cannot in general be known statically. At execution time, when control enters a
process’ DIscuss statement with a given dialog name, that process becomes a participant in a dialog.
Other participants are any other processes which have already likewise entered prscuss statements with
the same dialog name and have not yet left, and any other processes which enter prscuss statements with
the same dialog name before this process leaves the dialog. Either all participants in a dialog leave it
with their respective piscuss statements successful, or all leave with them failed, f.e. the dialog succeeds

or fails.

We stated that the participants in a particular dialog cannot be known statically. There may be,
say, three processes whose texts contain references to a particular dialog name. If two of them enter a
dialog using that name, questions might arise about participation of the third. The third process may be
executing some other portion of its code so that it is unlikely to enter a dialog of that name in the near
future. If the two processes reach and pass their acceptance tests, they, being the only participants in the
dialog, can leave it — the third process is not necessary to the dialog, so is not a deserter. If the dialog
fails due to an acceptance test or a timeout (see below), the problem is not guaranieed 1o be the absence
of the third process, so again it is not necessarily a deserter. If the dialog has no time limit specified (see
below), that had to be explicitly stated by the programmer, 0 the two processes becoming “hung”” in the

dialog while waiting for the third was not unplanned.
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A dialog_name may be re-used. If two groups of processes use the same dialog name &t the
same time, they are in the same dialog. If one group’s dialog has finished (successfully or otherwise)
before the other group’s members enter PISCUSS stalements using that dialog name, the other group are

in a different dialog and are said to be in another instance of the dialog.

The sequence of statements in the pIscuss statement represents the actions which are this
process’ part of the group’s acticas within their dialog. Any inter-process communication, which must
be via the normal language facilities (issue 3), must take place within this sequence of statements (i.e.
must be protected by a dialog). The piscuss statement fails (issue 5) if an exception is raised within it,

if an enclosed dialog_sequence (see below) fails, or if any timing constraint is violated.

The Boolean expression iS an acceptance test on the results of executing the sequence of
statements (issue 5). It represents the process’ local goal for the interactions in the dialog. It is evaluated
after execition of the sequence of statements. If this Boolean expression or that in the corresponding
prscuss statement of any other process participating in this dialog is evaluated raLse, the prscuss
statement of each participant in the dialog fails. If all of the Tocal acceptance tests succeed, the common
goal of the group, ie. the global acceptance 1est, is evaluated. If this common goal is TRUE, the
corresponding DpIscuss statements of all participants in the dialog succeed; otherwise they fail
Syntactically, the common goal is specified by a parameterless Boolean function with the same name as

the dialeg name in the pIscuss siaiement

The dialog names used in pIscuss statements are required to be declared in dialog declarations.
The general form of a dialog declaration is:
DIALOG function name SHARES ( name list };
The function name is the identifier being declared as a dialog name. It must be the name of a
parameterless boolean function defining the global acceptance test. Being parameterless and boolean,
there can be no overloading (as in Ada) to be resolved. This function is not allowed to have side-effects.

The names mentioned in the name_iist are the names of shared variables which will be used within
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dialogs that use this dialog name. This includes variables used within the function that implements the
global acceptance test. Of non-locals, only a variable so named may be used within a piscuss statement,
and then only within pIscuss statements using a dialog name with that variable’s name in its dialog
declaration. The significance of these rules is that the set of shared variables can be locked by the
compiler and execution-time support system to prevent smuggling (issue 4). In effect, the actions of the
dialog’s participants are made to appear atomic to other processes with respect to these variables, (Our

implementation, described in Chapter 4, also prevents smuggling via messages or rendezvous).

The Boolean function named by the dialog name is evaluated after all processes in the dialog have
evaluated their respective Boolean expressions and they all evaluate to TruR. It is only evalaated once
for an instance of the dialog; ie. it is not evaluated by each participating process. Thus no process can
Jeave a dialog until all processes currently in that dialog leave with the sam;e success, and success

involves the execution of both a local and a global acceptance test.

Issue 8, above, remains to be addressed by a protocol organizing the use of dialogs as expressed in

DISCUSS statements.

3.3. The Colloquy

A colloquy is a semantic construct that organizes the use of dialogs to solve the problems of
conversations. A colloguy is a collection of dialogs as defined below. At execution time, a dialog isan
interaction among processes. Recall that each individual process has its own local goal for participating
in a dialog, but the group has a larger global goal; usually providing some part of the service required of
the entire system. If, for whatever reason, any of the local goals or the global goal is not achieved, a
backward error recovery strategy calls for the actions of the particular dialog to be undone. In attempting
to ensure continued service from the system after a failed dialog, each process may make another attempt

at achieving its original local goal, or some modified local goal through entry into a different dialog.
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Each of the former participants of the now defunct dialog may choose to interact with an entirely
separate group of processes for its alternate algorithm. The altered constituency of the new dialog(s)
most certainly requires new statement(s) of the original global goal. The set of dialogs which take place
during these efforts on the processes’ part is a colloquy. A set of four processes engaged in a collogquy
that involves three dialogs is shown in Figure 3.3. A discussion is the subset of dialogs within a colloquy
which involve any one process. In Figure 3.3, dialogs 1 and 3 comprise a discussion for process P2,

while dialogs 2 and 3 comprise one for process P3.

That a colloquy and a discussion are not the same thing is illustrated in Figure 3.4, Processes P7
and P8 enter dialog D4 which fails. For its altemate algorithm in attempting to achieve its goal, process
P7 enters dialog D5 with process P6.. Both dialogs D4 and DS are part of the same colloquy. Indeed, if
process P8, in an alternate algorithm to that employed in dialog D4, enters a dialog with some other
process, that dialog would be included as well. Similarly, if dialog D5 was entered by process P6 as part

of an alternate algorithm to that employing a dialog with some other process, that dialog would be
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' Dialog 1 '
P ! ¢ e - - m_m—_————— T 1
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Four Processes in a2 Colloguy of Three Dialogs

Figure 3.3
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P6 P7 rs8 Time

D5

P8

A Colloquy

Figure 3.4

included also. These latter possibilities are shown in Figure 3.5.

A colloquy, like a dialog or a rendezvous in Ada, does not exist syntactically but is entirely an
execution-time concept. The places where the text of a process statically announces entry into colloquys

are marked by a variant of the Ada sErLEcT statement called a dialog_sequence.

D1 D4
D5 D6
P5 2] P9
Another Colloquy

Figure 3.5
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The general form of 2 dialeg sequence is shown in Figure 3.6. At execution time, when control
reaches the serzer keyword, a recovery point is established for that process. The process then attempts
to perform the activities represented in Figure 3.6 by attempt_1. The attempt is actually a prscuss
statement followed by a sequence of statements. To ensure proper nesting of dialogs and colloguys, a
DISCUSS statement may appear only in this context. If the performance of these activities is successfud,
control continues with the statements following the dialog_sequence. The term “‘success™ here means
that no defensive, acceptability, or timing checks occurring within the attempt detected an error, and that
no exceptions (if the language has exceptions) were propagated out to the attempt’s prscuss statement.
If the attempt was not successful, the process’ state is restored from the reco#ery point and the other
attempts will be tried in order. Thus, the dialog sequence enables the programmer to provide a primary
and a list of alternate algorithms by which the process may achieve its goals at that locus of its text,
These are exactly the algorithms which the process employs as its part of its discussion within the

colloguy.

SELECT
attempt 1
OR
attenpt 2
OR
attempt 3

TIMEQUT simple expression
sequence of statements

ELSE
paguence of statements
ERD SELECY;

Form of a dialog_seguence

Figure 3.6
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It is a natural optimization for a structure controlling a (potential) sequence of dialogs to factor out
the saving and discard of recovery points to the beginning and end of the sequence, leaving only state
restoration between dialogs. We will continue to describe the dialog sequence as if that optimization

has been applied.

Exhaustion of all attempts with no success brings control to the erse part after restoration of the
process’ state from the recovery point. The Evse part contains a sequence of statements which allows
the programming of a “‘last ditch’” algorithm for the process to achieve its goal. If this sequence of
statements is successfulf, control continues after the dialog_sequence. If not, or if there was no

statement sequence, the surrounding attempt fails.

Timing constraints can be imposed on colloguys, and hence on dialogs. Any participant in a
colloquy can specify a timing constraint which consists of a simple expression on the TrMEoUT part of the
dialog_sequence, Absence of a timing constraint must be made explicit by replacing the simple
expression with the keyword wever. A timing constraint specifies an interval during which the process
may execute as many of the attempts as necessary to achieve success in one of them. Should an atiempt
achieve success or the list of atiempts be exhausted without success before expiration of the interval,

further actions are the same as for dialeg_sequences without timing specifications.

However, if the interval expires, the current attempt fails, the process’ state is restored from the
recovery point, and execution continues at the sequence of statements in the rxmeoutr part. The attempts
of the other processes in the same dialog also fail but their subsequent actions are determined by their
Oown dialog sequences. If several participants in a particular colloquy have timing constraints,
expiration of one has no effect on the other timing constraints. The various intervals expire in

chronological order.

¥ Success, here has to do with absence of raised exceptions or failures of nested dialoy sequences, since there is no ac-
ceplance test associated with the last-ditch algorithm.
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As with the ELsE part, the TIMeout part allows the programming of a “‘last ditch’’ algorithm for
the process to achieve its goal. The last-ditch algorithms are really a form of forward recovery since their
effects will not be undone, at least at this level. If the sequence of statements in the TxMEOUT part is
successfulT, control continues after the dialog sequence. If not, or if there were no statement sequence,

the swrounding attempt fails,

If any participant in a dialog has a timing constraint, the sequence of statements of the piscuss
statement must be executed successfully and the boolean expression of the pIscuss statement must be
evaluated TRUE in each participant, and the common goal must be evaluated TRUE before the interval
expires for the then current attempts of the participants to be successful. If several participants have
timing constraints, the first interval to expire is the one to be ““beaten” for success to be achieved.
Expiration of one process” timing constraint interval while that process is executing a DIsCUsS stalement
causes all processes currently executing DISCUSS statements with the same dialog name as this process 1o
react as if the boolean éxpression in one of their prscuss statements had been evaluated FALSE, except

that this process continues execution with the sequence of statements in the TIMEOUT patl.

In any attempt, a statement sequence which is logically outside the dialeg sequence can follow
the pIscuss statement to provide specialized post-processing after the recovery point is discarded if the

dialog succeeds. It is not subject to this dialog sequence’s timing constraint,

The programmer is reminded by its position after the rmMEOUT part that the ELsE part is not
protected by the timer, and that it is reached only after other (potentially time-consuming) activities have
taken place. The structure of the dialog_sequence als0 requires no acceptance check on these activities.
The implication of these two observations is that the last ditch activities need to be programmed very

carefully.

i Again, success here has to do with absence of raised exceptions or failures of nested dialog pegquences, since there is
no acceptance test associated with the last-ditch algorithm.
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A fail statement may occur only within a sequence of statements contained within a
dialog_sequence. Execution of a FAIL statement causes the encompassing dialog to fail. The Fazn
statement is intended for checking within an attempt. For example, it can be used to program explicit
defensive checks on inputs such as:

IF input_variable < lower bound THEN
FAIL;
ERD IF;
it can also be used to simplify the logical paths out of an attempt should some internal case analysis reach
an ““impossible’” path. With the Farr staiement, the programmer does not have to make the code for the
attempt complicated by providing jumps or other paths to the acceptance test or to insure that some part
of the test is always ranse for such a special path. The raIL statement can also be used to provide

sequences of statements for the znse and rrMeovr parts that make failure explicit rather than implicit

(recall, implicit failure is indicated by their absence).

3.4. Discussion of Details

The colloquy is a very flexible and powerful concept. Fitting the concept into a real language
presented many options only some of which we have chosen for the presentation above. That
presentation focused on how the colloquy addresses the problems with the previous proposals, Other
options and decisions which we considered interesting or important to provision of a fault-tolerance

facility are discussed below.

3.4.1. Dynamic Association

Use of dialog names is a dynamic association, not a static one. This is analogous 1o entry calls and
accept statements. In general, there is no way to tell statically which entry call in which process will be
accepted by any particular accept within another process. Some processes may enter and leave instances

of dialogs cyclicly, while others may join for a few or one instance only. There can even be varying
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numbers of processes in each instance of the dialog. This flexibility allows the programmer to design a
process with differing sets of primary and alternate algorithms to be used as execution-time conditions
may dictate. For instance, the process may be able to recover from an internal error by degrading itself
based upon some internal test and by subsequently checking a corresponding variable. This kind of
recovery involves no changes to the other communicants. If recovery from some error involves the
services of several processes (one process) being taken over by one (several), the replacement(s) might
subsequently be able to communicate with the remainder of the system without change to the remainder

of the system.

3.4.2. Optional Statement Sequences in rmeovr and euse Parts

An absent “‘last ditch’ algorithm for timing specifications is defined not to mask failure of the
current discussion for the process which timed out. This is for the same reasons as will be described for

the erLse part below, to wit: to catch errors of omission.

The ELsE part of a dialog_sequence provides a place for a last-ditch effort at achieving the
process’ goal for the discussion. It would seem that an ELSE part with a null statement sequence would
suffice for the case in which nothing can be done. But when nothing can be done, it is desirable to have a
means of “‘propagating” a discussion’s lack of success to a larger, surrounding context. This failure of
the discussion is provided by the absence of the sequence of statements in the ELsE part. It is even more
clear to require the EnsE part and have the programmer include an explicit Fa1n statement within it. To
rely on that would leave programs open to fanlts of omission in that the programmer might include some
statements but forget the FaIL statement itself. Faults 'nivolving omitted program parts are more gasily
caught by defining execution of an absent optional part as failure than by requiring an explicit

annunciation of that condition when the announcement (FAIL statement) might be accidentally omitted,
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3.4.3. Un-Timed Statement Sequences

The sequences of statements in the TrMeour and ELSE parls are not protected by time limits, There
is nothing within a dialog sequence 10 prevent its “‘last ditch’’ efforts from themselves going into
infinite loops. There are several reasons for this. Pragmatically, one must draw the line on timing
somewhere and at some point trust code intended to compensate for timing difficulties not to introduce
them itself, The fact that the programmer is writing a TIMEOUT part’s statement sequence should be
reminder enough that that algorithm must be cycle-free and fast. Additionally, the fact that all attempts
had to have been made before the r1sE part is reached should indicate that much time has been wasted
before the ELse part begins, thus it too should be straightforward and fast. I these algorithms are such
that their timing is doubtful, the dialeg_sequence could be encased within an attempt of another such

statement.

The sequences of statements following pIscuss statements are not timed. They are for specialized
post-processing for the different algorithms and are logically outside of the dialoyg sequence’s

protection, just as are those in the TrMeout part and within the zvse part.

3.4.4. rrveour and eise Parts Not Mutually Exclusive

The TMeovr and ELSE parts are not mutually exclusive. Each of these sections provides a iast
ditch opportunity for the enclosing process to achieve the dialeg sequence’s goal after the failure of the
other attempts to achieve it. It might seem that the last ditch actions would always be the same. Their
statement sequences often would be identical. However, in the TIMEOUT Case, the statements are reached
because one or more of the other attempts have taken too long in the effort to achieve the goal, while in
the ELsE part the statements are reached because all of the attempis have failed for other than timing

reasons in their efforts to achieve the goal.
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One might consider defining the TrMeouT part such that non-timing failure of the preceding attempt
initiated its execution so that it would serve as an Brse part as well, That would neglect the difficulties
of programming the sequence of statements in the TIMeouT part in the case in which the programmer
desired to make use of the information about why the sequence of statements was reached. There could
be a wealth of usable information in the knowledge of which of the cases requiring Jast ditch efforis had
occurred. When an attempt fails, information is lost about why. Having a separate alternate algorithm
for the situation of timeout as opposed to falling through an only attempt adds a little more information

for programming at least the last ditch algorithm.

The ELsE part and the TIMEour part do not protect each other. The philosophy that they both are
last ditch efforts prohibits either of them from being used as a backuop algorithm for the other. If the
ELse part “‘times out’’, it is presumed unlikely that there will still be time for the algorithm in the
rIMEOUT part to complete. Similarly for some failure of the algorithm following the rxmeout part being

handled by the ELsE part,

3.4.5. Exceptions

An exception propagating from within a prscuss statement signals failure of that atterapt while an
exception propagating from within the sequence of statements following a piscuss statement, in the
TIMEOUT part, or in the ELSE part signals failure of the dialog sequence. These cases are identical to the

cases of execution of rary statements in the same locations.

Should there be no encompassing attempt in the absence of success, the process is allowed to
provide some alternate action in the form of a generic exception handler (such as for ormers in Ada).
Should there be no encompassing attempt in the absence of success, and should the process provide no
alternate action in the form of a generic exception handler, the process becomes terminated (completed,

abnormal).
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Except at the outermost level of a process, an explicit exception handler for Farr is not allowed,
The colloquy is intended to avoid the pitfalls of ad hoc recovery. The use of orEers to build a handler
which can catch FazL has been explicitly ruled out except at the highest level of nesting where ad hoc
recovery may be necessary. The canses of a failure of this kind can be so disparate that only general
restoration and possible re-iry can be expected to cover them all, whereas explicitly programmed
handlers can easily omit actions for important cases as well as fail to properly discriminate among the

Cases.

3.4.6. Nested Commitment

It might seem to be a consequence of the nested recovery rules that, at least for communications-
oriented dialog_sequences, objects become committed or unrecoverable upon successful completion of
an attemnpt in a nested dislog_sequence, This is not true. With nested dialog_sequences, all objects
are recovered if the process backs up far enough. All communicants must have the same nesting
structure, In Figure 3.7, the final value of Y is 1 rather than 3; it does not matter to which process Y

actually belongs, since that process must have been a participant in dialog A as well as dialog B.

3.5. Summary

We have introduced a new linguistic construct, the colloguy, which solves the problems identified
in the earlier language facilities proposed for sitnations requiring backward error recovery, and is as

powerful as all of them. The major features that distinguish the colloquy are:

(1) The inclusion of explicit and general timing constraints. This allows processes to protect
themselves against any difficulties in communication that might prevent them from meeting real-
time deadlines. It also effectively deals with the problem of deserter processes. No process is

required to wait forever for a process that will not enter a dialog.
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X=LYi=i;
enter A
Xum2:Y =2,
enter B
Y =3
B is successful
(X=2)&(Y=3)
A fails |
(X=1)&(Y=7)

Event Sequence for Hypothetical Nested dialoy_sequences

Figure 3.7

(2) The use of a two-level acceptance test. This allows much more powerful error detection because it

allows the tailoring of acceptance tests to specific needs.

(3) The reversal of the order of priority of alternate communication attempts and of recovery points.
This aliows procésses to choose the participants in their alternate algorithms rather than being

required always to deal with a single set of processes.

(4) A complete and consistent syntax that is presented as extensions to Ada but could be modified and

included in any suitable programming language.

The contributions of this chapter to resolving the eight issues stated at the end of Chapter 2 are

listed below.

{1) The unexpected delay problem is directly addressed by the Tnmou? part of the dialog sequence.
The syntax emphasizes that time is of utmost importance by requiring even the absence of timing
constraints 10 be stated explicitly. Implementation overhead relative to the complexity of the

semantics remains to be resolved by future experimentation,
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The complexity of using these constructs is controlled in several ways. The semantic rules can be
enforced through static checks on the syntax. The rarn statement provides easy exits without

convoluted code. Separation of concerns is provided by separate tests for each aliernate algorithm.

"This in turn encourages the tests to be more specific to each alternate. Similarly, the association of

the dialog name with the dialog function combines the global conditions to be tested into a

single place.

Parallelisen is basic to the colloquy, but one can use the same construct for sequential programming
as well. The inversion of the conversation’s communication-recovery relationship loosens the
restrictions on the autonomy of processes. Under the colloguy, processes may use different

communications partners in alternate algorithms,

In that these concepts and their syntactic structures address the problems that have been idcntiﬁeq,--”:
with previous pro;iosals, they are certainly more complete. However, as we shall see in Chaptél: 5,
there are further 'probIems that have not been noted in either previous proposals or the dialog and

colloguy as described so far.
The placement issue remains to be addressed by future experimentation with the use of these ideas.

As for taking reality inio account, we have already dealt ;xrith the unexpected delay problem,
Chapter 4 demonstrates that there is an implementation of these ideas, and we wiﬂ’ later deal with
unrecoverable objects (see below). Whether backward error recovery will prove useful in real-
time systems depends upon experimentation with these ideas. We are reminded that the problems
of the previous proposais did not allovx; them to be amenable to experimentation in realistic

systems.

This chapter has not addressed unrecoverable objects at all. That will be addressed in Chapter 6.
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(8) 'The latency issue is not addressed further in this work other than weakly by the provision for

multiple, hence more specific, acceptance tests.

The dialog and colloguy are broad generalizations of previous software fault-tolerance proposals.
This view puts what we had called those proposals® shortcomings into a better light. Now, rather than
shortcomings, they are the restrictions which make those proposals special cases of this more general
concept. That those proposals are special cases of the colloquy is deinonstrated by example in Appendix
B. The fact that we had termed those restrictions *‘shortcomings’” indicates that we still consider them
ill-advised. However, the illustration syntax for the piscuss statement and dialog sequence would

force such restrictions to be deliberate decisions on the part of the programmer/designer.
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Implementability

This chapter demonstraies that the prscuss statement and the dialeg sequence can be

implemented. The implementation described here is probably not optimal.

An existing LALR(1) grammar for Ada, amended by BNF rules equivalent to those given in
Appendix A, remains at least a LALR(1) grammar. Hence an unambiguous parse of a dialog_sequence
and it constituent discuss statements is possible. Therefore, a2 compiler can generate code or generate
calls to support code implementing the algorithms presented below at the appropriate boundaries within
the dialog_sequence. This chapter describes the code and data structures that must be generated and the
support routines that mﬁst be invoked at those boundaries, For generality, we show via pseudocode the
functionality required of | these rontines. We discuss issues arising from the definitions of dialog,
pIscuss statement, colloguy, discussion, and dialog sequence and how an implementation might

address them.

First, we discuss some of the underlying mechanisms that we assume exist in some form in an
implementation of Ada whether backward error recovery is included or not. Assuming these mechanisms
eliminates some of the detail. Next, we describe extensions of assumed existing data structures of an Ada
implementation and some new data structures used in this extension to the implementation for backward
error recovery. The bulk of the presentation involves descriptions of additional algorithms employed by
the language support system and how they relate to the program source and to other parts of the support

system.
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4.1. Underlying Mechanisms

For brevity, we make certain assumptions about the language support system to which additional
facilities supporting backward error recovery are to be tied. These involve a recovery cache mechanism,
the data structures for providing the illusion of parallel processes, the data structures and mechanism
implementing Ada prrays, the mechanism for propagating exceptions, the mechanism for queuing
messages related to the Ada rendezvous, the existence of certain word-locking algorithms, and the

implementability of implicit operations during branching operations.

We assume the language support system’s or hardware’s ability to perform the caching functions
on demand. Lee [Lee78] and Lee, et al {LeeB80] discuss this. They concentrate on single-process systems

and state that it is easy to extend to multiple processes which make independent caching demands,

We assume the support system keeps track of the information necessary for realizing a process in a
table which we call a process control block. We will describe additional fields of this table for

information specific to an individual process as it deals with others through dialogs.

The basic facilities for timers occur often in operating systems, Usually there is only a single
hardware device (per processor} interrupting the processor at regular intervals, providing a basic
granularity of time measurement. We assume a queue of “‘events’ is kept and compared against the
cumuiative *‘ticks”” of the interrupting device. An implementation of Ada must include a similar facility.
Ada allows individual processes to specify scheduling prrays and a form of timeout on individual
communications (messages). For implementing the dialog sequence, we create a new kind of timer
queue entry and define how the entry is to be associated with the dialeg_sequence of a particular

process.

In Ada, there are two possible exits from any statement or block. One of these is to be taken if the

statement succeeds. The normal instruction sequencing mechanism is used for this path. The other is to
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be taken if an exception is raised in or propagated to the statement. When an exception is raised, the
address of the currently appropriate handler code (or the code to discriminate among handlers) must be
available from some standard place different than that implied by the normal instruction sequencing
mechanism. For exception propagation, an alternate return address must be available similarly. The

nesting of exception handler contexts (declare blocks) implies that this address is also stackable.

In Ada, the message protocol is such that the sender is suspended until the message is received and
a reply returned (beginning and end of rendezvous). The messages exist on the receiver's “‘entry
guenes”. Although suspended, an indication exists in the sender as to which process is the receiver.
This is to facilitate retraction of the message under such eventualities as expiration of DELAYS and ABORTS
targeting the sender. Also, the number and absolute names of the receiver’s queues are subject to change
due to “‘entry families’”. Since the index type of an entry family can cover many unused values, it is
impractical for an implementation o provide a static data structure for the maximum possible number of
entries. We therefore aésume a dynamic number of data structures representing entry queues and that

associated dynamic queue names are checked at an early stage of the message acceptance process.

We also assume the existence of certain word-locking algorithms. Under such algorithms, the
spaces allocated to individual variables can be locked so as to resirict access to a single process or a
limited group of processes. ‘We further specify that the desired algorithms permit the access rights to be

temporarily restricted to a subset of the already-privileged group of processes.

Pausing during a branching operation for another, implicit operation is not new, It is essentially
what is required in Ada for branches (or rerurxs) out of blocks (procedures) which declare tasks. The
branches in those cases cannot complete until the declared tasks terminate. Implementations of Ada

exist, so this kind of branch can be implemented.
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4.2. Abstract Data Structure

This section describes the extensions to an Ada implementation’s data structures and some
additional data structures that are usefuf in implementing the dialog_sequence and DISCUSS statement.
First, there is some discussion of the translation from source to internal naming, This provides a basis for
understanding of the organization of some of the information in the data structures, Then, the primary
data structure for implementing dialogs is presented. The descriptions of extensions to the process

control block and timer queue complete the data structures section.

4.2.1. Internal Dialog Naming

As Chapter 3 states, proper nesting of pIscuss statements, the syntactic evidence of dialogs, is
ensured by the syntax itself. Unfortunately, that only holds for single processes. Suppose processes »i
and P2 each enter pIscuss statements with dialeg name alpha, Suppose further that e1’s piscuss
statemnent referencing alpha is nested within a prscuss statement referencing dialoy name beta, but
p2's is not. Syntactically, everything is fine, but the situation is as depicted in Figure 4.1a.
Communication between 21 and p2 within alpha presents an obvious case of smuggling as regards
peta, Since this syntactic situation can legitimately occur, we allow it, but insist that the dialog of which
P2 is a member is actually (internally) named alpha, whereas pi is a member of an entirely different

dialog actually named beta.alpha as depicted in Figure 4.1b.

The internal names of dialogs referenced in procedure bodies are formed by appending the
dialog_names mentioned in the procedure bodies to the internal dialog names applicable at each point of
call for the procedure. For instance (Figure 4.2}, suppose a procedure P contains a dialeg_sequence
with Dprscuss statements referencing dislog names alpha and beta. Further suppose that p can be
called from within some piscuss stalement referencing dialeg name gamma and from outside any

piscuss statement. We have five potential unique internal dialog names: alpha, beta, gamma,
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b o

(a)

-

beta
bata.alpha
Ple o o o e o i
alpha
P2 oo e e e e e [

Improperly and Properly Nested Dialogs

Figure 4.1

PROCEDURE p is ... begin
DISCUSS alpha BY ...
OR DISCUSS beta BY ...

[name} = dialog entry for dialeg "name”

END p; set of outermost dialogs
SELECT . [alphal .
DISCUSS gamma BY ... . - sat of nested dialogs
Pr o . [betal . Wrersrsenseseanns
END SELECT; . . [gamma .alpha]
e . [gammal——me-
P T eaeees ceven . f[gamma.betal
Internal Names From Call Chain
Figure 4.2

gama.alpﬁa, and gamma.beta, resulting in five of the dialog_entrys that we describe below. If an

implementation allowed unbounded recursion in procedure calls, dialeg_entxys would have to be built

at execution time rather than at compile time. Including the additional complexity required of the data

structures and algorithms below in order to handle unbounded recursion would not be instructive. For

this presentation, we assume statically determinable bounds on recursion.
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4.2.2. Information Specific to Each Dialog

The implementation maintaing a dialog entry for each dialog instance (Figure 4.3). There is a
collection of dialog_entrys for the dialogs at the outermost level. Besides its name and where to find
the entry point for the global acceptance test function, each dialog has a dialog (parent) within which it
is nested, and a collection of dialogs (children) nested within it. The shared variable list is represented
" with information necessary for finding them, the entry points of the code specific to this list of shared
variables for saving, restoring from, and disca.rding‘a recovery point for them, and information for
locating that recovery point in whatever recovery cache mechanism is being used. This last item might
be the value returned as a cachemark from the save instruction [Les80]. There are a lock on the
dialog entry itself to prevent the addition of new participants during evaluation of the global test and an

active flag to aid in starting a new dialog and in limiting searches of the collection of dialog entrys, If

dialogs_table ->
set_of{dialog entry) -- statie structure

dialog entry =->

[name :string -~ gtatie unless noted
, function code teode address

,Parent :reference to(dialeg entry)

children :set of {dialoy entry)
,shared_variable addresses -~ gphatic structure

,shared variable save code :code address

,shared variable restore code:code address
,shared variable discard_code:code address

,shared wariable cachemark -- dynamic value

. lock :boolean -- dynamic value

ractive tboolean -— dynamie value

yparticipants :gat_of (reference_to (process_control block))
-- dynamic structurs

:locked out tsat_of (reference to(process contrel bhlock))

-- dynamic structure

]

Sample Implementation Data Structure

Figure 4.3
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a dialog is not active, i.e. has no participants, then neither are the dialogs nested within it. If the active
flag indicates a process has not eniered, the next one o do so must be the first and can establish a
recovery point for the shared variables. Each process participating in a dialog can be found through the
participants set. Similarly, the dialog entry(s) of the dialog(s) of which any process is a member can
be found through that process’ control block (Figure 4.4). Finally, as the current dialog instance ends,‘ I:he
set {locked_out) of processes locked out of the dialog during evaluation of the global test can be found

and allowed to create a new instance.

The static nesting of prscuss statements within each process, and hence the full dotted names of

all potential dialogs is evident in the program text. Much of the data structure contains static information,
80 can be built at compile time rather than being reconstructed at execution time as dialog instances come
and go. The active flag causes the dialog entry 10 be ignored until a process actually tries to enter a

dialog of that name. The 1ok flag prevenis new participants from entering during evaluation of the

{rl
,current dialeg » {"beta.alpha"
} < participants
,children
parent
e ]
["betat
participants
(children
parent
3 <
{p2
,eurrent dialog weeesswwewsd [Palpha®
} e participants
,children
(parent

1

Process Control Block / dialoeg_entry Linkage

Figure 4.4
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global test. Parts of the data structure do have to be filled in at execation-time as dialog instances occur,
One such item is the reference paih from a dialeg entry to the participating processes as they enter and
exit an instance of the dialog. The potential maximum size of the participant collection could also be

pre-computed.

4.2.3. Process Control Block

Additional information in a process’ control block due to the inclusion of dialog sequances is
reviewed in Figure 4.5. We use ‘‘next_instruction” to refer to the stored program counter when a
process is descheduled. The failure and snccess continuations are the target locations for the completion
of dialogs, appropriating the exception/alternate return address mechanism assumed earlier. Roughly,
these continuations are the beginning of the next attempt and the statement sequence following the
pIscuss statement, respectively, For the last attempt, the failure continuation is the beginning of the

ELsE part. There is a record (end_of_sequence) Of whether the process is currently executing the last

procass control block ->
[universal name
ynaxt_instruction :code_address
current_dialog :reference to{dlalog entry)
(failure_continuation:stack of(code address)
. success continuation:stack of{code address)

test _address istack_of (code address)

.end of sequence tstack_of (boolean)

branch stack :stack_of (code_address)
recovery point info :stack of (mechanism dependent)
. accepted :boolean

(dialog cleaned up  :bhoolean

e

1

Additions to Process Cohtrol Block

Figure 4.5
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dialog in the dialog_sequence at cach level of nesting. The address of the local acceptance test for the
current dialog is available for use in branches. This is augmented by a stack (branch_stack) of alternate
success continuations for branches across dialog boundaries. These values are stacked and popped as the
process enters and exits nested dialogs, as is the recovery point information. If recovery points are
implemented entirely via hardware, there may be very little information to keep in this last stack. The
current_dialog field references the dialog enmtxy of the innermost dialog of which the process is a
member. The accepted flag denotes whether the process has or has not yet evaluated its local
acceptance test TRU in the current dialog. The dialog_cleaned up flag is an artifact of the centralized
algorithms we present below, The process that evaluates the global test pops the continuation stacks for
the other participants yet they continue at the beginning of the same algorithm as it did; hence, they use

the flag to branch around the algorithm,

4.2.4. Timer Queue

A timer queue entry (Figure 4.6) is construcied after evaluation of the timing constraint expression,
if any, and before the process performs the dialog entry algorithm for the first dialog in a timed
dialog_sequence. The kind field distinguishes dialog TIMEOUT entries from other events on the timer

queue. The entry contains the expiration time, a reference to the process, and a means of associating it

timeout entry -~>
[expiration time rtime

kind t{ ... ,TIMEOUT}

rthe process :reference to(process control block)
. surrounding dialog:reference_to{dialog entry)

timaout part reode_address

1

Timer Queue Entry for TamMeour

Figare 4.6




73

with the dialog sequence within the process. For this association, we use a reference to the
immediately enclosing dialog, where nuli indicates a timing constraint on the outermost

dialog_seequence, The entry point of the TIMEOUT part is also included in the timer queue entry.

4.3. Operation of Dialogs: Dialog Algorithms

The implementation manages the bookkeeping for membership in dialogs, communication without

smuggling, executing Iocal and global tests, branching based on success or failure, and timeouts.

Figure 4.7 is the form of the source text of a dialog_sequence. It will be used as a running
example. Figure 4.8 shows placement of the “‘calls’’ to many of the algorithms described in this section
relative to other code generated for the dialoeg_sequence éf the running example. For reference, the
labels in the two figures correspond. We use the Ada named-parameter association syntax. The

TIMER INTERVAL parameter to algorithm primary and the vocan TeEsT parameter to algorithm

LO1l: SELECT

L0Z: DISCUSS alpha BY
LO3: statement seq 1
LO4:  TO ARRANGE beta;

Lo5: statement seq 2

L06; OR
LOT: DISCUSS gamma BY
Log: statement seq 3

LO9: 1O ARRANGE delta;
Lie: statement seq 4
L1l: TIMEOUT interval 1
Li2: statement segq 5
L13: ELSE

Li4: statement seq 6
L15: END SELECT;

Example Source Text Form

Figure 4.7
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LOl: PRIMARY{TIMER INTERVAL => interval i, TIMEOUT PRRT => L12
DIALOG _NAME =» alpha . COMMIT LOCATION => LOS
(FAIL LOCATION => LG7 , TEST LOCATION =» LO4
,EBD_OF SEQUENCE=> FALSE )
statement._seq 1
LO4&: ACCEPTANCE TESTS (LOCAL TEST => beta)
LO5:  COMMIT
statement_seq 2
goto L15
LO7:  ALTERNATE (DIALOG NAME => gamma, COMMIT LOCATION => L]0
(FAIL LOCATION => Ll4 , TEST LOCATION =» LOS
,END_OF SEQUENCE=> TRUE )
statement seq 3
Lo9: ACCEPTANCE_TESTS (LOCAL _TEST => delta)
L10:  COMMIT
statement seg 4
goto L15
L12: LAST DITCH
statement_seq 5
goto L15
Ll4:  LAST DITCH
statement seq €
Li5: :

Placement of Calls to Dialog Algorithms

Figure 4.8

ACCEPTANCE_TESTS are passed ‘‘by name’” [Inge61] if the implementation does not generate the code for

the atgorithms in-line,

Briefly, algorithm prIMary first establishes the timer queue event for the dialog_sequence. If the

process has not begun executing one of algorithms corrr and LasT DITCH after TIMER INTERVAL time

units, the process’ then current dialog will fail and the process will continue at the TIMEOUT PART.

Algorithm prrMary next makes the process a participant in the

named dialog with the provisions that on

success the process will continue at the comaT_vocarron (algorithm comurt) and that on failure it will

continue at the FATL rocarrow (algorithm AnTErRNATE). After

body (statement_seq_1) of the first prscuss statement.

this, the process proceeds to execute the
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Upon completion of the piscuss statement’s body, algorithm accprance TEs?s evaluates the
process’ rocan TEsT and, if necessary, the dialog’s global test. Based on the result and the values passed
to algorithm rriMARY, algorithm acceprance_reszs then branches to one of algorithms comrr and

ALTERNATE.

Algorithm commrT cancels any timer events on the dialog_sequence and releases each participant
of the successful dialog to continue at the sequence of statements following its prscuss statement. In
case there was a branch from the piscuss statement’s body to a destination outside that body, the
TEST LoCATION passed to algorithm prrMary will have been used, and algorithm comyrr will effect the
final branch to the intended destination. Algoﬁmm ALTERNATE, like algorithm prImary, makes the
process a member of the named dialog with the same respective provisions. Unlike algorithm PRIMARY,
it only deals with timer events when it cancels any events on dialog_sequences nested within the dialog
whose failure has led the process to algorithm avTernarz. As well as canceling these timer events, the
algorithm releases the participants of the failed dialog, but in a failed mode as opposed to the successful
mode employed by algorithm commrr. Were there a third attempt in the example dialog sequence, the
address passed to the first instance of algorithm avreERNATE would be that of the instance naming the

dialog desired for the third pIscuss statement.

Algorithm  1as?_prrcs, like algorithm anTerware, cancels timer events on nested
dialog_sequences and releases participants of the failing dialog. Like algorithm comrr, it also cancels
any timer event on this dialog sequence, before allowing the process to continue at the appropriate

last-ditch try in the d¢ialog sequence.

The disparities in processing of the timer events and recovery points are the major complications
differentiating the dialog algorithms. A timer event on the dialog_sequence is established by algorithm
provaRY, and canceled by one of algorithms comsrr and nast_prrca. It is not touched between dialogs
in this dialog_sequence by algorithm avterwate. The recovery point local to this process is saved by

algorithm erIMARY, used for recovery by algorithms arrerNate and rasT pivcl, and discarded by
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algorithms comerr and 1asT prrce. The recovery point for any data shared by a dialog is saved by
algorithm PRIMARY or ALTERNATE, used for recovery by algorithms avrerware and iasT_pIrTen, and
discarded by algorithms AnrerRNATE, comvrrT, and rast prrcy. The other complication lies in the special

handling of continuations in algorithm commt for branches out of a p1scuss statement.

We describe the algorithms roughly in the order they occur in the example, PRIMARY,
ACCEPTANCE_TESTS, COMMIT, ALTERNATE, and 1ast prrca. The areas of commonality among these
algorithms have been factored out to “‘macros™ called ENTER DIALOG, CANCEL_TIMERS, and
EXTRICATE partrcipanrs, Their descriptions are interspersed among those of the algorithms. Finally,
we describe several utility algorithms, TIMEouT, IMPLICIT OTHERS, and BRanch, that help explain how

the algorithms above mesh with other parts of the language support system,

4.3.1. Algorithm prnmry

Algorithm prrvary (Figure 4.9) is really very simple. The interval specified in the rrMeovr part
of the dialey sequence is evaluated and a timing event instalied on the timer queue assumed above.

Then, a recovery point is saved for this process and the process enters the named dialog.

As for notation in these algorithms, we assume the existence of certain obvious routines,
represented here by now (returning the current time in whatever units), install timer_gueue_entry
which must exist in some form in an Ada implementation anyway, and push, pop, and top for
manipulating stacks. Constants and variables local to the algorithms are in capitals, and calls for
expansion of macros and conditional “‘compilation’” are bracketed by <<< ... »>»>. We use self 10
reference the currently executing process’ control block. Figure 4.9 line 7 prevents the process from
being extracted from a dialog by algorithm 1asT_prrem, since it would not have entered a diatog before
the interval expired. The pseudocode beyond Figure 4.9 line 9 is assumed not to be interruptible from the

scheduling standpoint or by the other algorithms.
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1 Algorithm PRIMARY (TIMER INTERVAL : THUNK duration;TIMEOUT PART rcode_address

2 ;DIALOG NAME tetring ;COMMIT IOCATION:code address
3 JFAIL_IOCATION :code address [TEST LOCATION :code address
4 JEND OF SEQUENCE :boolean Y =
5 END TIME := now + TIMER INTERVAL
6 if BEND TIME < now then
7 self.dlaleg cleaned up := TRUE
8 goto TIMEOUT PART
'8 end if
10 install timer gqueue entry(expiration time => END TIME
11 ckind => TIMEOUT
12 +the process =>» gelf
13 , surrcunding dialeog => self.current dialog
14 sbimecut part =» TIMEOUT PART)
15 push (self.recovery peoint info, save_recovery point for process(self))

16 <<<ENTER_DIALOG>>>
17 end Algorithm PRIMARY

Algorithm prRIMARY

Figure 4.9

4.3.1.1. Macro enrer_pravoc

Because swrer pranoe (Figure 4.10) is a macro, expanded in-line, the local variables and formal
parameters of its calling algorithms carry over. When entering a dialog, a process saves the addresses
that will be used when it exits, notes whether or not the dialog corresponds to the last piscuss statement
in the dialog sequence, flags itself as not having passed its local acceptance test for the dialog, and
references the dialog_enéry appropriate to the desired dialog. That entry is the one with the
dialog_name used in the prscuss statement and nested within the current dialog (Figure 4.10 line 11). If
there is no current dialog, the choice is among the roots of the trees (formed by the parent and children
relationships) in the forest formed by the outermost dialogs (line 8). Now that the process is ready to
enter the appropriate dialog, it may become suspended while a pre-existing instance of the dialog
evaluates its globat acceptance test and its participants exit. Line 15 allows the suspended processes to be
found easily for revival as soon as the old instance becomes inactive. Since line 16 is essentially a

scheduler request, the algorithm employing the macro is *‘interruptible’” at that point as we have been
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I Macro ENTER DIALOG =

2 push(self.fallure continuation, FAIL LOCAT TON)
3 push{self.succesa_continuation, COMMIT LOCATION)
4 push(self.test_address ; TEST LOCATION)
5 push(self.end of sequence LEND_OF SEQUENCE)
6 salf.accepted := FALSE
7 if self.current_dialog = NULL then
8 P i= x where (x ¢ dialogs table
9 ] %x.name = DIALOG NAME)
10 else
11 D := % where (x € self.current dialog.children
12 { ®.name = DIALOG NAME)
13 end 1if
14 if D.lock then
15 D.locked out := D.locked out U {self}
16 hang
17 end if
18 if - D.active then
19 execute (D.shared variable save code)
20 D.active := TRUE
21 D.lock ;= FALSE
22 end if
23 self.current dialog := D
24 D.participants := D.participants  {self}
25 end Macro ENTER DIALOG

Macro ENTER_DIALOG

Figure 4.10

using the term.

The set of variables in the smares list associated with a dialog are cached for recovery. This is
done under control of the support code rather than in-line instructions of participating processes. Which
process will be first to enter a given dialog instance is not known a priori. Code cannot be generated in-
line for a particular process to establish the recovery point. The compiler generates code
(shared_variable save_code in the dialog entry) to be called on behalf of the first process which
enters the dialog to save the recovery point. Code is also generated to restore or to discard the shared
variables’ cached values (shared variable restore_code, and shared variable_discard code in the

dialogwentry). This code may use tables (shared variable addresses in the dialog__entzy) to help
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Tocate the variables. The set of variables shared within any dialog is of course known at compile time.

If this is the first process to enter this instance of the dialog (line 18), a recovery point is saved for
the variables in the smares list. Finally, the process links its control block with the dialog_entry as

described in Figure 4.4 and proceeds to execute the body of its prscuss statement.

4.3.2. Communication During i)ialégs

- A major function of dialogs is to provide backward error recovery for communications between

Processes.

To prevent smuggling via messages, the implementation attaches to each message the internal
dialog name for the dialog of which the sender is a member. A receiving process is not allowed any
'informaﬁon about the existence of the message until the receiver becomes a participant in the same
dialog. If the dialog ends before the message is received, the message is removed as part of the normal
clean-up for the dialog. In that case, the suspension of the sender in Ada implies that the sender would
not have proceeded to its acceptance test, so the dialog ending without message receipt would be due to
expiration of a timing constraint or failure of a different process in the sender’s dialog. Messages which
disappear due to dialog failure never actvally existed — this is consistent with the idea of a dialog being

an atomic action.

Internally, the receiver has several entry gqueues for each source entry queue name. The queues’
full names are the source names with internat dialog names appended. For example, suppose the accept
is within two nested dialogs arema and BETa. The presence in the source of accept e telis the

implementation to actually gencrate accept ALPHA.BETA.e.
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4.3.3. Algorithm acceerance_rests

Having completed execution of the prscoss statement’s body, the process begins algorithm
accepTaNcE TEsTs (Figure 4.11). The local acceptance test is evaluated. If that test does not fail, the
process becomes non-interruptible after Figure 4.11 line 4 as described for algorithm erovary. The
process marks itself as having passed its local test in case it has to wait for others to do so. Most of the
algorithm involves deciding whether the process should go ahead with evaluating the global acceptance
test. It should if (Figure 4.11 lines 6 to 10) there remain no participants that have not passed their local
tests. Line 7 deals with members of a nested dialog that are awaiting evaluation of its global test. Once
the decision has been made to execute the global test, no new processes may enter the dialog. These
algorithms do not provide for it. If this is the last process to arrive at the tests, the dialog is locked to

prevent the entry of more participants until this instance of the dialog ends. The global test (line 12) is

1 Algorithm ACCEPTANCE TESTS (LOCAL TEST:THUNK boolean) =

2 if — LOCAL TEST then

3 goto top(eelf.failure contimuation)

4 elspe

5 self.accepted = TRUE

6 if {1 € self.ourrent dialeg.participants |

1 (i.current dialog # self.current_dialog)

] or

k] (- i.accepted)}

10 = {J then

11 gelf.current dialog.lock := TRUE

1z if — self.current dialog.function code then
13 goete top(self.failure continuation})

14 and if

15 -~ will drop through to COMMIT

16 alse

17 hang -~ will proceed using success_ or fallure continuation
18 end if

19 and if

20 end Algorithm ACCEPTANCE TESTS

Algorithnm ACCEPTANCE_TESTS

Figure 4,11
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evaluated in interruptible mode after which the process will have detected failure of the dialog or drop
into algorithm comuzr for success. The processes that were not the last to pass their local tests become
suspended (line 17), waitihg for the last process to determine success or failare of the dialog and where

they should resume execution.

It is because the tests are unpredictably long and may raise exceptions that the process is
interruptible while evaluating them. This allows algorithm< rIMEcUT Or the exception handling

mechanism 1o take over if need be.

4.3.4, Algorithm comr

A process arrives at algorithm commurr (Figure 4.12) via one of two routes. It may evaluate the
“dialog’s global test True and fall through from algorithm accerrance_TesTs. Alternatively, it may have
remained suspended in algorithm acceprance_rests while another process bok the first route. In the
latter case, the other process would have done all that was necessary to release this process from the

dialog, and would therefore have set this process’ dialog cleaned uwp flag. The entirety of this

1 Algorithm COMMIT ==

if melf.dialog cleaned up then
self.dialog cleaned up := FALSE

alse
<<<CARCEL TIMERS (COMMITIING)}>>>
<<<EXTRICATE PARTICIPANTS (COMMITTING)>>>
if — stack _is empty{self.branch stack) then

goto pop{self.branch ptack)

end if

10 end 1if

11 end Algorithm COMMIT

LB I T T

Algorithm comaT

Figure 4,12
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algorithm is non-interruptible.

In the former case, this process holds the responsibility for releasing all participants of the dialog
from it and from the aialog sequences of which it is a part. In the expansions of macros
cancer_rrMers and EXTRICATE_PARTICIPANTS, definition of the pseudo-variable commaTTING enables the
special processing needed to exit the entire dialoy sequence. Because the processes are leaving their
respective dialog_sequenceS, any limer queue entries established for those dialog_sequences will be
removed as well as entries for dialog sequences nested within them (because this dialog was
successful, there are no nested dialoy segquences). Likewise with macro EXTRICATE PARTICIPANTS,
coMMITEING causes the recovery points for the participant processes to be discarded. That the participants
of the dialog are comsrrrING to its effects prohibits recovery from those recovery points or from the
recovery points for variables in the smargs list. commrrrove also provides the use of the
success_continuation Over the failure_continwation when this process releases the other

participants from their suspension due to algorithm aAccEpTANCE_TESTS,

Finally, if the process is exiting the dialog as part of a non-local branch, it continues on the path of
the branch rather than falling through to the statements following the prscuss statement in the attempt.

The description of algorithm BRaNcE contains more explanation of the non-local branching mechanism.

4.3.4.1. Macro cascer TIMERS

As a process exits the last dialog ina discussionT, any timer event on the dialog_sequence must
be canceled. Failure of a dialog includes termination of any dialeg_sequences active within it at the
time. Hence, each of algorithms coMMIT, ALTERNATE, and LAST DITCH USES IMACTO CANCEL TIMERS

(Figure 4.13). Recall that the dialog_entrys are organized as a forest with nesting indicated by

TRec&ll that 2 discussion is the sequence of dialogs that the process actually cnters at execution time in commespondence o &
dialog sequence. If one of the dialogs succesds, the process does not enter the dialogs indicated by the remaining DISCUSS
statements. If all of the dialogs fail, the imer event on the dialog sequence must still be canceled.
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1 Maero CANCEL TIMERS =

2 D := gelf.current dialog

3 SUBJECT SET := {dialog d | {d = D) or (d.active and

4 d.parent ¢ SUBJECT SEI)}
5 THME _QUEUE := new <timer queuel

& while — gqueuwe_is empty(timer cueuve) loop

7 TIME ENTRY := degueue (timer gqueue)
8 if TIME_ENTRY.kind # TIMEOUT

9 or else

1c TIME ENTRY.the process € D.participants

il or else

12 TIME_ENTRY.surrounding dialog ¢ (SUBJECT _SET « {D.parent})
i3 then

14 engqueue (TMP_QUEUE, TIME_ENTRY)

15 <<<IFUNDEF COMMITIING>>>

16 else 1f TIME ENTRY.surrounding dialeg = D.parent

17 then

18 TMP STACK = new <stack of boolean>
13 TMP_DIALOG:= TIME ENTRY.the process.current_dialog
20 while TMP DIALOG # D loop '
21 TMP_DIRLOG 1= TMP DIALOG.parent
22 push (TMP_STACK, pop (TIME ENTRY.the process.end of sequence)})
23 end loop
24 if — top (TIME_ENTRY.the process.end of seguence)

25 then

26 enqueue (TMP_QUEUE, TIME ENTRY)

27 end 1f
28 while — stack is empby(¥MP_STACK) loop
29 push {TIME ENTRY.the process.end of pequence,pop (IMP_STACK))
30 end loop
31 <<<ENDIFUMNDEF>>>
32 end if
33 end loop
34 timer queue := TMP_ QURUE

35 end Macroe CANCEL TIMERS

Macro CANCEL _TIMERS

Figure 4.13

branching of the trees. Recall also that a dialog can fail while some of its participants are engaged in a
nested diatog; for example, a process in tl;e outer dialog may reach and fail its local acceptance test. The
supJRCT_SET consists of the dialogs that are being terminated. Under all circumstances, the timer events
on the dialog_sequences naming the nested dialogs are to be canceled. For processes that are leaving

their current dialeg_sequences, the timer events on those dialog_sequences are to be canceled too.
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The canceling technique is pedestrian. The timer queuwe is copied onto a temporary gueug one
event item at a time. Those items corresponding to events we wish to cancel are filtered out in the

process. 'Then, the timer gueue is replaced by the filtered version.

The filter is in two stages, On lines 8§ through 14, the filter can only remove TIMEOUT timer queue
entries (line 8) established for processes that are participants (fline 10) in the outermost terminating dialog
(this includes participanis in the nested dialogs). It will not remove entries associated with
dialog sequenceS within which the terminating dialog’s dialog_sequences are nested (line 12). If the
terminating diafog is comarring, all events selecied by the first stage are removed. Otherwise, the
second stage (lines 16 through 30) preserves (line 26) events established for dialog_sequences for
which the outermost terminating dialog is an attempt (line 16} but for which it is not the last attempt in
their sequences of dialogs (line 24). The loop of line 20 is used to find those dialog_sequences’ nesting

level on the end _of sequence stacks, and the loop of line 28 restores those stacks.

4.3.4.2. Macro ExTRICATE_PARTICIPANTS

Once a decision has been made as to the success of a dialog, the individual processes are released
to make another attempt or to leave the dialog_sequence, and the dialog entry is cleared for another

instance. This is the purpose of macro EXTRICATE parTicIRanTs (Figure 4.14).

First, the process control block for each of the processes that are participants in the dialog is
altered to indicate that the process is no longer in the dialog (lines 2 to 32). Then the dialog instance is

terminated as the dialeg_entry is reset to represent an inactive dialog (lines 33 to 43).

Comments bracketed by --< and > should be replaced by code to perform the operations the
comments describe. The reader is assumed to know how to implement these operations. The participant
processes which may have been marked accepted, and thus suspended, get marked runnable (line 3) at

their success Or failure continuatiens, as appropriate (lines 6 through 9). The other continuation
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Macro EXTRICATE PARTICIPANTS =
¥V P € D.participants loop
~-~<1f P hung for any reason, make it runnable>
~-& and recall any messages it may have sent >
TME_FAIL := pop(¥.test_address)
TME FAIL := pop(P.failure continuation)
TMP_REXT := pop (P.success_continuation)
<<CIFUNDEY COMMITTING>>>
TMP NEXT := TMP_FAIIL:
P.branch stack t= <pull stack>
restore _recovery point for process (P, top(P.recovery point_info)}
if pop(P.end of sequence) then
<<CENDIFUNDER>>>
discard recovery point for process(P,pop(P.recovery peint_info})
<CLIFUNDEE COMMITEING>>>
end if
CC<ENDIFUNDEE>>>
if P # self then
P.dlaleg cleaned up :+= TRUE
<<<TFDEF COMMITTING>>>
if ~ stack_ie empty(P.branch stack) then
¥.next_instruction := pop (F.branch stack)
alse
<<<ENDIFDEF>>>
P.next_instruction := TMP NEXT --WARNING check out RETURNs
<<<IFDEE COMMITTING>>>

end if
<<<ERDIFDEF>>>
end 1f
P.ourrent_dialeg i= D.parent
P.acceptad := FALSE
end loop

C<CIFURDEF COMMITTING>>>

execute (D.shared variable restore_code)
<<CENDIFUNDEF > >>

execute (D. shaxa&"vaziable_discard___code)

D.participants :=

D.active 1= FALSE

D.lock = FALSE

¥ P € D.locked out loop

--<make P runnable>

end loop

D.lovked out =
end Macro EXTRICATE PARTICIPANIS

Macro EXTRICATE_PARTICIPANTS

Figure 4.14
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and the test_address are thrown away. Whether the executing process is comurrrineg determines this

for all participants, although the value popped is not used until line 23,

If the dialog failed, any decision to branch out of it is revoked by nullifying the branch_stack (line
10), and the process’ recovery point is restored (line 11). The recovery point for the variables in the
dialog’s suarzs Hst is also restored upon failure (line 34). Even if the dialog is not comrrrIng, if the
process has also reached the end of its dialog_sequence, its local recovery point is discarded as well

(line 14).

The i¢ of line 18 ensures that the processes, when next scheduled, will begin executing at the
proper location. The process executing the algorithm embodying this macro will, of course, either fall
through to the appropriate follow-on code or use the branch_stack as seen in algorithm comvrr. Since
that one is e'itricating the other participants from the dialog for them, they need not through the dialog-
'ciosing algorithms. They are so notified via line 19. If the dialog failed, line 25 ensures that the other
processes will use the failure continuation popped on line 6 and saved on line 9. Otherwise, there is
a choice between having line 25 use the success_continuation popped on 7 and throwing the
success_continuation away in favor of a value from the branch _stack. As long as there is a value on
the branch_stack (line 21), the destination of a branch out of a pxscuss statement has not yet been

reached, and that value represents where the process is 1o resume.

Redirecting the process’ current_dialog indication (line 30) and noting that it has not yet passed
the local acceptance test of the parent dialog (line 31) completes the process’ dealings with this dialog

instance,

The shared variable recovery point is discarded on termination of this instance of the dialog
whether successful or not (line 36), since there is no guarantee that any of the participants in the dialog

will enter a dialog with the same set of shared variables as the next attempt inn its dialog_sequence.
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Without participants {line 37 after the loop lines 2 through 32}, the dialog instance becomes
inactive (line 38), allowing those processes that were barred entry during evaluation of the global

acceptance test to proceed with creating a new instance (line 41).

4.3.5. Algorithm avresnare

Algorithm avrersare (Figure 4.15) terminates a dialog and begins another in & dialog sequence,
The initial if test, as in algorithm commye, prevents duplication of effort in case another process
terminated the dialog while this process was suspended in algorithm accepraxce tests. The special
processing for commrrrINg 10 the effects of the dialog and for leaving this dialog_sequence are not

needed when expanding macros CARCEL TIMERS and EXTRICATE PARTICIPANTS.

1 Algorithm ATTERNATE (DIATOG NAME istring ;COMMIT LOCATION:code address
2 ;FAIL LOCATION :code address;TEST LOCATION :code address
3 ;JEND OF SEQUENCE:code_ address ) =
4 if self.dialog cleaned up then

5 self.dialeg_cleaned up := FALSE

6 else

7 <<<CANCEL TIMERS>>>

8 loop

9 LEAF SET := {d & SUBJECT_SET |

10 {c € d.children } c.active} = & }

11 exit when LEAF SET = &
12 ¥V D € LEAF SET loop

13 <<<EXTRICATE PARTICIPANITSH>>

14 end loop
15 and loop

16 end if

17 <<<ENTER_ DIALOG>>>

18 end Algorithm ALTERNATE

Algorithm ALTERNATE

Figure 4,15
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The Ioops of lines 8 through 15 were not needed in algorithm cormrr because there could be no
remaining nested dialogs. The processes are eased out of the nested dialogs largely so the recovery
points can be used in restoration and can be discarded where appropriate in reverse order of their
establishment. The sumJECT sET was derived in the expansion of cancen Trmvers, above. On each
iteration of the outer loop, the 1ear_ser contains the leaves of the tree of active dialey entrys rooted

in the executing process’ current dialog.

4.3.6. Algorithm rasr_prrcr

The only difference between algorithms rast prrem (Figure 4.16) and aAnternare is that in

algorithm zasT procs the executing process does not enter a new dialog.

4.3.7. Algorithm romour

Algorithm Toveour (Figure 4.17) is executed by the support system when a timer event expires
and is found to be related to the TiMeouT part of a dialog_sequence. The process whose TIMEOUT
interval has expired is directed to execute algorithm =zasT piTce at the wImgour part for the
dialog_sequence Whose TIMECUT interval has expired, and is made the next process to be scheduled for
execution. There, that dialog, and all dialogs nested within it are made to fail, and other timer queue

entries associated with these dialogs’ dialog_sequences are removed.

It may seem irresponsible to change the process’ current_dialog so directly (lines 5 and 9), but it
does not matter where the process had been executing. If the process had not been executing the
outermost dialog in the designated dialeg_sequence, the dialog it was executing wiil be properly
terminated by algbtithm rasT prrce. The asynchrony of this algorithm with the processes using the
other algorithms is a major reason for the ‘‘non-interruptibility”” of parts of the other algorithms. Some

further processing is really needed since multiple timing intervals could expire at the same time, but the
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Algerithm LAST DITCH =
if pelf.dialog cleaned up then
self.dialog cleaned up := FALSE
else
<<<CANCEL TIMERS>>>
loop
LEAF SET := {d ¢ SUBJECT SET }
{c € d.children | c.active} = &3 }
exit when LEAF SET = &
¥ D € LEAF SET loop
CCCEXTRICATE PARTICIPANTSS>>
end loop
end loop
end 1if
ond Rlgerithm LAST DITCH

Algorithm LAST DITCH

Figure 4.16

1 Algorithm TIMECUT = -~ (assumes THE QUEUE ENTRY has been removed from )
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== { timer_cueue and TEE QUEUE_ENIRY.kind = TIMEOUT)
~-~<make THE QUEUE ENTRY.the process runnable>
Lf THE QUEUE ENTRY.surrounding dialog = NULL then
THE_QUEUE ENTRY.the process.current dialoeg := d where
(d € dialogs_table |
THE, QUEUE_ENTRY.the process ¢ d.participants)
else
THE QUEUE ENTRY.the process.current_dialog := d where
{d ¢ THE QUEUE ENTRY.surrcunding dialog.children |
THE QUEUE ENTRY.the process € d.participants)
end if
THE _QUEUE_ENTRY.the preocess.next instruction =
THE_QUEUE_ENTRY.timeout_part
~~<pchedule THE QUEUE ENTRY.the process next!>

16 end Algorithm TIMEOUT

Algorithm TIMEOUDT

Figure 4,17

presentation is being kept simple,
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4.3.8. Algorithm pericir_ormers

Algorithm merrcTr_orsers (Figure 4.18) shows how easy it is for a compiler-generated handler
for otherwise unhandled exceptions to find the appropriate exit from the enclosing dialog. This would

also be generated for raise without parameters and for the Faimn statement.

An exception can be raised by hardware, user software, the FarL staiement, or language support
software. The placement of the calls to push and pop for the failure continuation stack respectively
before and after each dialog ensures that an exception raised in either of the piscuss statements of the
example including the acceptance tests causes failure of the associated dialog, while an exception raised

elsewhere in the dialog sequence causes failure in the surrounding context.

4.3.9. A!gorithm BRANCH

A process does not have to “‘fall through’® to the end of the prscuss statement in order to
complete it. A coTo statement, “‘exit loop’’ or ‘‘next iteration” construct with a destination external to
the dialog sequence, or a RETURN statement are alternate methods of exiting a piscuss statement. If the

RETURN statement has a result expression to evaluate, that is done while within the dialog.

1 Algorithm IMPLICIT OTHERS =
2 goto top({self.failure contimuation)
3 end Algorithm IMPLICIT OTHERS

Algorithm I™MPLICIT OTHERS

Figure 4.18
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The usual exit from a successful dialog is via the success_continuation. The
success_continuation as set up upon dialog entrance is not likely to lead to the destination of one of the
alternate forms of normal exit from the prscuss statement. The possibility of failure of somé: accepiance
test between the source and destination of the branch prevents wse of the success_centinuation by
overwriting its values. Algorithm srancm (Figure 4.19) and a few lines in other algorithms provide an
alternative that does not erase the success_continuation stack in case the decision 1o take the branch

maust be revoked.

Recall that the test_sddress stack holds the beginning of the use of algorithm ACCEPTANCE_'rESTS
for each pIscuss statement corresponding to an active dialog in which the process is participating. Thus
it holds the process’ itinerary on its way to the branch destination. Until the destination is reached
(algorithm comart line 7 and macro ExtrIcaTeE_PARTICIPANTS line 21) or the decision to take the branch
is revoked (macro EXTRICATE PARTICIPANTS line 10), algorithm commr (line 8 for the process

terminating the dialog, and in macro EXTRICATE ParTrcreantes line 22 for other processes) is to use a

1 Algorithm BRANCH(WHERE_TO:code address;HOW MANY LEVELS:natural) =

2 -~ (parameters: must cross HOW MANY LEVELS dialog boundaries to WHERE TQ)
3 COPY_STACK ;= self.test address

4 loop HOW_MANY LEVELS times

5 push {(IMP_STACK, pop (COPY_STRACK) )

6 and loop

7 if — ptack ls empty (TMP_ STACK) then

8 TMP := pop (YMP_STACK)} -- throw top element away
9 end if

10 push (salf .branch stack, WHERE_T0) -- replace it

11 loop HOW MANY LEVELS times

12 push (self .branch_stack,pop (TMP_STACK) }

i3 end loop

14 goto pop {self.branch_satack)

15 end Algorithm BRANCH

Algorithm BRaNCE

Figure 4.19
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stack of alternate success continuations here called the branch_stack. The branch staek is constructed
to contain the final destination as the bottommost item (line 10) and the test_addresses for the
intervening brscuss statements (line 12). Once the stack is constructed, the first jump on the journey is

taken (line 14).

The construction proceeds as follows. The stack of test_addresses is copied (line 3) lest it be
destroyed by the call v pep on line 5. The loop on line 4 inverts the part of the copied test_addrese
stack pertinent to the intervening pIscuss statements. This inversion allows access to the bottommost
address which is changed (lines 7 through 10) since, upon leaving the last intervening dialog, the process
is to continue at the final branch destination rather (han the acceptance tests of the prscuss statement
surrounding that dialog’s prscuss statement. The desired branch stack is built by reversing the

inversion process (lines 11 through 13).

4.4. Conclusion

We have outlined the more difficult or unusual parts of an implementation of the dialog_sequence
thus demonstrating that the dialog and collogquy can be implemented. We have neither addressed
efficiency nor given detail sufficient for an “‘implementor’s guide’ as these are inappropriate (o the

demonstration.



CHAPTER §

More Fundamental Problems

The dialog and colloquy concepts, as embodied in the prscuss statement and dialog_sequence,
provide implementable answers to our initial objections to other backward error recovery proposals as
discussed in Chapter 2. The dialog and collogey ideas have many good points. As pointed out in
Chapter 3, these ideas afford us the error detection flexibility of multiple acceptance tests. Also in
Chapter 3, we showed that these ideas invert the relationship between operation of the recovery point and
inter-process communication. This permits truly independent alternate algorithms to the extent that a
process can communicate with different groups of processes 1o achieve its goals. In Chapter 4, we
“showed that these ideas are implementable. A syntactic proposal for merging these ideas into an existing
language for the targeted applications area is described in Appendix A. And, Appendix B demonstrates
that all previously proposed programming language facilities for backward error recovery are special

cases of the use of these ideas.

Colloguys avail the programmer of many powerful facilities for management of backward error
recovery. It is terapting to think that this solves all the problems that might arise, and that the syntax for

the colloquy can be integrated into a programming language with no further concern.

The merging of dialogs into a real language, however, can reveal semantic difficulties not readily
apparent in the general discussion of the idea. Certain aspects of actual programming languages seem to
conflict with the goals and design of backward error recovery facilities. In this chapter, we examine the
problems which arise in attempting to ﬁerge backward error recovery, as represented by the dialog and
dialog sequence, into a modern programming language. This examination discloses several new
problems with backward error recovery in real languages. The conflicts are problems of a more

fundamental nature than those addressed earlier in this dissertation because, although researchers in
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backward error recovery have failed to recognize them, the backward error recovery concept cannot

become useful without addressing them.

It is important to realize that these problems are not specific to the dialog and colloquy. They arise
because of the fundamental requirements of backward error recovery in concurrent systems, and would
occur with the conversation also. We use the colloquy merely as an example. In general, other
researchers have either assumed these problems would not occur, or based their research on
programming languages with very limited (and impractical) facilities, such as CSP [Jalo86]. The
problems we discuss here do not arise in those languages because of the felatively simple semantics that
such languages have. No previous research in software fault tolerance has examined the realities of
introducing backward error recovery into a language designed for real applications. The foci of the other

approaches have been so narrow as to be naive.
In their most general form, the problems are:

(1) the many means of smuggling of information that are afforded by many programming language

constructs, and

(2) the incompatibilities between the planned establishment of recovery lines for backward error

recovery and the existing explicit communication philosophies of modern programming languages.

The specific programming language we use is Ada. In examining problems with including
backward error recovery in Ada, we do not condemn Ada. Rather, we show the immaturity of the
backward error recovery approach in relation to languages of which Ada is one example. Often, the
words *“process” and ‘‘task”’ are used in what may seem an interchangeable manner. We use ““task™ to

indicate the specific incarnation in Ada of the idea of a *‘process™.

Several new definitions will be necessary. A well-known source of difficulty in extending

backward error recovery to concurrent programs is that a set of processes must agree about establishing
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and discarding their individual recovery points. A set of processes with coordinated recovery points, is a
coordinated set. The formation of a coordinated set is the major goal of both the conversation and the
diatog, The part of a process’ execution from the establishment of the recovery point undil it it discarded
is termed a recovery region. The recovery points for a coordinated set are referred to as a recovery line.

The set of participants in a dialog constitutes a coordinated set.

5.1. Smuggling

Recall that smuggling is a transfer of information, or communication, between a process engaged
in a particular dialog and a process not so engaged. From the point of view of a surrounding dialog, a
nested dialog is supposed to be an atomic action. The encased activity seems either not to have begun or
to have completed, and no information that would be evidence to the contrary escapes. Were smuggling
‘allowed, backward recovery of the participants in a dialog could produce an inconsistent state. Thus

smuggling must be prevented.

Many means of smuggling exist in modern programming languages. They break down into explicit
and implicit information fiows. Explicit information flows derive from deliberate communications
attempts on the part of the programmer using the explicit communications mechanisms in the language
such as messages or rendezvous. Implicit information flows occur through shared variables, attributes

and process manipulation.

A major potential form of smuggling Hies in message traffic. In Ada, the first form of smuggling,
that through explicit information flows, is not problematic. The Ada rendezvous is a specialized form of
message communication through a restricted set of protocols. When a process attempts to communicate
with another, it is suspended until the communication is complete. The sender does not proceed
immediately after sending a message. This is the only form of explicit communication (by our definition)

in Ada. The dialog as defined and shown implementable in preceding chapters prevents smuggling via
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messages for an Ada-like language. A more general message-based language would present more

problems for backward error recovery.

Smuggling is usually assumed to be controllable, Like others, we have so far ignored the many
other means of smuggling. The second form of smuggling, that through implicit informatic_m flows, is
much more involved. By implicit inforrnation flows we mean methods by which one process gains
information about another process’ activities or status without using the explicit communications
statements provided in the language. To describe the problem, we separate implicit flows inio two
categories. The first category is provided by the facilities in a language which one would normally
expect to allow implicit information flows. The other category is provided by language facilities or

features which one would not normally think of as involving communication.

The first category, expected implicit information flows, is represented by shared, variable objects.
‘One normally expects implicit information flows through these objects. They come in two major
categories,- based upon their modes of access. Shared variables are objects with one access path.

Aliasing and pointers provide objects with multiple access paths.

The second category, unexpected implicit information flows, is represented by process
manipulations. Ada allows processes to be manipulated in two principal ways. These are task creation
and task destruction. The dynamic creation and destruction of processes are facilities which one would
not expect to afford implicit information Sows. That smuggling may occur through them is a very
unusual concept. As such, it deserves special consideration apart from other means of implicit

information flows.,
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5.2. Communication Philosophies

The second of the most general problems is the existence of incompatibilities between the planned
establishment of recovery lines for backward error recovery and the explicit communication philosophies
of modern programming languages. These stem from conflicts between the planned establishment of
recovery lines and modern programming precepts. These incompatibilities are typified by detailed

problems with service tasks in Ada, Some of thern are recapitulated here.

First, Ada allows a task to make nondeterministic choices among entries when accepting calls.
There is no corresponding nondeterminisim when choosing to enter a dialog. Second, Ada enforces
mutnal exclusion among entry calls being serviced. The dialog allows any process to enter the
communication at will. Third, a server task may be requested to perform its service at any time in Ada.
Under the dialog regimen, it seems a server must actively seek out its clients to achieve the same dialog
| nesting. Finally, the server cannot leave a dialog after dealing with one client and before seeking thé next

client until the first client is ready to leave (i.e., the server can become trapped).

Ada has nondeterminism and exclusivity in its communication mechanism. The dialog, which
forms an envelope around communication, is not nondeterministic. The envelope restricts severely one’s
use of nondeterminism, The envelope is also intentionally non-exclusive to participants. These program
structuring problems are not specific to the dialog and colloquy concepts. Rather, they represent a
general conflict of planned establishment of recovery lines and languages designed to facilitate use of

maodern programming precepts.

5.3. Summary and Qutline

The language facilities described in Chapter 3, Chapter 4, and Appendix A seem on the surface 10
be adequate for backward error recovery, however they tumn out to be incomplete solutions to these

problems. At this point, one may consider them to have been presented as a basis for further discussions,
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although they solved all of our objections to previous proposals.

This and the succeeding three chapters are closely related. In those chapters, we expand upon and
address the problems which we have introduced here. Where we have been able to find a solution, we
describe it in detail. Where a seeming solution is unacceptable, we explain why. And, where a solution
is academically sound but would be rejected in practice, we present both the ideal solution and a

compromise.

In the next three chapters, we deal with these problems in roughly the same order as they were
illustrated in this chapter. These examinations serve to illustrate and elaborate the ““more fundamental
problems’” introduced above. The problems are discussed under the headings shared data, process

manipulation, and program structure in subsequent chapters.

Chapter 6 discusses smuggling due to the category of expected mechanisms for implicit
information flows, first via single- and then via multiple- path sharing. To do this, Chapter 6 retums to
the mechanisms which were used as illustrations in this chapter. They are, shared variables, aliasing, and

pointers.

Chapter 7 explores smuggling due to unexpected mechanisms for implicit information flows. It
deals first with task creation. A solution for the most general class of tasks is presented, and special cases
of the solution are provided for the other classes of tasks. The chapter next deals with task destruction.
Normal termination is found not to be a problem. Aborted tasks and their implications for task attributes

embody the bulk of the investigation.

Finally, Chapter 8 elaborates on the problem of backward error recovery’s conflicts and
incompatibilities with the language’s communications philosophy and with modemn programming

precepts. Chapter 8 describes a new compromise between backward recovery and service tasks.
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Before proceeding, recall that it does not matter whether smuggling is considered malicious or
inadvertent. The central reason for preventing smuggling is the limitation of the extent of corruption by

invalidated data should backward recovery be required of the originator of the data.



CHAPTER 6

Problems with Traditional Sharing

Here, we address smuggling through the category of mechanisms for implicit information flows
that one would expect to find available in a programming language. This category is represented by
sharing of data. Sharing of data occurs through many mechanisms, and we illustrate with three specific
mechanisms. They are what one would normally call shared variables, the special problems of aliasing,

and pointers.

A principal means of implicit communication between processes in most programming languages
is the use of shared objects. A shared object is any changeable, non-process, non-procedural object that
'is visible or accessible to more than one process or to procedures callable from more than one process. A
shared object that has only one access path or name is called a shared variable. In sequential programs,
these are called global- or non-local- variables. Shared objects can have multiple names or access paths,
either intentionally through pointers, or unintentionally through aliasing. Ada provides single-access-

path and both forms of multiple-access-path shared objects.

We could choose to disallow shared objects completely in a langunage for backward error recovery.
That would be unrealistic since one simply is going to want exceptions to such a rule. The fact that Ada
permits shared objects is an indication that they are still considered vital by the community. We do not
contend that sharing is essential, only that it seems to be in such demand that we need to attempt to deal

with it rather than simply define it away.

Besides habit, there is the practical reason for sharing — fast access. Communicating via messages
with a process that guards the shared information can be too slow. In addition to the delays that can arise

through complex message protocols, there is the potential of incurring further delays in copying
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parameters, particularly large tables and arrays. The Ada LRM allows but does not require passing

arrays by reference. This permission only benefits the callee (who in Ada would be the guardian of the

“‘shared’’ array, not a user of it), and that only during a rendezvous.

(D
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Some of the categories of information that tend to be shared within a control system are:

The most recent, perhaps digested, readings from sensors, This would include both a consistent set

of readings and a partial set as a new consistent set is being acquired.

The most recent settings or values sent out to the actuators or other external lines. One reason for
retaining this set of values is to enable the temporary continued service algorithm of placing the

most recent outputs again.

Tables. Often, portions of control systems operate as table-driven programs. Each table might be
interpreted by a single process, parceling out the information to other processes upon request. This
normal operation might raise doubts about whether the table is shared. However, systems designed
for long-term missions would also provide for other processes to update or alter the table when

objecti{res change.

Digested status of the software system. This inclndes such constructs as dynamic networks

(pointers).

Knowledge of current goals and progress that has been made towards them. The extent of this may

depend updn the size of the system.

We explore shared variables, aliasing, and pointers in turn.



102

6.1. Shared Variables

in this section, we examine the problems involved in trying to merge backward error recovery with
the use of shared variables. Global variables are not a probiem for the original recovery block and
recovery cache work, since those proposals did not address concurrent systems. In concurrent systems,
global variables become shared variables with problems of concurrent access and update. With the
dialog sequence, we have already limited explicit communications statements to occur only within
pIscuss statements. A desirable goal of a solution is that any updating of shared variables that the

language allows should also be so protected.

The piscuss statement scheme, as described so far, has several shortcomings in relation to shared
variables. We will use its shortcomings to illustrate how insidious the shared variable problem is. In so
doing, we also show that this aspect of the pIscuss statement scheme is sorely inadequate as a solution

“to data sharing. For example, 10 enforce its rules, we need to be able to detect all shared variables. In
addition, we show that activities within nested dialogs can interfere with each other, and that suspending
outside tasks during dialogs can lead to deadlock. Further, the seares lists can have intersecting sets of
names, and new access paths need to be found for each instance of a dialog. There are also some
concerns left over from the nested atomic action literature that need addressing. Finally, we could
question the global acceptance test itself. We elaborate on each of these shortcomings below, after which

we proceed 1o seek better solutions.

Detection of Shared Variables

Before anything can be done about shared variables, it must be possible to determine which
variables are actually shared. The intention of the dialog declaration, particularly the name list following
the keyword smares, was to force shared variables to be explicitly declared as such (as pragma shared

was apparently intended to do). The dialog name in the piscuss statement thus served as a form of
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shorthand for the import list. The processes entering the dialog were able to use the variables then and
only then, The function forced the designer to provide a uses list and told the compiler explicitly what to

cache.

Unfortunately, the rules of Ada as they stand allow sharing of other variables beside those
explicitly declared with the dialog function. It is not always easy 10 determine which other variables are

also shared,

Suppose all shared variables could be detected. Enforcing the use of dialogs for references would

mean that the task that declared a variable, x, would have to enter a dialog whose sEares list includes x

every time it needed to reference x, just as other tasks would be required to do. Otherwise, while other

tasks use x within a dialog, the declaring task might blithely access x as if it were a local variable.

Norn-protected references need to be detected and flagged as *‘errors™ before execution time. We base

“our notion of sharing on the ability of multiple tasks to reference a variable. If we want to enforce the
use of dialogs around references to shared variables, all possible references must be detected. Detecting

all references can entail extensive compile-time analysis. This analysis may be as involved as is aliasing

detection,

Suspension and Asynchronous Entry (Interference)

In the pIscuss statement scheme, we assumed the approach of suspending tasks or dialogs that
attempted to compete with an ongoing dialog for use of shared variables, There are scveral

disadvantages of suspending competitors for use of an item ina sHaRRs list, specifically:

(1) The ongoing dialog’s effects can be nullified. Suppose both the dialog and the outsider want to
change the object. The outsider is released from suspension and overwrites the object immediately

after the updating dialog ends.
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There is a limitation on parallelism imposed by the suspension, particularly if the dialog takes a

long time.

The possibility also exists that other outsiders could notice the first outsider’s suspended
status/behavior, thereby recognizing that the dialog is in progress— a violation of the strict

definition of atomicity for the dialog,

Two dialogs featuring the same objects in their smares lists could deadlock. An implementation
might allow each to lock a variable needed by the other, thus suspending both dialogs until one or

the other times out, if one does at all.

The suspension approach in combination with asynchronous dialog entry also permits deadlock.
Suppose the planned last action of an outside task before it enters the dialog is to access the object.
The task’s suspension could prevent it from ever entering even though its presence may be vital to

the success of the dialog.

Finally, the saspension policy employed for prscuss statements entails the idea of multiply
locking variables. Consider the situation shown in Figure 6.1c. Here, we have tasks a, Band ¢
with a outside any dialog, » and ¢ within some dialog areaa, and c within dialog BETA within
ALPHA. A variable, x, inthe smares lists for arpraand Bera must be locked so that a cannot use
it, so that » and ¢ can use it before and after mera (Figure 6.1b), and so that ¢ but not B can use it
during sETA. A lock cannot be a simple count of nesting level since, as in Figure 6.1d, ® may try

to enter a different dialog, such as e, within arraa while BeTa still exists.

Given all these disadvantages, it is clear that suspension is not a viable solution. If we give priority to the

proposition that a dialog is an atomic action, it is inconsistent to block an outsider task or dialog at all.
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Figure 6.1

Cache Referencing

Space for a shared variable is not necessarily allocated with the local variables declared along with
it. Once a recovery line is established, it may be more difficult or costly than before to access the shared

information.

The version of the shared variables referenced by the dialog function changes dynamically. Each
time a given dialog function is called, it may have to “‘look”” into a different cache or “*place’ within a
single cache. Due to references to prior values within the dialog function, it does not matter whether the
mechanism for the recovery cache stores updated values to overwrite prior values on commitment or
stores prior values to overwrite updated values on recovery. The compiler writer has to change the way
the code finds paths to objects by referencing caches instead, This is only a hint of the kinds of

difficulties that may be involved.
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Nested Atomic Actions

The problems we have been examining with shared variables seem on the surface to resemble the
problems with shared resources in the database
literature [Haer83, Kohi81, Bemn81, Gray81, Bern78, Gray76, Eswa76,Best80], but they are very
different, Much of that Literature deals with a single participant in any one action protecting its activities
from the view of other processes or actions; whereas we are dealing with multiple processes entering the
same action asynchronously and locking out non-participants while endeavoring not to interfere with
activities of participants before they actually enter. It is not possible to identify an action exclusively
with one process as in that work. Some of the database work does consider nested actions within a single
action proceeding in parallel under separate processes, but most of those processes would be created and
destroyed during the outer action as they would have been created solely to perform the nested
actions [Lync83, Gray81, Lisk83]. Still, never were two processes equal pariners in an action that was

' “‘shared’” between them.

There is a concern in the database literature that does relate to this discussion. That is the
granularity of locking available in a database [Gray76, Kohl81]. We have concentrated on locking whole
variables, not fields of records or individual array elements. Still, there may be problems with locking the
database of shared variables on a word-by-word basis. This level of granuvlarity may not yet be
implementable. Even so, due to nesting of dialogs and the compile-time information in the skares lists,
it may be possible to arrange a special storage allocation scheme that would group items in a srares list
together, and to group sub-lists within these groupings. The outermost level will have locked a set of

variables that contains the variables shared by any inner level.
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The Global Test

As a final problematic area, the global acceptance fest is & good idea, but avoidance of shared
variables is also a good idea. These two good ideas are in conflict. Without shared objects the global
acceptance test would have very litle to check. It might be used to check on outside conditions to be
sure the whole colloguy was ““‘appropriate”, but could not check on its results because all values would
be hidden as locals within the participants. In the absence of some form of sharing, the global acceptance
test may have been good only as a concep T, Apart from the desire for sharing in the community of
applications programmers, the global test is the only need we have found for sharing. We are thus

tempted by a solution that disallows sharing.

We have discussed many of the problems involved with permitting sharing of variables in the
language. The piscuss statement scheme has not addressed them fully and thus is not a solution. We
‘next show some alternate schemes that one might consider as replacements. For each of these, we show
that it also is not a viable solution. Following those discussions, we present a sound but impractical

solution along with a practical solution to the shared variable problem.

6.1.1. Some Other Non-Solutions

The piscuss statement scheme of Chapter 3 is not alone in being flawed with respect to shared
variables. Other schemes that one might consider have other manifestations of the shared variable and

related problems. We present some representatives of these schemes below.

?None of our examples within the text or appendices contain a filled-in global acceptance test. This is due to the fact that
they are trivial examples.
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Shared Variable Monitors

One alternate approach to solving the shared variable problem is to restrict or ritualize access to
them. A method of protecting shared variables from simultaneous update in Ada is to encase thein within
special processes resembling monitors [Cohe85]. Monitor processes are the preferred means of sharing
in Ada. We could use monitor processes to contain and ritualize access to what would otherwise be

shared variables.

One would expect the new value of a shared variable to be accessed as part of any global
acceptance test. Arrangements would have to be made for the dialog function to read it without blocking
during the test. A meonitor process must obey the colloguy rules as well as any other process, so the
dialog function would not be able to see inside it fo access the shared variagbles. The monitor process
would be suspended awaiting the outcome of the global test while the function is being evaluated, hence

it would not be able to accept inquiring entry calls from the dialog function.

We might alternatively make the function a special kind of process with special syntax and
semantics, It could then ‘“‘rendezvous’ with or look inside the stopped/synchronized participants for the
values they own that are needed in the test. However, to do so it wonld need to know names for all of the
participants. This result would eliminate some of the dynamism of the dialog. If there were a limited
number of required members of the dialog, they could be the ones being called for the shared
information. Even this has drawbacks in that the required members could desert the dialog. Further, as

we shall see in Chapter 8, the use of monitor processes introduces still other problems.

Distributed Global Test

As a variation of the above attempted solution, we might try to force any monitor process o
include an especially marked boolean function for *‘correctness’™ of its data base, This function would

be called automatically as part of the global acceptance test upon exit of any dialog the monitor process
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happens to be in. This makes provision for determining local consistency or correctness within the

service task.

This approach is unsatisfactory because it could be only duplication of the local test and because it
does not make provision for determining consistency between the databases of multiple monitor
processes exiting from the same dialog. It also does not provide for the fact that the shared data ina

given monitor would be used in different dialogs requiring different tests as program progress is made,

Parameterized Dialog Functions

Recall that in Chapter 3 we required the dialog function to be parameterless. We could attempt to
solve the shared variable problem by restricting sharing to the formal parameters of a modified dialog
“function. Under this plan, there would be no shared variables in the usual sense. Variables in any
declarative part would be visible only to the sequence of statements of the unit containing that declarative
part. Within a prscuss statement, the scope would also include the formal parameters of the dialog
function named by that prscuss statement. The formal parameters would be visible to every participant
as if they were shared variables. Since the formal parameter names would be visible only within the
pIscuss statements of the participants, the information being communicated through them could not be
accessed by any non-participant. Upon successful completion of the dialog, each participant would retain
the communicated information in the form of the actual paraineters it used in correspondence to the

formal parameters with the mode our,

Parameterizing the function means dealing with the parameters at the pIscouss statement within
each participant. Each participant must deal with all parameters, even though it may only “want’" a few
as results or have input for a few others, The worst part of using generalized parameters on the global

test function is that each participant might place a different value on the I parameters.
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An alternative is to have only ovr parameters on the function. This is the first plan that has the

advantage that no shared values need to be cached upon dialog entry. However, the ovr parameters

variant on dialog functions has several drawbacks:
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The remaining sharing is very limited. The variables shared are available only for the duration of
the dialog and do not retain their values from one incarnation of the dialog to the next. These
variables do not fit into the categories listed above of information usually shared in control

systems. This kind of sharing may be of benefit only for the global test.

All participants must accept result values for all parameters when each may only want some (or
none). Within the prscuss statement’s text, a participant can simply not use the formal parameter
names it does not need. However, it must still provide an actual parameter for each of the formal

parameters to receive the result value.

The our parameters should be required to have default initializations so the test depends upon the
participation of no task. Unless there were some default initialization for every formal parameter,
the several participants might rush into each others’” way to ‘‘initialize’ the formal parameters.
Even with a default initialization requirement for the parameters, it is conceivable that some

parameters to be shared would need different initial values for different incarnations of the dialog.

Each participant in the dialog must ignore the local names for the variables it used as actual
parameters in favor of the formal parameters’ names within the prscuss statement. Although
enforcible, this new visibility rule is not likely to seem natural to the programmer. To use an actual
parameter’s name within the pIscuss statement, particularly as the result of an assignment, would
not have an effect upon the shared formal parameter, nor would it have permanent (lasting beyond

the successful completion of the dialog) effect on the local variable.
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Thus, the idea of parameterizing the dialog function also must be rejected as inadequate and

unrealistic,

Neo Nesting

It is tempting to reason that many of the the problems we have pointed out are due to the nesting of
dialogs. To solve the problems, therefore, one might consider abandoning nesting. Rather than develop a

complete solution attempt around this idea, we show the flaws in this direction of reasoning.

The elimination of the ability to nest dialogs within each other has some advantages. If there were
no nesting of dialogs, many of the problems would go away. We would have no interference of smares
lists or multiple Jocking, and there would be no indeterminate nesting depth for task

, creatian/desu'ucﬁonT.

On the other hand, we would only have one level of protection, so the acceptance tests would have
10 be very good indeed. We would be restricted to program designs that, basically, do not use nesting.
We would also be increasing our dependence on the acceptance tests. We could no longer appeal, as

does Lee [Lee78], to outer fests catching mistakes in inner tests.
Alternate View of Shared Variables

We might seek a solution to the problem by appealing to an alternate view of shared variables.

Consider the view of a shared variable as many local (to each task) copies updated by messages.
This view is known to match the semantics of shared variables, and is even employed as a valid

implementation. Under this view, an update to a shared variable is similar to the sending of a broadcast

We show the importance of this in Chapter 7.
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message. The message is broadcast* to all processes, including those which will only exist in the future.
As the sender of a message, we would have the updator of the shared variable be in a dialog at the time.
As recipients of the message, we would likewise have all other tasks (including those which will only

exist in the future) be in the same dialog. To do otherwise is to allow smuggling.

The asynchronous nature of tasks makes it difficult to establish a recovery line and certainly (o
pre-package it with a syntactically enforceable structure in the manner that a pIscuss statement is
enforceable for explicit messages. We might be tempted to provide acceptance tests at the sites of the
read accesses of the variable with the readers merely backed to a point immediately before the attempted
read. There may be many scattered potential read sites per update, also there would not be any reduction
in delays. A given reader may take quite a long time to reach its test. This traps all tasks, both those that

have and have not read the variable. It also makes no provision for readers who do not yet exist.

Another Close-But-Failing Solution

As our final non-solution, we might try to retain the suspension approach only for writers. The
suares list would have modes associated with each variable named. These modes would be similar to
those found on parameters to procedures. For procedure parameters, the modes are 1w, our, and IN
our. For variables in a saares list, the modes would be 1x, which would always be assumed, and ™
our, which would always be abbreviated as our. There would never be any mode ovr in the procedure

parameter sense. We will henceforth use the abbreviation when speaking of the mode 1x ovr.

The mode 1IN would be a statically verifiable assurance that the variable would be subject only to
read operations within the designated dialog. That is, the variable would not be the target of any form of
assignment. The mode ovr would be an announcement that, on some execution path, the variable could

well be the target of some form of assignment within the dialog.

T'I‘his is a generalization. Strictly, the message is sent 10 all processes to which the variable is visible or that can access the
variable through some path.



113

For nested dialogs, it follows that all dialogs nested within a dialog using mode 1v on a given
variable must also use mode x¥ on that variable. Dialogs nested within a dialog using mode ovrona
given variable may use either mode on that variable. There would be no references to shared variables
outside dialogs. A writing dialog would maintain a copy of the variable from the first encountered
assignment until successful completion of the dialog. After a writing dialog had successfully evaluated
its dialog function, it would await completion of all the current reading dialogs before using its copy to
overwrite the actual variable. Once a writing dialog reached the wait state just described, no new reading
dialogs would be allowed to start until the overwriting copy operation was complete. No two writing
dialogs would be allowed to proceed in parallel; a second writing dialog could not start until the first
writing dialog had completed its overwriting copy operation. There might be multiple variables in a
sHARES list, some with mode 1% and some with mode our. Recall from Chapter 3 that a dialog starts as
the first participant attempts to enter it. Under this plan, a dialog could not start until the v and our

conditions above had been met for alt of its shared variables.

Under this scheme, it would be possible for a dialog to be timed out as it waits for the readers to
quiesce and after it has successfully performed its computation and checked it against the local and
global acceptance tests, If we had writer dialogs wait at their beginning rather than at their end, all of a
timed-out dialog’s work would not be wa;ted. That variation would severely Timit parallelism since we

could not then justify allowing any reader dialog to proceed in paralle]l with the writer.

This kind of scheme may deal with interference between reading and writing dialogs, but it does
not deal with interference between dialogs and tasks. We illustrate this with Figure 6.2. Consider a
dialog, avpaa, that names a variable, x, as shared for writing. Nested within ArrPHa is a dialog, BETA,
that also names x as shared for writing. Finally, one of the participants in Azpra, but not of Bera, isa
task, T, that executes an assignment to x. ArpEA has blocked any use of x other than by its own
participants. The participants of eTA are entiffed to use x for writing without interference by
participants of any other dialog within azeEa. We have said nothing about how to prevent 2’s write into

x from interfering with BETA. One way to prevent this kind of interference would be to force each task
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ALPHA -~ SHARES (x OUT)

BETA -- SHARES (x OUT)

Task Interference With Dialog Write Locks

Figure 6.2

(such as 1) to finally enter a private dialog for each statement in which it uses a shared variable. Besides
-having an overhead (which we expect o be overpowering), such a ““fix” would amount to having the
langnage completely solve the readers and writers problem for the user. This is not what we set out to do.
Qur purpose is to prevent smuggling via shared variables without allowing the smuggling prevention

scheme to itself introduce great data inconsistencies.

There are also severe granularity problems with this scheme. This variation of the readers and
writers problem permits multiple writers. In implementing it, we might employ a variation of the
database concepts of read locks and write locks. As we shall see, each instance of a variable declared as

shared would have to have associated with it a stack of locks.

For each instance of the variable, the basic lock itself must tell whether the variable is locked for
read or write or is not currently locked. It must also identify which dialog owns the currently locked
rights, This identification cannot be a simple pointer o that dialog’s dialog _entry since we permit
multiple parallel reading dialogs. There must also be some method of queuing dialogs that want to lock a

varigble while a writing dialog proceeds.
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Recall the 6th listed disadvantage of suspending competitors under the heading ‘‘Suspension and
Asynchronous Entry (Interference)’” in section 6.1 (page 104), *“Shared Variables’’, “*A variable in the
saares lists for arpma and BeTa must be locked so that [task] a foutside of anpmA] cannot use it, so that
[tasks] B [within Azpua but not within sera) and c [within BETA] can use it before and after Bzra, and
so that ¢ but not B can use it during Bera’ From this, we conclude that there must be multiﬁlc

coordinated levels of the basic fock. That dialogs are strictly nested suggests a stack of basic locks.

Due to recursion in the language, multiple instances of the shared variable can appear at execution
time. Each of these needs its own stack of basic locks. Thus, the variable’s lock stack must be allocated

along with the variable. It cannot be kept off to the side in some statically allocated memory,

We have seen a need for a stack of very complicated locking data for each instance of a shared
variable, This fact suggests that we severely limit the number and size of variables that we permit to be

“shared, or that we find another kind of solution entirely.

Along with the prscuss statement scheme of Chapter 3, up to this point in this chapter we have
shown several schemes for including backward error recovery in a language with shared variables. None
has fully addressed the problems that shared variables impose. In the next two subsections, we present

two solutions, one correct and one practical. Unfortunately, they do not coincide.

6.1.2. An Academic Solution

The problems with the combination of backward error recovery and a realistic programming
language speak against the inclusion of any form of sharing in a language meant to include reasonably
secure backward error recovery faciliies. This is an academic view, that shared variables are
incompatible with backward error recovery. The academic solution is to remove shared variables
completely from the language, thus removing the problem. Interestingly, the academic solution is also

advocated as a solution to different sets of problems encountered by other sub-disciplines, such as formal
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verification, when dealing with shared variables [Ambe77]. These sub-disciplines have their own reasons
for rejecting shared variables that we will not discuss here. We mention them as evidence that shared

variables do not cause problems for backward error recovery alone.

Removing shared variables is unacceptable to practitioners designing and implementing real-time
systems. They would claim that such a restricion would make the language unrealistic, From the
practical viewpoint, people want (they say need) shared variables. As was noted, there are many kinds of
information that are habitally shared in actual control systems. We suspect that, although an argument
could be made for each of them that they need not be shared, in practice developers of these systems will

insist on the familiar methods.

Thus, a practical compromise solution is required. As a compromise, the solution we present is not
““air-tight”’. We cannot enforce disciplined use of the proposed solution, so we cannot guarantee that
'programs will be free from smuggling, However, when used with some care, this alternative can provide

a high degree of tolerance to faults.

6.1.3. IMAGEs

As was shown in Chapter 3 and Chapter 4, a marginal amount of checking can be achieved with
the approach of Chapter 3. The practical solution to the shared variable problem, which we call

IMAGEs, is a modification of the approach of Chapter 3.

The approach is defined by the following rules.

(1) The scope of a variable must be changed explicitly by declaring it as shared, otherwise the name is

not visible to other tasks.
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(2) Even by its declarer, a shared variable may only be accessed during a dialog whose sHars list

mentons that variable,

(3) Tasks are not blocked when attempting concurrent access of shared variables. Instead, each dialog

has its own copy of the variables in its szares list.

(4) Some categories of shared objects will have exceptions to the enforcement rules 1 and 2.

Expanding on Rule 1, all variables are local to the declaring task including, through the call stack,
formal parameters and variables declared in procedure activations. This holds for each variable unless
explicitly declared as shared, Figure 6.3 shows several examples of statically checkable legal and illegal

references 10 a non-shared variable.

As a result of Rule 2, that is all explicit references must be within a dialog, the programmer cannot
create many forms of aliases without encasing them within the recovery envelope. This does not prevent

aliasing, but it does make errors due to its misuse recoverable,

procedure A is

X : integex;

procedure B is
-- use of X -~ lagal
end B;

task T;

task body ¥ is
B; -~ transgitive use of X ~~ 1llegal
and I;

begin -~ A
B; ~= transitive use of X -- lagal

and A;

Legal and Illegal References

Figure 6.3
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Rule 3 substitutes a copying approach for the previous suspension- approach to multiple access
attempts from within and without a dialog. A given copy is available to any task immediately within the
corresponding dialog. The coﬁ_y is (conceptually) made from the immediately surrounding dialog context
as the first task enters the dialog. Upon successful completion of the dialog, any changed variables in the
sEares list are copied back into the surrounding context. These copy operations are indivisible as far as
user-level tasks are concerned (they are performed by the support system). A dialog does not provide
any other Operating Systems style locks for exclusive access to objects. Any other synchronization for
shared variable access is the programmer’s problem, as before. Thus, in a sense, the group of tasks in a
dialog seem to outsiders to behave as a single task. A possible locus for the copy isin the dialog entry

for the corresponding dialog as described in Chapter 4.

The possibility exists that the restrictions of the first several rules are t00 strict. A possible change
in the rules, reserved for future investigation, is only to require writes (changes to shared variables) to be

within dialogs.

Rule 4 exists for reasons that will become apparent in later sections and chapters. As an example,
such an exception will be made for task names. Tasks are shared objects. We have already required
references 1o tasks for communication statements to occur only within dialogs but do not require them to
be listed in the suargs list. We have yet to discuss references such as those required 1o create and

destroy tasks. Pointers to tasks may be similarly excepted.

Having given and elaborated upon the rules that transform the proposal of Chapter 3 into the
IMAGESs solution, we present some justification for calling this choice a practical solution. Before the
justification arguments, we remind ourselves of some of the principles of backward etror recovery as an

approach to fault tolerance,
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Principles

The practical application of the backward error recovery approach to fault tolerance lies not in

strict adherence to its stated principles, but in the underlying reasoning behind them. A few of these

principles that are pertinent are listed below along with statements of the goals that they were formulated

to help enforce.

D

@

3

@

)

It is not the purpose of fault-tolerance facilities to prevent errors, only to contain and recover from

them.

Smuggling out of a dialog must be prevented. The reason for preventing smuggling out of a dialog

is prevention of invalidation of information by backup.

One purpose of having many acceptance tests on process interactions is so that correct processes

can keep faulty processes in check.,

Smuggling into a dialog must be prevented. The reason for preventing smuggling into a dialog is
that one wants an unchanging base from which to derive new results. This overrides the fact that

information smuggled in is ot the information that will be invalidated by backup.

If an error is detected, a previous state that is presumed correct is restored. The point of backward
recovery is to erase the effects of the fault, Restoration of a previous state is desirable but not
required. It is enough to achieve, i.e. construct, a valid state that might have existed. The method

of construction is largely what distinguishes backward and forward recovery.

Keeping these principles in mind, we proceed with their application specific to IMAGES.
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Rationale For IMAGEs

As justification for the decisions taken in devising the IMAGESs plan, we show several approaches
one might take 1o questioning the consistency of the shared data under IMAGES, and show the reasoning
behind how IMAGEs addresses them. Then we address some practicality issues in the same manner. In
what follows, when we refer to an ongoing dialog, an *‘outsider”” can be another dialog or a task that is

also a member of a dialog within which the ongoing dialog is nested.

Upon successful completion of an altering dialog, the overwriting copy operation takes place under
control of the language’s support which has the ability to lock out unequivocally any competitors for
access to the affected space. Thus, the copy takes place indivisibly, maintaining consistency. If others
only use the object within dialogs, they take a consistent copy in with them and it is unaffected by a

change in the “‘real” copy if the change occurs while their dialog proceeds.

The implementation needs to make sure that if a dialog does not change a variable, x, then x does
not overwrite the outside copy which may have changed. As Figure 6.4 shows, this has complex
implications for consistency. Figure 6.4 represents three scenarios giving the value of x before and after
dialog arpua. In the first, ALpEA writes . In the second, arema only reads x while an outside task T

writes x. In the third, both arpua and the outside task write X,

Xw= 1 X=1 X=1
. }ALPHA{start) ... |ALPHA{start) ... |ALPHA(start)
... JALPHA(x := 2) Ti{x = 3)| . T{x = '3) |ALPHA(x = 2)
... |ALPHA(end) ... |ALPEA(end) ... |ALPHA{end}
X=2 X=3 X=2
Desired Consistency

Figure 6.4
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As another example, let x be changed outside a dialog, arpus, and let a variable, v, change inside.
The acceptance test may check for some consistent relationship between x and ¥, but the new values
immediately after ALPHA may not remain consistent with each other. One might also wonder how this
scheme is to deal with a case in which a member of another dialog makes (unauthorized) changes to a
variable when that other dialog was formed for reading purposes only. In both of these situations, if an
inconsistency arises, it should be caught by an acceptance test on a surrounding dialog, the reader dialog
in the latter case. If there is no surrounding dialog, we are no worse off than with shared variables
without attempts at backward error recovery. As we stated before, there are limits to the offered

protection.

We now look at some of the behaviors of the copy approach. If, during a dialog that has its own
copy of a variable, x, changes occur in X on the outside of that dialog, how can we restore a previous
state with respect to x for the members of the diﬁiog without also backing up the outsiders? Following
APrincipie 5, we do not. The point of backward recovery is not to restore a previous state 0 much as to
undo the effects of the dialog. Thus, we throw away the dialog’s copy of x. The resulting situation from
the point of view of the former members of the dialog is as if they had been swapped outf while the
former outsiders continued to manipulate x. Rather than restoring an actual previous state, we have

achieved a state that might have existed.

Now suppose a task witnesses a change in a shared variable, x, before asynchronously entering an
ongoing dialog that also names x. The inside copy of x is not overwritten as the task enters. To do so
would be to allow smuggling of information into the dialog, violating Principle 4. Allowing x to change

from the task’s perspective as it enters the dialog is consistent with the idea of the atomicity of a dialog.

Continuing with the example of the previous paragraph, an apparent anomaly might occur if the
outside copy of x had changed since creation of the dialog but the inside copy had not. Upon entering

the dialog the outside task would seem to see a reversal in time or a reassignment of an older value of x

twe ignore Ada task priorities here.
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by some other participant of the dialog. This time reversal anomaly is interesting, but we do not pursue it

here. However, it could be food for further investigations,

The concerns of the preceding three paragraphs would be moot if the dialog entailed synchronized
entry. Asynchronous entry by tasks allows information to come in with the internal state of tasks about
activities external to the dialog. This might stricly be called smuggling. Unfortunately, synchronized
entry implies severe restrictions on the behavior of tasks; they have to agree about entry as well as exit.
The goal of practicality (or at least usefulness) overrides here. This is the first of our several practicality

issues.

During a dialog, we have two ways of dealing with outsiders that attempt to access objects in the
dialog’s smawres list. We can suspend the outsider or give the outsider a separate copy of the object. The
disadvantages, discussed earlier, of suspending competitors for use of shared variables lead us to

| choosing the copy approach. On the surface, this choice seems to fly in the face of the practitioners’ very
reasons for using shared objects, fast access through avoidance of copying. One then asks why it is
reasonable to let tasks on the inside and outside of a dialog concurrently “‘see’” different values for a
shared variable. For the applications we have listed for shared variables, the values are rather long-lived
comphlcated structures. Changing these structures may take a long time, need checking, and need to
seem to occur all at once. Meanwhile, others need access to the old values, The update period is
precisely where the practitioner would give in to having a copy, so that is a perfect place for a dialog.
Notice that an actual copy need not be made until the object is actually assigned either by those within

the dialog or outside it.

Since we call IMAGEs a practical solution, Iet us consider Ada’s representation specifications as
an example of facilities that allow programmers to bypass compiler security. One may wonder whether,
if a shared variable’s address is fixed under representation specifications, the variable does not have to be
locked rather than copied. The answer is, no. One wants copies of the value at the speciﬁed location

until the program cannot back up. Only then has a final decision been made about a new value for the
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fixed location, probably a control line. On the input side, suppose the variable is at a different-value-on-
each-read location. Keeping a copy from a single read as part of a consistent base for the dialog’s
computation is not unnatural. Since a compiler must already ‘‘know’’ which locations are of that ilk, it

would need to check against invalid uses such as assignments to them anyway.

The broadcast message equivalence interpretation of shared variables and smarzs lists may seem
incompatible. As a broadcast message, we want all recipients to have a chance to veto a set of changes as
inconsistent. Unrestrained sharing allows only the writer or broadcaster a veto. The smarEs list scheme
is a compromise. A group of tasks, some writers and some readers, build a wall around themselves by
entering a dialog. Messages are coalesced at the wall, checked for consistency, then sent. Outgoing
messages are delayed until the tests by the updator(s), while simultaneous use by outsiders on their own
copies remains available. Recall Principles 2 and 3. The central reason for preventing smuggling is the
limitation of the extent of corruption by invalidated data should backward recovery be required in the
-originator of the data. One purpose of having many acceptance tests on process interactions is so correct
processes can have a check on faulty processes. As a compromise, we are not requiring all processes o

have that opportunity.

We have addressed several consistency and practicality issues as justification for the decisions
taken in devising the IMAGESs plan. Besides these, IMAGES also resolves each of the faces of the shared

variable problem that we discussed in section 6.1 of this chapter.

6.1.4. Resolving The Earlier Problems

We show in turn below how IMAGEs addresses each of the problems discussed in section 6.1

proper.

Detection:
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To be perfect, an implementation of IMAGEs must detect statically all references to variables and
protest both references by non-declaring tasks to variables that are not declared as sharable and
references by any task outside of pIscuss statements to variables that are declared as shared. The
extension to procedures’ use of formal parameters and non-locals must be by pessimistic, Le. guilty
unless provably innocent, restriction based on ail points of call and all actual parameters, IMAGESs
allows direct references to shared variables only within pIscuss statements and explicitly designated
functions. All indirect references must of necessity be through (or derivable from) these direct

references.
Suaspension vs. Copy:

We have already argued the merits of copy over suspension for competitive uses of shared
variables. Several forms of deadlock were mentioned in section 6.1 proper under the heading
“‘Suspension and Asynchronous Entry (Interference)””. Under the copy scheme of IMAGES, alt of them
become impossible. The fact that a dialog is in progress becomes transparent to outsiders, And the
absence of blocking does not restrict potential parallelism. Finally, there is no need for multiple locking

of shared variables since IMAGEs uses a copy rather than a suspension approach.
Cache Referencing:

IMAGEs avoids the caching problems. For explicit source references outside of pIscuss
statements, the compiler can employ the usual fetch and store paths. For other references, the current
appropriate storage location for a variable is within the dialog structure designated by the task at any

given time.
Nested Atomic Actions:

The copy approach of IMAGEs avoids the granularity problems of databases. During a dialog, the

pertinent copy of each variable in the suazes list resides in the dialog structure for that dialog, so locking
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of these variables is not needed. At the beginning and (successful) end of a dialog, the copying is under
the control of the support system which is capable of suspending the scheduling of processes until it is

finished.
Global Test:

IMAGESs preserves the ability to use global acceptance tests on dialogs. We do not eliminate

sharing but enforce restrictions on it while allowing the dialog function access to the shared objects.

In summary, IMAGEs is a practical compromise between the demand for shared variables and the
need to prevent smuggling when including a backward error recovery facility within a programming
language. Having dealt with the problem of smuggling through expected implicit information flows via

shared objects with single access paths or names, we proceed to those with multiple access paths.

6.2. Aliasing

Aliasing is one of the two kinds of expected implicit information flows through shared objects with

multiple access paths.

Current technology cannot detect all aliasing while providing the range of features demanded by
the community. Thus, Ada for example attempts to rule out aliasing by defining programs that use it as
“erroneous’’. To avoid the overhead costs of copying parameters, Ada allows call by reference in some
cases for v our mode. Other parameters use copy/result in an atiempt to eliminate aliasing. However,
even in Ada, aliasing still exists. We do not pretend to have found a way to prevent aliasing where the
combination of the community has not, We also find it disconcerting mezely to define any program that

uses aliasing, whether detected or not, as “‘erroneous’”.
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A side effect of the IMAGES solution to shared variables is the elimination of the use of most
forms of aliasing as means of smuggling, although aliasing per se is not prevented. Hence, IMAGES has
fortuitously made the problem of smuggling through aliasing moot. IMAGES has not done the same for

the problem of smuggling through pointers.

6.3. Pointers

Another implicit communication problem lies in dynamically allocated objects other than
processes. This is another form of communication through shared data where the objects can be accessed
via different paths. The multiple access paths phenomenon presents problems in addition to those dealt

with under seciion 6,1, “*Shared Variables™’.

As Chapter 7 will show, dynhmica]ly allocated processes may be brought under the protection and
control of backward error recovery. It is not so easy for gereral dynamically allocated objects. Part of
the difference lies in the structures created using these objects. In Ada, for example, we know the
structure of the task dependency graph and can plan around it, but the general structures that a
programmer will compose of access objects are not likewise knowable, Also, the modes of access to
these objects are different. For Ada tasks, only ritualized operations are available, whereas the
programmer can provide whatever operations he chooses for the general access object (including
simultaneous access). Further, processes tend to communicate with dynamically allocated processes, and

through other dynamically allocated objects.

At first glance, the pointer problem looks like the shared variable problem, but the entire dynamic
structure needs protecting in order to protect any object within it since any access variable of the
appropriate type can be used by any process to access the object. The shared object is potentially
accessible via many names. Worse, the collection of names accessing the object is not knowable

statically, since which objects are reachable via those names may change, and since many of the names
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will be fields of other dynamically allocated objects, Unlike simple shared variables, we cannot
effectively “‘lock”’ the whole data structure (network) since any process may have retained a pointer into

it.

6.3.1. Approaches to Solutions to Pointers

A great deal of work has been done in the areas of avoiding faults and detecting errors involving
pointers [Lome85]. Although not created to facilitate backward recovery from errors, some of the
mechanisms due to that work are suggestive of approaches to the problem of smuggling through pointers.
Those familiar with that work may recognize forms of “‘tombstones’” and of ‘‘scoped pointers’ in the

approaches described below.

As with the previous subjects, there are several approaches one mighi try to deal with smuggling
via pointers. We list an undesirable choice, an inapplicable appeal to another area of fault tolerance, an

unfortunately unworkable approach, and a direction that seems to us promising.

Ignore Them

The solution adopted by other academic sub-disciplines is o remove pointers from the language.
This is also the solution of one camp of practitioners. These groups use entirely different reasoning. The
academic solution is based on the impossibility of verifying programs that use pointers. The
practitioners’ solution is based on concerns for running out of heap space and fear of dropping pointers or

creating dangling references. Both ignore the utility of the facility.

A second camp of practitioners simply use pointers blindly, relying on presumed correctness of

their programs.
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We believe there is sufficient utility in pointers to include them in the language, We also cannot
prove correct use of them. Our attention is directed toward limiting the extent of errors in which they

might be involved so that programs can recover from those ¢rrors.

Fault-Tolerant Data Structures

There has been some work in the area of designing fault-tolerant data
structures [Tayl80a, Tayl80b]. That work does not include any proposed basis for syntactic enforcement.
It is also more concerned with mistakes in manipulations of links within data structures than with access
by multiiple processes. It certainly does not deal with preventing smuggling information into or out of a

backward recovery envelope such as we have in the diaiogT. Indeed, the proposed recovery is forward.

Encapsulation

The proponents of Ada urge that a single task, or a package guarded by a single task, have sole
access to complicated structures of access objects. The service task then has to obey the dialog rules to
communicate with its wsers, thus obtaining the protection of backward error recovery. Only if the
network is guarded by a monitor process, can we grapple with it. This, in effect, would make the
dynamic structure ‘‘local” to that task. There is no guarantee that programs will employ such restricted

usage.

Under this non-guaranteed solution, each poinier type is encased with its object type in a task. The
protecting task exports iterator [Lisk77] entries and passes out only virtual pointers or symbolic links to
outside users of the allocated objects. If the protecting task fails, all that it protected would be lost. This

solution is at least cleaner than allowing random tasks to damage parts of the network in the middle.

TFrom [Blac81] p.151, ““In contrast to recovery blocks, the in-line checks contemplated here are concemed primarily with the
correctness of the data structures passed to a routine, not with checking the correct functioning of the routine itself.”
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‘What exists of the network is all or nothing.

Multiple Heaps

One proposed implementation of allocated objects leads us to consider another approach to
solution. It has been suggested that there be a separate heap for each allocatable type. Under this
regimen, it would be possible to lock the entire heap, blocking non-participating processes’ use of any
allocated object of that type. One of the undemonstrated *‘extensions’’ [Shri79] to the recovery cache for
concurrent systems was that of designating *‘virtual address ranges’’ for each process for the hardware

cache to know about. Although the granularity of locking may be considered too coarse.

Suppose the name of the access type were included in the smares list for dialogs. This calls for an
exception to the copying rule used earlier for IMAGEs of single-access-path shared variables. The
problem with a copy here is the fact that the allocated objects, not the pointers themselves (many of
which are local to the individual processes), would be copied. Backward recovery (or even commitment
of a dialog) would allow situations to develop in which an outsider’s pointer that used to point at an
allocated object suddenly ceases to do so as the object’s image is overwritten. We do not want the

measures intended for backward error recovery to instigate errors.

The alternative of finding all of the pointer variables is the same problem as we started with. One
advantage of locking the entire heap would be the opportunity for employing the results of the fault-
tolerant data structures research in constructing acceptance tests. Their audit codes could be executed as
part of the commitment determination. A concern that would bear looking into is whether this would

entail locking all heaps involved in networks consisting of more than one record type.

We do not carry investigation along this line any further, but we do feel this is an appropriate
avenue for future work. Carrying the allocated object nype into a dialog is really no more restrictive of

concurrency than having an encapsulating process entering a dialog. The motivation for concentrating on
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the allocated objects is that it is very difficult to find and protect the poinier-valued objects as a group.
For single-path shared objects, the name (access path) and the targeted object are effectively one. For
multiple path shared objects there is an intermediate value which itself can be changed. This is the value

of the pointer,

6.4. Summary

We have described the problem of smuggling via expected implicit information flows provided by
existing, nseful language facilities. We have elaborated on this problem both through exposition and by
presenting naive approaches to solution along with their shortcomings. We have presented a workable
compromise solution for single-access-path shared objects and for unintended creation of multiple paths
to objects. We have also given our beginning thoughts on a possible future solution to intentionally

‘multiple-access-path shared objects.

All of our proposed solutions are stop-gap measures for a particular class of programming
languages exemplified by Ada. The proposed solutions are inelegant and unlikely to handle even slight

variations in language design. To illustrate this, consider the PL/I **based’ variable.

Based variables entail aliasing through dynamically changeable pointers into non-dynarnically
allocated space. Our approaches to pointers would not touch based variables’ smuggling problems since
based variables do not necessarily depend on dynamic allocation. Neither would our solution to shared
variables help, since it assumes a single, static access path for each. We bring this up only to show what

specific, fragile contrivances these solutions are.

All of this shows that combining backward error recovery with these language facilities produces
serious problems not previously addressed or even acknowledged in the literature. It is becoming clear
that backward error recovery cannot be included in a programming language after the fact. It must be a

design consideration from the outset.
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Process Manipulation Problems

We turn now to smuggling through the category of unexpected mechanisms for implicit
information flows. We use process manipulation to illustrate this category and, once again we use Ada as
an example programming language. Ada allows processes to be manipulated in two principal ways; task
creation and task destruction. Ada also provides a means by which a process’ execution state can be

examined. We examine each of these in tum.

7.1. Smuggling Through Unexpected Implicit Information Flows

One does not normally expect process creation and destruction to be involved when looking for
methods of information flow in a language. However, knowledge that a process is created or destroyed
constitutes information about the existence and progress of that process and information about the
progress of the process responsible for its creation. If a newly created proces§ has to be “*uncreated’” as
part of backward error recovery in its parent, any existence and progress information that might have
been communicated to other processes is invalidated. This could have grave consequences if, as would

be expected, they based their further actions upon this information.

Dynamic process Creation is an important programming facility. It is also a form of implicit
communication and often involves explicit communication. Further, it is essential to be able to recover

beyond the decision to create a process.

The relative independence desired for processes conflicts with the strict nesting structure we have

created for dialogs. As one example, suppose the initial communication between a new process and its
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creator is couched in terms of pIscuss statements as described so far. The new process is then also
entrapped in the creator’s set of nested dialogs, however deep. This might make the dialog_sequence

structure a hindrance in certain applications.

Dynamic process destruction is also useful, particularly in light of the desire to replace faulty
processes. Backing up that operation, should the decision to destroy be found in error, presents similar

problems.

The following sections deal first with process creation, then with process destruction and its

consequences,

Before broceeding, recall that the fourth rule given for xvmers in Chapter 6 reserves exceptions 1o
the smares list rules for some shared objects. Task access variables follow the same rules as task names
“except when changing values. Access variables to tasks are included in smares lists, This is not a
requirement for the naming of participant tasks. Many manipulations (such as assignment) of these

values are not manipulations of tasks or even communication with co-participants.

7.2. Process Creation

In Ada, one task can create another by two methods. In the first, it elaborates a declaration that
specifies the other task. In the second, it executes an allocator where the access object designates the new
task. We shall refer to the two tasks involved as creator and created. The creator-created relationship,
particularly in the case of allocators, is not identical to the master-dependent relationship explicitly
mentioned in the Ada Language Reference Manual (LRM). The reader is assumed to be aware of the

similarities and important differences. Using these two methods, tasks can be created in several ways.

(1) A task can be declared directly (Figure 7.1 part 1), or a task fype can be declared.
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(1)

(2)

(3)

)

task x is entry entry name... end X;

task body % is ... end x;
«w uged as x or x.entry name

task type a is entry entry name...

x:a;
task body a is ... end a;
-« uged as x or X.entry name

task type & le entry entry name...

type b 1 access a;

x:bi= new &;

task body a is ... end a;

~- uped as x.all or X.entry name

task type a is entry entry name...

type b 1ls access a;
x:b;
tagk body a is ... end a;
. X 1= new a;
-~ used as Xx.all or x.entry nama

end a;

end a;

end a;

Bquivalence of Declared & Allocated Tasks

Figure 7.1

declarations.

{pointer) type to objects of the task type can be declared.

If a task type is declared, an object of that type can be declared (Figure 7.1 part 2}, or an access

Once there is an access type to objects of the task type, an object of the access type can be declared

and an object of the task type immediately allocated for the access object to designate (Figure 7.1

Alternatively, the allocation can occur within a statement sequence (Figure 7.1 part 4) rather than

According to the Ada LRM, for most purposes any task created in one of the first three ways could also

have been created in the fourth. Thus, the fourth way is the general case.
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Task creation is a form of implicit communication since there must naturally be much information
transferred between creator and created (or the support system on behalf of created) in order to give

created sufficient context to execute independently.

The more obvious interactions of tasks during task creation are not really problematic for backward
error recovery. There are facilities already built into Ada for detecting and “‘recovering’ from errors
during the implied communication involved in creating a task. That kind of communication is also not
under the control of the programmer, and is thus not as exposed to designer- or programiner- introduced
fanlts. Many creations take place through elaboration of declarations, making them unreachable by the
programmer’s code either to create faults or to use a mechanism that we might define. For these reasons,
we do not embed that operation in some further fanli-tolerant mechanism. Implicit communication
during execution of an allocator can be covered by the language-provided exception handiing
‘mechanisms. As far as we have embedded exceptions into the dialog_sequence, we offer protections
for task creations via allocators. However, there is no requirement that the programmer place all

allocators within dialog_sequences or within blocks protected by bare exception handlers.

The less obvious interactions of tasks shortly after task creation are problematic for backward error
recovery. Information transferred via the implicit communication between creator and created at the
time of creation can be smuggled. This can occur only if one of them later communicates it to a third

party who will not be backed up should the creation decision be undone by backward error recovery.

The important interactions of task creation and backward error recovery as described by dialogs

become clear when viewed in terms of the states of the creating and created tasks at the time of creation.

(1) Creator might be outside of any dialog. The creation operation is then not recoverable. The
situation is as it always was in Ada; creator cannot be backed up beyond that creation. The
decision to create the new task cannot be reversed, and any exceptional conditions that may arise

must be handled in a forward, ad hoc manner as creator’s (then current) sequence of statements is
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abandoned. So the task creation operation cannot be undone, and we need not be concemed with
undoing any of created’s intervening actions that might otherwise constimte smuggling. It is
important to consider a solution that eliminates this possibility. One does not want language

facilities that are outside recovery regions.

Creator might alternatively be a participant in some dialog. In this case the creation decision is
recoverable, but the method of creation and depth of dialog nesting of the creating task manifest
other interactions. If for any reason creator must (and can)} be backed up beyond the task creation
operation, created must be destroyed. It must appear then that created never existed, and so it
cannot have been allowed to smuggle an announcement of its existence outside of creator’s dialog.
"This means created can only have been allowed to communicate with tasks that will be backed up
with creator. We examine below certain important implications this has for the failure of the

dialog and for dialog nesting.

Much of the remainder of the task creation discussion in this chapter examines the case in which

creator participates in a dialog during the creation operation. We first examine tasks created within a

declarative part. We next consider more complicated interactions involving tasks created through

allocators. Finally, we consider a solution to smuggling due to dynamic process creation.

In all of this discussion, we assume that failure of a dialog entails dissolution of dependents created

within it. Thus the dialog does not ““wait’’ for them to terminate as would a procedure or declare block.

7.2.1. Declared Tasks

Should creator’s dialog fail, all actions due to creator must be undone, In particular, created

must be “‘un-created’’. Since task creation is a form of communication, we must also consider which

dialog, if any, created enters as it is created.
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Ada’s dependency rules for tasks created within declarations, along with the syntactic nesting
structure of the language, require that they will be destroyed before creator exits the dialog during which
they were created (if it was in one). Tasks created by elaboration of declarations are similar to processes
created via a comweIN-coenp facility [Dijk68]. Their threads of control emanate from the same point

along creator’s thread of control and they all coalesce at another point along creator’s thread of control.

Suppose created is declared in a declare block nested within creator’s pIscuss statement, or ina
procedure called by creator within creator’s piscuss statement. Then all of created’s actions over its
lifetime must be recoverable. This means that any tasks with which created communicates must be
participants in creator’s dialog. This is reasonable since such a task as created can be considered an

extension of creator’s algorithm.

Suppose created is declared in creator’s declarative part. Then it must be destroyed before (or as)

creator is destroyed. In this case, if creator can be backed up beyond its creation, so must created.

Created is created within a dialog if creator is created within a dialog. Thus, created’s co-
communicants must enter any dialog during which creator was created. We reserve an exception to this
last statement for the case in which creator is created via the as-yet-unelaborated case of tasks created by

an allocator in a statement sequence.

It is simple to define rules that would prevent smuggling in the declared task cases. In anticipation
of more problems in the general case, we restrain ourselves from defining rules that might not generalize

easily. We will apply to declared tasks special cases of a solution to the general case {below).

7.2.2, AHocafed Tasks

We now consider tasks created via allocators. Tasks actually created via an allocator can survive
their creators. Whether they do or not depends upon the position of the declaration of the access type.

Although they might need to communicate with their creators initially, they might also need to survive
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any dialogs their creators might have been in during the creation activity; at least that is the intent of the

facility.

Attempts at Solution

Three of the approaches one might consider making when defining of which dialog a newly created

aliocated task is a member are,

(1) Created is in some dialog upon creation, We have not yet provided a syntax capable of expressing

created’s exit from that dialog.

(2) Created is outside any dialog and can enter any dialog it wishes when it wishes. If creator has to
back up beyond created’s creation, created gets abandoned. This action could have disastrous

consequences for whomever created is communicating with at the time!

(3} Created is outside any dialog and can try to enter dialogs, but gets suspended until ereator can no
Jonger be backed beyond the creation. Tasks created by tasks in the same dialog can communicate

amongst themselves, but not with other tasks outside their creators’ dialog.

We show below that each of these approaches is incomplete.

7.2.2.1. Consequences of Approach 1

Consider the first solution attempt outlined above. Suppose created is considered to be in a dialog

upon its creation. This can be the same dialog as creator, or an entirely different one.

If created is in some dialog when it begins its existence, we do not have a (syntactic) way of

expressing created’s normal exit from that dialog. In particular, we have no way of specifying a local
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acceptance test for created. A syntax must be found to enable created to contribute, via acceptance

tests, to the error detection capabilities of the dialog.

To illustrate, creator might execute its allocator while outside of any dialog, from within any one
dialog, or from within the inner of several nested dialogs. Somehow, the text of created must be able to
specify an undeterminable number of acceptance tests to provide for successful exit of the dialog(s). The
source code of created is static and, as such, can only be prepared for one of these possibilities. Either

none, one, or some other specific number of tests can be there, but not an indeterminate number.

On the other hand, if created is considered to be in a different dialog from creator, not only do we
need a way of expressing normal exit, but we also need to determine the consequences of failure of
creator’s dialog. These consequences, as they are shown below, provide the basis for rejecting this

solution attempt.

Suppose created’s dialog is not nested within creator’s. Created will be destroyed by creator’s
backward recovery, so any other task in created’s dialog must be backed up to that dialog’s recovery
line. If this is not done, the other participants in created’s dialog would be caught up in a trap or retain
(smuggled) knowledge of created’s existence. Also, if created’s dialog is not nested withir; creator’s, it
might be possible for created and whoever else might be in that dialog to commit before creator even’
starts backward recovery. Should that happen, the other participant(s) in created’s dialog cannot be
made to behave as if created had never existed. They would have discarded the recovery point(s)
associated with created’s dialog, preventing their being backed up. This would constitute smuggling
from creator’s dialog in that some task(s) outside it would have received information about happenings
(attempted creation of another task) within it. This approach is missing semantic rules that would prevent

created’s smuggling information about its existence out of creator’s dialog.
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7.2.2.2. Consequences of Approach 2

Next, we consider the second solution attempt outlined above, that created is not considered to be
a participant in any dialog upon its creation. This can evolve into the first approach in which created
begins in a dialog other than creator’s. That is, created may simply enter its first dialog before creator

exits all of its dialogs. This is an interesting point, but not the worst problem.

Suppose created and creator need to communicate explicitly, which might well be expected of
them. If created had been considered to be in creator’s dialog, the two could communicate. However,
if created does not start in any dialog, it needs to enter creator’s dialog to communicate with it. This
would be acceptable if creator were in only one dialog, but if it were in several nested dialogs, created
would have to “‘know”’ how many and which ones. That is only one problem. Suppose, as depicted in

Figure 7.2 (solid time lines progress to the right, dialog boundaries are dotted, and communications are

...........................................................................................

-----------------------------------------------------------------------
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1
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A Consequence of Attempted Solution 2

Figure 7.2
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dashed linesT), that created does enter creator’s nest of dialogs to communicate with creator. This
affords the opportunity for created to communicate, on its way in, with some task which is a participant
in one of the outer dialogs but not of the inner. After that point (marked by x in Figure 7.2), backing
creator beyond the decision to create created would require undoing created’s communication with the
participant of the outer dialog. That requires backing that participant out of its innermost dialog, which in
turn requires that creator also be backed out to the same level. In general, creator would have to be

backed out of its outermost diatog.

If we were to adopt the position that created is not in any dialog while creator is, we would retain
the need for a solution to smuggling. We would also have added other potential causes of errors. We
have shown that it would be possible for creator to be backed out of its outermost dialog if created had

to be un-created due to failure of creator’s innermost dialog.

7.2.2.3. Consequences of Approach 3

Finally, we elaborate on the third solution attempt outlined above. If created exists as a result of
execution of an allocator, it can survive creator. Thus it retains the syntactic problems mentioned above
for exiting a dialog within which it might be created. Its place in the dependency graph and its potential
lifespan do not naturally make created an extension of creator. It scems to make more sense to have
such tasks begin execution as part of no dialog. Thus, we might choose a definition under which creéted
is outside of any dialogs upon its creation. So far, this resembles the second choice with the same
problems of needing to back out of communication if creator must back up. Instead, we might define a
set of tasks created like created by tasks within the same dialog as creator. Created could communicate
with any task in this set. Created would block upon attempting to enter a dialog with a task outside of

this set. Created would remain blocked until creator discards the recovery point that endangers

i Were it not for the foregoing context, that the implicit initial communication between creator and created js satisfaciorily
protected, the fact that the leftmost dashed line crosses dialog boundaries would immediately alert us to a smuggling problem.
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created’s existence.

What follows then could be the additional semantics associated with creation of an allocated task.
Created is outside any dialog and can try to enter dialogs, but, if it does, it gets suspended until creator
cannot be backed beyond the creation. Tasks whose creators are in the same dialog can communicate
amongst themselves, but not with anyone outside their creators’ dialog. If creator backs out of its dialog,

created ceases to exist. If creator’s dialog succeeds, created’s dialog gets released from protection.

This makes the dialog data structure of Chapter 4 only marginally more complicated. When
created enters a dialog, a new dialog entry is dynamically formed and is attached to creator’s current
dialog entry. This dialog entry accounts for the dialog for the set of tasks with which created is
allowed to communicate. It becomes attached 10 dialog entrys of parent dialogs as creator
(successfully) exits its nest of dialogs. The dynamic dialog entry does not follow creator should
.creator once again descend deeper into dialog nesting. This upward migration continues until there is no
parent dialog. At that point, the information in the dialog entry is merged with the permanent

dialog_entry With the same name.

Besides merging created’s floating dialoeg_entry with a permanent one as above, there are other

options,

(1) Al participants in one of the (permanent and floating) dialogs of the same name could be
suspended until the other dialog ends. This option assumes the two dialogs were indeed intended

to be unigue. It also enables reuse of the static execution-time data structures of Chapter 4.

(2) A set of temporary dialog_entrys in the dialogs table could be created to accommodate the
participants in created’s dialog. This option also assumes the former protected and non-protected
dialogs were indeed intended to be unique. It enables continued parallelism but requires a more

complicated execntion-iime data stucture.



142

Taking into account the dependency structure of allocated tasks has motivated what seems to be a
solution. We have also offered three possible ways to deal with ongoing dialogs among created tasks
when their creators’ exit from their outermost dialog releases the created tasks from danger of destruction
due to backward recovery. Unfortunately, this attempted solution ignores the fact that in many
applications creator and created do need to perform some initializing communication. This is an
important point, Taking it into consideration will lead us to an actual solution to the dynamic process

creation problem,

7.2.3. Solution to Smuggling Due to Dynamic Task Creation

Implicit communication resulting from task creation is not handled by the dialeg sequence as
defined in Chapter 3, Appendix A, Chapter 4, and Chapter 6. We present here a revision that constitutes
"a solution for the most general class of task, and we provide special cases of the solution for the other

classes of tasks.

7.2.3.1. The Allocated (General) Case

A solution that pays attention to initializing communication does not need tﬁe options that the third
partial solution of the previous section needed. Under that partial solution, new tasks were outside any
dialog and could try to enter dialogs, but they would become suspended until the creating task could not
be backed beyond their creation. Our realistic solution contains a compromise among the better parts of

the choices presented above.

Tasks actually created by an allocator in a statement sequence can survive their creators. Thus,
although they might need to communicate with their creators initially, they need to survive any dialogs
their creators might have been in during the creation activity. This indicates a need for some demarcation

within the text of created, between the initial recoverable activities during creator’s dialog and
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subsequent activities, At such a point, created could be blocked until the end of the dialog, and the

associated determination by creator and its colleagues to commit to created’s existence.

A Preliminary Part

Figure 7.3 depicts the structure of a task as Ada exists now beside the structure of an allocated task

in a language derived from Ada under this plan. Figure 7.4 depicts a possible syntax denoting that
structure, There is a preliminary part which is executed while creator is still within the innermost dialog
during which it created ereated. When creator reaches the acceptance test for that dialog, and created
reaches the demarcation line between the preliminary part and the rest of its body, the boundary test
serves as created’s local acceptance test for that dialog. There can be oros out of the preliminary part,
but such branches are delayed at the boundary test, just as in a2 pIscuss statement. A task is not allowed
to reenter the preliminary part. The rxnaw function in created is a last qhance test on created’s view of
.its status as creator evaluates the acceptance test on its outermost dialog. The rmian function is

evaluated asynchronously with the statements following the demarcation line in created’s body.

declarations
ineluding
declaratlons FINAL functlon

excluding preliminary

FINAL function part
body
boundary test demarcation line

body

Organization of Tasks That Can Be Created Via Allocators

Figure 7.3




144

TASK BODY <id> IS
<declarations>
FIRAL FURCTION <id> RETURN BOOLEAN IS
END <id> ;
BEGIN
PRE <gtatements> TO ARRANGE <boolean expression>

<statemente>
END [ <ig> ] :

Syntax for Allocated Tasks

Figure 7.4

After successful completion of creator’s innermost dialog and before completion of its outermost
dialog, created “‘floats” out. This means created thinks it is at the outermost level (outside a dialog)
and enters dialogs to communicate with others. These dialogs are actually nested within those of creator
in a manner that will be explained shortly. The other tasks with which created can communicate in these
dialogs are creator, other tasks created within creator’s dialog nest by creator or creator’s co-
participants, and creator’s co-participants themselves. If a dialog’s membership consists solely of
created tasks, that dialog can continue while creator and its colleagues evaluate acceptance tests and step
up in the dialog nest. If one of these dialogs has a member that is not in the same situation as created,
creator and its colleagues must of course wait, This occurs because that member’s pIscuss statement
for its dialog with created must be strictly nested within its pIscuss statement for its dialog with

creator.

Rationale For The Solution

There are several questions one might raise in connection with this solution. Can created prevent
progress by staying in its preliminary part? How can created communicate with creator if it *‘thinks’” it
is not in any dialog during the preliminary part? When do creator and created have to synchronize as

they exit the dialog nest? With which tasks other than creator can created communicate? How does
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created avoid needing to know for how many nested dialogs to provide acceptance tests? Why does not

created simply lie dormant until creator exits its outermost dialog? We answer each of these in turn.

If ereated gets into an infinite loop or otherwise blocks in the preliminary part, there is no TIMzovy

1o save it unless the TIMEOUT exists in creator as creator awaits created’s termination.

Created cannot communicate directly with ereator while in its preliminary part. However, they
can communicate if each of them enters a nested dialog. As illustrated in Figure 7.5a, from creator’s
viewpoint, this dialog is nested within the dialog during which it created created. As shown in Figure
7.5b, created views this dialog as a top level dialog, although it is actually nested within the dialog of
creator during which created was created. This particular structure has a side benefit of allowing
creator o try several times, if necessary, to get created started properly without backing beyond the
creation itself. It also provides a path, shown in Figure 7.5¢, through which some other participant in

‘creator’s dialog may communicate with the preliminary part of created.

Suppose, as in part a of Figure 7.6, that creator were in dialog seTa nested within dialog aveea
when it created created. When creator reaches the end of BeTa successfully, created might be at the
demarcation line or somewhere inside the preliminary part. If created reaches the demarcation line first
(Figure 7.6b), created (unless it is being terminated) cannot proceed until creator has successfully exited
BETA. On the other hand, if created is somewhere inside the preliminary part (Figure 7.6¢), creator has
to wait until ereated successfully evaluates the boundary test. TIMEoUT’s in creator can break up the
sitnation if created is somehow blocked. Creator and created are not similarly blocked at the end of
creator’s outermost dialog, arraa in Figure 7.6d. There, after creator has successfully evaluated its
acceptance test, created’s rwan function is evaluated asynchronously to created. If created reaches its
end before the end of axrma (Figure 7.6¢), created terminates, but its wrvan function is still evaluated

when creator reaches the end of aLeza.
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a: creator craated

BETA

b: creator created other

[-H creator created

Views of Dialogs Within a Preliminary Part

Figure 7.5

Within the preliminary part, created can communicate with another task in creator’s innermost
dialog or another similarly created task. After that, the set of tasks with which created can communicate
gradually expands as creator exits more and more dialogs. The additional tasks at any level are the
participants of that dialog that did not enter the lower level with creator and the new tasks similar to

created for which those tasks are responsible.

There are not multiple preliminary paris of created for the case in which creator is in nested
dialogs. After the preliminary part, created is in whichever dialog creator happens to be until creator

exits its outermost dialog. Created is in a special state between leaving the preliminary part and
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craator created
DISCUSS ALPHA
DISCUSS BETA
. CREATE creaated e
’ <end>BETA
<end>ALPHA
DISCUSS ALPEA _
DISCUSS BETA preliminary part
: boundary test e
. pese— e
b: <end>BETA body
end
<end>ALPHA
DISCUSS ALPHA rreliminary part e
DISCUSES BETA boundary tast
M <end>BETA e body
<and>ALPHM and
preliminary paxt
DISCUSS ALPHA boundary test
d: <end>ALPHA e body e
end
DISCUSS ALPHA preliminary part
boundary test
. B
®:  ["Zend>ALFHA body
and s

Relative Progress of Creating and Created Tasks

Figure 7.6

evaluating the rmwat function, It is within creator’s dialogs, vet does not have 1o partcipate in
acceptance tests whose numbers it cannot know. Nor does it really obey the other nesting rules except at

- the topmost level of creator’s dialog nesting.

This solution has addressed the questions of whether there should be an acceptance test at the
demarcation line, and if so, whether it is related to the innermost or the outermost dialog, or to each along
the way. One really does not want a newly created process to be trapped in its creator’s set of nested

dialogs. Preliminary code for communicating with the creator is fine at the innermost level, but at
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unconnted intermediate Ievels the programmer would begin to get lost. Part of the reason for this
indeterminate or unbounded dialog participation after the preliminary part is that one might not know
how deep the nesting is for any instantiation of the new task. To have a newly created process
communicate only with the creator and only at the innermost level then wait until the creator cannot
uncreate it is a major restriction. A communicant with the creator might need to communicate with the
new process on the way out of the nest. Indeed, Figure 7.7 shows that the scope of the access type (if
created via an allocator) may disappear before the creator finally exits the outermost dialog. For
example, after execution of line 13, a task of type BTa exists. We have given rules that allow that task to

communicate with task B.

The preliminary part and FIvar function constitute a solution to smuggling as a result of dynamic

process creation. Iis exposition has been in terms of the allocated task case. We next show how it is

1l; task B is ... end B;
2: task A is ...

3: disocuss ALPHA by ...

4: declare

5: task type BTA;

H type PTR is access BTA;

71: begin ...

8: discuss BETA by

9: daclare
10: X : PTR;
il: begin
12: discuss GAMMA by ...
13: ’ X 1= new PTR; ...
14: to arrange ...
15: and;
16: to arrange ...
17: end;
18: to arrange ...
19: end A;

Process Creation via an Allocator

Figure 7.7
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applied to the special case of declared tasks.

7.2.3.2. The Special Cases

The tidy lifetimes of tasks created in declarations are the exception rather than the rule. For these
tasks, the dependency rules imply that creator cannot exit the dialog in which it is créawd before created
is destroyed. We model the activities of declared tasks as if they were allocated tasks, with an empty
statement sequence beyond the preliminary part. This means the entirety of a declared task’s activities
occur within its preliminary part. If created is created as a result of elaboration of the declarative part of
creator’s body, then created is in the same dialog as is creator upon creator’s creation. This should be

checkable and therefore enforceable at compile-time.

For a task created as a result of elaboration of declarations, the syntactic nesting structures of the
language require that created must be destroyed before creator leaves its dialog. This means that we do
not need a syntactic expression of created’s normal exit from the dialog if we define created to start in
creator’s dialog and spend its “‘life’” in the preliminary part. As for created’s communication with tasks
that are not in creator’s dialog, created can be considered to be an extension of ereator; thus, the other
tasks would need to enter creator’s dialog to communicate with created. Further, the visibility rules
ensure that ereated must initiate such communication; outsiders cannot “‘see’” created. Because of the
method of creation, no outside process can see created to attempt communication with it. However,
created can communicate with tasks on the outside, so the execution-time check can be made. Created
can communicate with any task within the same dialog as creator, or within a nested dialog if created

explicitly enters one,

This provides a solution for declared tasks. As declared tasks are special cases of allocated tasks,

the solution for declared tasks is a special case of the solution for allocated tasks.
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Task creation in Ada is one specific example of the general case of dynamic process creation. We
have shown the problems this facility presents for inclusion of backward error recovery in a language.
We have also shown modifications to the semantic rules of the dialog and colloguy concepts that

effectively deal with these problems without severely restricting the degree of parallelism.

We have not given a different syntax for declared tasks. Whether we use Ada’s syntax or the new
one created for the allocated case, the programmer (designer) must program declared and allocated tasks
differently. To have the programmer reminded of that requirement by syntactic differences or by
different placement of the bulk of e:{ecutablc statements within the body could even be beneficial in

preventing faults.

7.3. Process Destroction

Process creation is only one form of process manipulation. Another is dynamic process
destruction. Again, we illustrate with Ada tasks. Like task creation, task destruction is a form of

communication. Here, we examine it for similar pitfalls.

Tasks can be destroyed due to their normal control flow or through the effects of aporr statements.
Implicit communication resulting from any form of task destruction is not handied by the
dialog_sequence as described so far, We will show that normal termination is not a problem. Abérzed
tasks and their implications for task attributes embodies the bulk of this section and carries over into the

next.

7.3.1, Normal Termination

Normal termination of tasks does not interfere with the inclusion of dialogs. Normal termination of

tasks in Ada cannot engender smuggling. The syntactic nesting requires that a task exit any dialogs it had
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ever entered before it reaches its Exp. This is so even in the situations requiring the use of algorithm
srancH in Chapter 4. Failure of a test along the way indicates that something, perhaps including the
decision to take the ‘‘current’® control transfer, was wrong and must be undone. Control transfers due to
the raising of exceptions have been integrated into the definitions of the piscuss statement and

dialog sequence a]ready.

A terminate alternative in a selective wait within a priscuss statement can be handled by

suspending the task until one of three things happens. These are,

(1) one of the open entries is called,

(2) the dialog fails, or

'(3) all other participants in the dialog reach their acceptance tests (or their own terminate arms).

When all other participants have reached their acceptance tests, there will never be any other task that
can enqueue a call on the unique queues established for that dialog. At that point, the task evaluates its
own acceptance test. If the dialog fails, the task will be backed up to a point before it began to try to
terminate. If the dialog succeeds, the situation is as if the dialog sequence were replaced by a selective
wait with terminate alternative and no other open alternatives. Under this approach, the task is seen to
ease out of its nest of dialogs, with implied soros directly to acceptance tests where it must wait for other
participants of the respective dialogs. Failure of the dialog that had the terminate arm means the task is
not trying to terminate, rather it is participating in the next (alternate) dialog. Message arrival can only

back the task out of the try for termination inside the innermost dialog.
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7.3.2. Aborts

Aborts are a much more serious problem. It is clear that this kind of task destruction is a form of
communication. A programmer writes the statements following an azory statement with the knowledge
" that the tasks that were the objects of the asort statement no Jonger exist, or that they will cease to exist
upon their next attempt at synchronization. The programmer knows something definite about those tasks’

states, and cannot help including that knowledge in the subsequent code.

This communication is one-way, in that only the executor of the aBorT statement gains information
and the object of the asowr is neither a willing nor knowledgeable participant. It is the fact that the
object of the azorT statement is not knowledgeable that prevents us from requiring the two tasks to enter
a dialog for that communication. Further, because the object is a ‘‘moving target’’, we cannot require the
task executing the amory statement 1o enter whichever dialog its target happens to be in (that is, to catch

'up 1o the target) as a prerequisite to executing the ABORT.

A task that is aborted can seem to other participants in any dialog in which it happens to be as if it
were suffering from faults that might generate tasking errox upon atiempted communication, The
aborted task will not reach its local acceptance test allowing the dialog to end. I the dialog ends.with
failure, the aborted task must be removed rather than backed up (unless the aborting task was aisoc in that
dialog). Once backed up, the other tasks may try to re-enter a dialog with the aborted task, but will find
that it has not deigned to enter with them. If the dialog is to end with success, the exit algorithm must be
modified to allow for more tasks to enter a dialog than try to execute acceptance tests (i.e. the abort code

must also manipulate the set of participants).

Another important problem with task abortion and backward error recovery does not involve
smuggling so much as implementability. The aborted task must be resumed if the aborting task is backed
up beyond the decision to abort. In order to be able to resume it, an implementation must save all of the

aborted task’s resources until the aborting task commits so that the aborted task can be reenstated if the
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aborting task is backed up.

Suppose a task has an entry call queued on an entry of the task that is to be aborted. The calling
task need not be in the same dialog as the targeted task, The Ada LRM requires that the calling task
receive TASKING ERROR and be removed from the queue. This is to happen even if the calling task
initiates the call after the amorr. If the calling task later tries to call again and does not receive
TASKING ERROR, it can conclude that the first rendezvous began and an exception was raised i the callee
or that the callee was the target of an asort that was later rescinded. If the calling task can reach this
latter conclusion, smuggling has taken place. That it is possible for another task to reach that conclusion

is shown in the next section.

The remaining and major problem with aborts relates to smuggling through task atiributes between
the time that the amorT statement is executed and the time that the destruction of the targeted task
‘becomes permanent. Examining that manipulation will help us to understand this one enough to seek a

solution.

7.4, Task Attributes

In programming languages, like Ada, that provide an unrestricted shared variable facility, one
process may examine the internal dasa state of another. The restrictions that were presented in Chapter 6,
deal with the problems that are raised by this unrestricted access. There are also facilities in some
programming languages throngh which one process may examine the execution stawe or progress of
another. Such facilities exist in Ada and are known as task attributes. When a process is backed out of
an execution state that has been examined by another process, the information is invalidated. Thus, to
provide satisfactory backward error recovery, either both must be backed up, or the information transfer

must be prevented.
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The 7' terminated and T‘callable atiributes in Ada are used by tasks to gather information about
the internal staies of other tasks, so théy seem to behave like shared variables. Their actual use indicates
that they are not. If the process using these attributes is in a dialog at the time, and the dialog fails, the
information is lost; otherwise the situation is the same as if the asker had not been in a dialog. A task
cannot be backed out of the terminated or un-callable conditions unless they arose due to an ABORT
statement within some dialog, If the task is created within a dialog and terminates before exit, no outside

task can reference that task to ask these questions.

These attributes are supposed to behave as sticky bits. They start off as rarse (rruoe for

T callable), and once TRUE (FALSE), they stay TRuE (Farse). The situations to be examined are those in

which backward recovery might change them from TRUE (FALSE) to FALSE (FRUE). As we showed above,

under conditions of normal termination, the subject cannot be backed up by failure of a dialog. This

narrows the scope of the questioh down to aborted tasks. Notice from the previous section that whether
the result of an entry call is a TASKING ERROR can be used to examine the callee’s execution state (status).

This and the narrowed scope of the task atiribute problem is why we put off a solution to task abortion in

the previous section. The combination of task attributes and task abortion is discussed below.

7.4.1. The Problem with Task Attributes

There are some subtle meanings of the combinations of ?'terminated and 7T/callable with the

amorT statement. In discussing these issues, there are three tasks of concern.
(1) The killer (x) is the task that executed the ABor? statement.
(2) The target () is the task that is the object of the asorr statement and of the inquiries.

(3) The asker (a) is the task making these inquiries.



155

There are a number of cases depending upon how deeply and within which dialogs the three tasks happen

to be nested when the amorr is executed and when the inguiry is made.

If the result of the inquiry (FALSE for 1’terminated and TRUE for T*callable) indicates that T
has not been aborted or otherwise terminated, There is no problem. If a is backed beyond the inquiry,
these values remain unchanged. The problem with the information acquired by a lies in the cases
wherein K is backed up but not 2. In such cases, we must have some mechanism for reversing any
decisions that A might have made based upon the invalid information, or for suspending a’s progress

until such time as the information becomes permanent.

We have discussed most sitnations in which T might be backed up. In those cases, T remained
terminated. However, if x is backed up with T, T should not remain terminated. Indeed, if x is backed
up independently of T, T must become ‘‘un-terminated”, and 7’s companions must be backed up

‘ through any interactions that they may have attempted with =.

Thus, everything revolves around recovery of k. K is the task that made the decision to execute
the amorr statement, x is the task whose decision could be reversed. That reversal invalidates

information acquired by a about .

Figure 7.8 shows nine of the cases of dialog nesting for x and 7 at execution of the amor?
statement. A bubble represents a dialog with its participants listed inside. In cases ! and 2, x cannot be
backed up, so we do not have to worry about un-terminating . In cases 5 and 6, if x backs up, sodo *
and its fellows. Incase 4, Tand its fellows must not be allowed out of their dialog (must not throw away
their recovery line) until x has successfully completed its dialog. Case 8 resembiles case 4 but mutates
into one of case 5, case 6 or case 7. In case 7, we have a choice of blocking 7 and any other tasks’
activities involving ¢ until case 7 mutates into case 5, or of having any backup of (x’s) inner dialog
immediately trigger backup of the outer dialog. Case 9 and any further nested cases are extensions of the

first 8 cases.
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Dialog Nesting Situations for x and r Upon aBorT

Figure 7.8

This leaves case 3. Notice the similarity between case 3 and case 7. For case 7, we had a chance
to block any operation involving = until Kk committed. The alternative, which is inapplicable to case 3,
was to permit operations involving 7, but to back them up as well as x should x’s dialog fail. The
choice is inapplicable because there is no further dialog surrounding both x and = that would allow them
to be backed up together. To block all operatons invoiving v means that the aborting activity and any

other activities involving T must await the completion of ’s dialog.
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The only easy cases above were those in which T was in a dialbg that was within that of x, or in
which x was not in a dialog. The others involved blocking activities of other tasks until x arrived at a

position relative to 1 that mirrored the easy cases.

If we substitute *“a*" for **r°" in each case in Figure 7.8, we find the cases for the task executing the
amorr statement and the task making the inquiries about the aborted task at the time of inquiry. It is
important to notice that it does not matter to the inquiring task where the aborted task is. What does
matter is whether the decision to abort can be reversed. An implementation of these inquiries must
determine whether to return an immediate answer or to block the asker (a). This determination must be
based upon the dialog nesting status of the killer task (x). Thus, the implementation must inquire of K’s
task control block without knowing beforehand which task x is. Presumably that information could be

found through the target (x).

7.4.2. Unsatisfactory Approaches

a might use the result of the attribute inguiry in an acceptance test and make a wrong decision
based on x’s wrong decision. This is indirect inter-dialog communication. Hence, we might consider
blocking  until the result becomes permanent. Unfortunately, this decision introduces the possibility of

deadlock.

To see this, suppose we combine case 5 (really case 9) for aand x with case 8 for Tand x (Figure
79a). If ais blocked until a definite, permanent answer to the inquiry can be discerned, this will mutate
into a combination of aand K case 5 and Tand x case 7 (Figure 7.9b). At this point, the system of three
tasks deadlocks. A cannot proceed until x exits its inner dialog, and x cannot (successfully) exit its
inner dialog until A unblocks. The situation would almost be better if a third value (perhaps denoted

maybe) could be returned by the attributes.
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7.4.3. Practical Approach

The *‘easy’’ cases were those for which the decision to abort was permanent. Indicating that
abnormal task destruction may best be made an unrecoverable activity, As an unrecoverable activity,
task abortion should fall into cases 1 and 2 only. Yet as a form of communication, it should fall into
cases 5 and 9 only. Recall that task abortion is unlikely to fall into cases 5 and 9 as it entails x chasing
down. If task abortion is indeed to be an unrecoverable activity, a language designer might then wish to

require special permission or authority for a task to wield such power.
For purposes of the preceding paragraph, an activity that is unrecoverable
(1) is only done outside a dialog, or
(2) has no effect until its executor successfully exits all dialogs, or
(3) has immediate effect without possibility of backup,

Of the three, only the first does not aliow a programmer to *‘forget” that the activity is unrecoverable,
The second changes the ‘‘immediate effect”” semantics of the Ada azorr. The third can result in an

inconsistent state due to partial recovery. Thus, we require that an ABoRT statement never be nested

Deadlock Due to Attribute Inquiry

Figure 7.9
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within a prscuss statement.

Abnormal process destruction causes problems for backward error recovery when we try to make
that operation recoverable. Task abortion, with the foreboding wamnings in the Ada LRM, seems t be
intended as a form of forward error recovery. Rather than being a mechanism for backing up a task’s
progress, the amort statement destroys the targeted task. Only as a recognized unrecoverable activity

does the task abortion facility cease to interfere with backward recovery.

Making task abortion unrecoverable has solved (or avoided) the problems of mixing backward
error recovery with abnormal process destruction and external observation of processes’ execution states
as they occur in Ada. We emphasize that this is not necessarily a solution in the general case of external

observation of processes’ execution states.

7.5. Summary

We have described the problem of smuggling via unexpected information flows provided by
existing facilities in a language designed for implementing crucial systems. One unexpected source of
information flows is the manipulaton of processes, We have examined three mechanisms for process
manipulation and shown how they permit smuggling when backward error recovery is naively combined

with them.

Smuggling via dynamic process creation can be prevented when the newly created process’ initial

aclivities are constrained within a preliminary part and checked by a Frvax function.

Dynamic process destruction and Ada’s forms of examination of processes’ execution states
engender smuggling only in the context of abnormal termination (in Ada, the asorr statement). The first
of two possible solutions, blocking the process attempting to examine an aborted process’ state until the

abortion cannot be undone, presents additional problems and may even permit situations leading to
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deadlock. The other solution, forcing execution of the ABorT statement to occur outside of any dialog, is

disquieting for so important an activity.

As with expected mechanisms for smuggling (Chapter 6), we have only dealt with a few
unexpected mechanisms for smuggling. There may be others, if not in Ada, then in other languagés.
Also, as with our solutions for the expected mechanisms, our solutions for the unexpected mechanisms
are often fragile and less than satisfying, as well as being defined using the semantics of a single modemn

language as an example.

Again, all of this shows that backward error recovery and these facilities in combination present
problems not previously addressed or even acknowledged in the literature. It is clear that backward error
recovery cannot be included in a programming language after the fact. It must be a design consideration

from the outset.



CHAPTER B8

Program Structuring Problems

Recall that Chapter 5 described two major problems in merging backward error recovery into a
realistic programming language. The first problem had to do with smuggling, and was dealt with from
two standpoints in Chapter 6 and Chapter 7. The second problem is the incompatibility between

deliberate establishment of recovery lines and the communications philosophy of the language.

This problem arises because the establishment of recovery lines must be a coordinated activity,
agreed upon explicitly by all the participants. The facilities of most programming languages, however,
are designed to avoid this level of explicit knowledge in communication structures. In Ada, for example,

| naming is one way only, and, in principle, an Ada task defining an entry does not know which other task
is calling the entry during a particular rendezvous. This incompatibility in requirements leads to a
general difficulty in program structure. We discuss here only a particular example, that of providing

service Processes.

To make this incompatibility clear, we first review Ada’s communications philosophy. Next, we
introduce some generalizations about the behaviors produced by this incompatibility. This is followed by
some examples illustrating these behaviors, after which appear some solution approaches. Finally, we

present a direction that might prove froitful in a search for a comprehensive solution.

8.1. Background

161
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Abstraction, Information Hiding and Modularity

Abstraction, information hiding and modularity have become ‘‘buzzwords’ but are rooted in

Parnas’ original paper [Parn72]. We remind ourselves of the common threads.

Systems are to be divided up as re-usable, replaceable modules. For such a module to be useful to
many users, or replaceable without modificatiors to its users, its specifications must completely abstract a
general-case entity. Each module is implemented without knowledge of how many users there will be or
which modules they are. The module is thu§ made re-usable. The users of the module know only the
name of an instance of the provided abstraction and its specifications. Any knowledge of how the
exported specifications are implemented is hidden from the users. The module’s implementation is thus

easily replacecabie.

That a module does not know which or how many other modules are its clients implies one-way

naming in communication.

As Anderson shows [Ande78], all this poses ro problem for backward error recovery in a
sequential system. However, as we saw with shared variables, problems arise when we expand 10 a
concurrent system. Consider an abstract type. An instance is an object, which can be hidden as a
package or as a task. A package is suitable for a sequential system and for a parallel system if each
process has its own instance, If processes share an instance, we have either the confusion of

simultaneous update of a shared object, or the shared object is guarded by a service process.

Service Processes

A service process provides a service for other processes. It is like a procedure that can only be
called in a mutually exclusive manner, but that maintains an internal state between calls. With one-way

naming, the service process does not know for whom it is providing the service at any time.
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The use of service processes is the preferred method in many programming languages for sharing
either simple variables or abstractions among multiple processes. The facilities of a service process are
used when other processes need some operation performed on the abstraction. The service process often
makes non-deterministic choices among users awaiting its various services. The services are performed
during communication with the individual users, for example during rendezvous in Ada. These

statements apply equally to monitors.

Ada “‘encourages’’ protecting shared variables in service (i.e. monitor-like) processes. The Ada
(as a program design language) philosophy about shared variables seems to be to package them with a
protective task {Cohe85]. As we show below, serions problems arise for backward recovery in these

protective tasks when serving multiple clients.

‘Non-Deterministic, Exclusive Communication

The Ada language has nondeterminism in its communication mechanism. The dialog concept does
not entail that kind of nondeterminism. Any quality that dialogs have which might be viewed as
nondeterminism lies in the fact that a process cannot know which or how many other processes are using
the same dialog name at the same time. The problem also involves a lack of exclusivity in dialogs. In
our efforts to make the participants in dialogs anonymous, we have not provided for any form of mutual
exclusion. The dialog envelope around communication has neither nondeterminism nor mutual
exclusion. Due to this, the envelope restricts severely one’s nse of these qualities. Hence, it restricts

severely the kinds of programs one may write.

8.2. General Behaviors Illustrating the Process Structuring Problem

We have identified several generalizations about the form of this incompatibility in terms of

process interactions. We have named some of them the *‘Determinism™, ““Capture™, and *“Torpedo™
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Fffects. Others indicate that the designation of dialogs could require two-way naming, which in turn
would run counter to modern design and programming precepts such as modularity, information hiding,

and abstraction.

A server task may be requested to perform its service at any time in Ada. Under the dialog
regimen, it seems a server must actively seek out its clients to achieve the same dialog nesting. To do so
involves knowing its user's names to some extent. Further, the server cannot leave a dialog after dealing

with one client and before seeking the next client until the first client is ready to leave.

Determinism Effect

The Determinism Effect occurs when a process cannot ascertain which dialog it should enter
without entering one.

‘For service processes, the Determinism Effect is almost always in force. In order to meet its clients to
provide ils service, each server must know the names of the dialogs its clients are in at any instant and,

for each client, the current proper depth of dialog nesting.

Consider a programming lénguage that makes provision for both service processes and backward
error recovery. A process, the client, that requires the use of a service process, the server, must
communicate with the server. However, this communication must take place within a dialog and this
requires an explicit action by the server. The server must enter a dialog in order to provide a service to
the client, yet it cannot know which dialog to enter, or when, because it has no knowledge of the state of
those processes that might be its clients. It doesn't even know their names. Indeed, if separately
programmed, the server might not know at any given point which dialogs to enter in order even to be at
the same level of nesting as a valid caller. This is the Determinism Effect. An example is shown in
Figure 8.1 in which a server process, outside of all dialogs is idle, yet two client processes are unable to

obtain service since each is in a separate dialog.
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Capture Effect

The Capture Effect occurs when a process enters a dialog and is unable to exit until some other
process is ready.

The captured process may need service whereas no service is available within that dialog, or it may have

performed some service and be delayed in proceeding to its next client,

As a solution to the Determinism Effect one might naively consider arranging for service processes
to be active, searching for clients, rather than passive, waiting for clients. A service process might be
expected to enter a dialog merely to check to see whether its services are needed. Upon entry, the service
process will have to establish a recovery point, Unfortunately, if its services are not needed, it has to
await the completion of the dialog before it can continue since it has joined a coordinated set and must
discard its recovery point with the rest of the set. This imposes an arbitrary delay on the service process.
If its services are required it can provide them but then it still has to await completion of the entire dialog
before it can leave and look for other clients. If there is a nest of dialogs, the service process will have to
enter them all but await the completion of each before it can exit. In effect, by actively looking for

clients, the service process will be “‘trapped” in every dialog that it enters until the other processes in the
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dialog determine that the dialog is complete. This phenomenon of entrapment until the dialog completes
is the Capture Effect. An example is shown in Figure 8.2. The service task is nested within two dialogs

but has no further clients. It cannot leave, however, until both dialogs complete.

Deadlocked Resources

The Capture Effect can also lead to deadlock. Two processes that have provided their services and
are ready to continue might be trapped in dialogs (Figure 8.3). If each dialog requires the attention of the
other service process in order to complete, the system will be deadlocked. These processes’ services are

shared resources just as are shared variables. This indicates that the service process paradigm does not
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mix with recovery lines.

Torpedo Effect

The Torpedo Effect occurs when a process enters a dialog and, by reason of the manner in
which it is programmed to interact with dialogs, canses that dialog to fail.

Consider a process which, in atiempting to overcome the Capture and Determinism Effects, uses
rMEODTS to cycle through a list of dialogs that its clients may from time to time enter. If it cycles oo
quickly, it may flit from one client’s dialog to another without ever serving anyone successfully, This is
one variation of the Torpedo Effect. For another variation, consider a process that enters an existing
dialog and causes it to fail, even though it otherwise might have completed successfully, hence backing
up all participants, All participants are required to fail because of this process. In this variant, the
process may have entered the wrong dialog; nevertheless, its interference undoes the others’

accomplishments,
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We give several illustrations of the Torpedo effect using the example shown in Figure 8.4.
Suppose a service process (s) guards a buffer between a writer process (w) and two reader processes (r1

and rz).

Suppose s has a datum in its buffer. It has no way of determining whether next to enter the dialog
meant for the readers or the dialog meant for the writer, If it simply tries one after the other, timing out
when it finds no partners, a partner may have to wait unnecessarily in the second dialog while s waits in
the first. This is the contrivance illustrated in the robot example program of Appendix C. s has no way
to nondeterministically choose between dialogs with w and the ®r’s. Again, we see the Determinism
Effect at work. However, if s times out 100 soon, the situation worsens. s might arrive in R1’s inner
dialog (call it BETa), timeout, and timeout on an outer dialog (call it camma) just as R1 and any other
participants with it in dialog camva complete an involved interaction. That would cause ®1 and its
‘companions to back up due to no fault of their own, Indeed, if s cycles through its list of clients’ dialogs
relatively quickly, r1 and its fellows might never accomplish the goals for which they entered dialog

eammn., This produces the Torpedo Effect.

Rl
{reader)

w
{writer)

R2
{reader)

Buffer Service Task, Cne Writer, Two Readers

Figure 8.4
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Earlier, we considered the server to seek out clients in their dialogs. Turning the strategy around,
we might have clients join a server in a dialog of its choosing. In this case, we find that s cannot exclude
all but one reader during the (read) operation. Suppose Rl enters a dialog with s for the purpose of
reading a datum. If r2 enters the dialog before R and s disengage, ®2’s presence could jeopardize a
successful exit by s and r1. This means the dialog would fail through no fault of s or of ®r1, but due to

Rr2’s normal and correct activities — another instance of the Torpedo Effect.

Two-Way Naming

Continuing to use Figure 8.4, suppose s has one datum which both r1 and r2 attempt to read.
Suppose also that an attempt has been made to avoid the exclusion side of the Torpedo Effect by
requiring r1 and Rr2 to use different dialog names. The logical extension of this solution is to require
“gvery client of s to use its own dialog name. This is equivalent to s knowing each client by name. That
invalidates a major benefit of service processes; that is that the server is programmed without knowledge

of its clients. Thus, the language’s one-way naming is changed to two-way naming.

Let it be the case, as in Figure 8.5, that r1 requires a datum while in a dialog anrsa, and again

R1: ... 8 ...
[ATPHA ... S.@ ... ] {ALPEA accept a ]

[GAMMA ... [{GAMMA [BETA accept e ] ]
{BETA ... S.e ... ]
-1

{ [ and ] begin and end DISCUSS statements)

Skeleton Source Showing Determinism Effect

Figure 8.5
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while in a dialog sETa within dialog caMva. s must sometimes enter dialog areua to find out if R1is
ready to read the datum, and must at other times enter dialog eamm then dialog BeTa to find out the same

thing. Thus, s must know not one, but several dialog names for each client process.

Counter to Modularity

Consider a system arranged as a hierarchy of objects where the objects are guarded by processes.
Figure 8.6a shows such a system. One process (a) uses the object provided by another process (8). B
implements its object in part by using the object provided by a third process {c). ¢ implements its object
in part through use of the object provided by a fourth process (p). When a needs to use the object it
knows about, it enters a dialog (arenun) with B, as in Figure 8.6b. In order to perfoﬁn the required
manipulation of the object, B must enter a dialog (8eTa) with c. Since BETA occurs during ALPHA, €
.must also enter ALPEA before entering mera with B. At this point, as Figure 8.6¢ shows, a is in (to use
the internal names) dialog arpma, and B and c are in dialog aArpma.mera within dialog aveea. In order
to perform the manipulation required of it, ¢ must communicate with b in another dialog (cava). At
this point, we have the sitation of Figure 8.6d, that a is in dialog ALPEA, B is in dialog arema.mera
within dialog arema, and c and » are in dialog avPEA.BETA.GRMMA Within dialog arpEa.mETA within

dialog ALPHA.

One naturally wonders how p knew what dialog names to use, and how deeply it had 10 go into
dialog nesting to render its service. We do not have an answer for that question. Indeed, we view the
acquisition of that kind of knowledge as completely counter to modern design and programming precepts
such as modularity, information hiding and abstraction. The planned establishment of recovery lines

interferes with modularity and information hiding.
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8.3. Some Naive Approaches to Solutions

There are several approaches that might occur to one seeking solutions to these problems. Many of
these are dead-ends. We have already mentioned and rejected having service processes cycle among
clients’ potential dialogs and exiting these using TrMeouTs. We present a few more approaches here with

explanations of why they do not solve the problem.

a A B c D
ALPHA
b C D
ALPHA
BETA
=4 A D
ALPHA
BETA
GAMMA
d A B

Dialog Nesting Counter to Modularity

Figure 8.6
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Conditional Dialogs

A service process is a special kind of process. Many others try to communicate with it, but the
others don’t care at all about each other. A service process’s design wants to be a loop with a selective

wait in it.

An approximation of nondeterminism can be reintroduced outside the dialog envelope by the
programmer. The robot example in Appendix C approximates a nondeterministic choice among callers.
The nondeterminism had to be faked in the robot example — a complex contrivance was used which

should not be left to the programmer.

Ada allows a task 10 make nondeterministic choices among entries when accepting calls. There is
no corresponding nondeterminism when choosing to enter a dialog. In a dialeg_sequence, the keyword
or precedes a sequential alternative. However, in the Ada selective wait, the orR means a

nondeterministic *‘choice’” is to be made.

Oné possible way for a process to choose among dialogs nondeterministically would be to revise
the language to replace the “‘accept part’’ in a selective wait with a dialog_sequence. We call this
approach the *‘conditional dialog™, Of course, implementing a nondeterministic entry into one of several
dialogs would be extremely difficuit. Furthermore, such an approach does not necessarily achieve the

necessary dialog nesting depth.

Limited Participation Dialogs

Adz also enforces mutual exclusion among entry calls being serviced. The dialog allows any

process to enter the communication ag will.
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To deal with the mutual exclusion problems of all participants failing undeservedly or all
succeeding mistakenly, we might consider using Path expressions [Camp74, Camp80] or something like

them for the number of processes in a dialog.

A form of this is participant counts. If a prscoss statement has only accepts within its sequence of
statements, it may be reasonable for the service process to create a sub-dialog for a specified number of
participants by specifying a participant count. Then, only as many processes on the entry queus as were
specified are considered actually to be *‘in”’ the dialog with the acceptor. Again, this idea complicates

the bookkeeping necessary for implementing dialogs.

8.4. Possible Research Directions Toward Real Solutions

There is reason to argue that backward recovery should be applied to Iarger sets of communications
between processes than individual rendezvons, We agree, but the nature of service processes is such that
they only have short communications with clients or must effectively time-share themselves among
clients, The whole scheme of dialog sequences seems inappropriate for microscopic communication as
defined by service processes and similar practices. We are thus tempted to seek more radical approaches

to recovery after communication.

Below, we outline our current thoughts on two possible directions for future research toward an
actual solution. They are not intended to be complete, nor do they necessarily address all of the points

made in the preceding paragraphs.

8.4.1. Limited Recoverable Objects

An initial approach to this problem would be to require program structures that do not use service

processes. This is a severe, perhaps unrealistic restriction given current design techniques for concurrent
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programs. A second approach might be to designate service processes as somehow special cases, and

allow them to operate ousside of the dialog rules and arrange their own recovery.

The combination of backward error recovery with independence of process designs for protecting
shared variables and external hardware suggests a new facility not found in most languages for this
applications area. This facility is a limited recoverable object. It is an abstraction with which processes

communicate but which decides independently when to recover or to commit to a pew state.

Changes to values of limited-recoverable objects would be recoverable only for a short span of
“time”’, after which their values would become unrecoverable. Such objects may well deserve a special
syntax and semantics for dealing with them. With a specialized syntax and semantics, limited
recoverable objects might also rid us of the problem of the service process needing to know its clients and

their dialog nesting structures.

‘The operating systems examples’ problems [Well84] (such as producer/consumer) with backward
recovery is what Russell [Russ77] was talking about when he said to unbundle the caching operations
SAVE, RESTORE, and piscarp. Unfortunately, his unbundling of the operations only opens up more room
for faults to appear. It may be possible systematically to embed the concept of a limited recoverable
object in the language so as to prevent many faults of misuse of the operations. One process would
communicate with such an object at a time and they would either commit or recover before disengaging.
Alternatively, the service process implementing the limited recoverable object might keep track of
recovery points for each client’s transactions with it, and independently determine when to recover or
commit to that transaction, The decision to commit or recover would be almost entirely the responsibility

of the object.

Limited recoverable objects would also be useful in modeling a program’s communication with the
outside world. Such an object could serve as a compromise between the unrecoverable objects of the

external world and the remainder of the program,
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Without the exercise of due care in developing this approach, it conld be abused easily and could
substantially reduce the compile-time checking of the use of backward error recovery that is possible

with the general dialog scheme.

8.4.2. Multi-Level Solution

The levels of abstraction and of service processes are reminiscent of Anderson’s mulii-level
programs [Ande78]. As a layer of a multi-level system, each service process might be made
independently responsible for recovering itself. We might extend the ideas of limited recoverable objects
to other units of the programming language. Of course, inactive units would have to be prompted by the
support system to perform recovery. For instance, there could be two levels of specifications for shared
packages, one seen by the user and another seen by the recovery systemT. The recovery system could
call the audit code periodically to evaluate the package’s private variable state and could call the recovery
code when needed. Part of the audit code conld employ a kind of message validation on incoming and

outgoing parameter lists.

If recovery is triggered by one client, not all clients need be backed up. An audit trail could be
used to replay old ‘‘messages’ from other clients, thus using an actual previous state of that layer to
construct a state which could have existed. As the system re-played messages from other c}ier;ts since
the last recovery point of the layer that was recovering, checks could be made that outgoing parameters to
other clients matched those in actual old messages. Unfortunately, a problem could arise if the new and
old outgoing parameters did not match. To have the server send out ‘‘corrective’’ messages to other
clients would not be desirable, especially since the server (as opposed to the recovery system} is not

supposed to know who those clients are.

¥ "The visible and private parts of package specifications in Ada already represent multiple levels for user and compiler,
respectively.
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It may be that the only alternatives are to employ a chase protocol [Merl78] to trigger recovery in
other clients, or to have the server “*stonewall it”. In the former case, the domino effect enters the
picture once more. In the later case, the server would recover on its own and let its clients detect their

new inconsistency with the protected data of their own accord. Either case is very dangerous.

Some of the ideas above may be recognizable as having been employed in the DMERT
system [Hans83]. Before being employed within programming language facilities for backward error
recovery, any ideas must be organized and integrated with the other facilities of the language so that
mechanisms for subverting the backward error recovery facilities can be detected long before execution-

time.

8.5. Summary

In this chapter, we have expanded upon the problem of incompatibility between the planned
establishment of recovery lines and use of modern programming practices and design methods. We
concentrated on service processes and one-way naming which facilitate information hiding, abstraction,
and object-oriented design. We identified several effects and consequences of blindly including
backward error recovery in a system with service processes. While illustrating these effects, we included
and simultaneously showed the inefficacy of several naive solutions to the incompatibility problem. We

then showed a few other dead-end approaches to the problem.

In previous chapters, we proceeded to present real solutions to the problems. In this chapter, we
have delved instead slightly deeper into the cause(s) of the incompatibility problem, and have outlined
some approaches that may prove fruitful in future investigations. We have not found a satisfactory
solution to the problem that produces the capture effect, and emphasize that it is but one example of the

general issue of program structure for systems incorporating backward error recovery.
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Our focus has been on the identification of a heretofore unrecognized problem. Our search for a
solution has reinforced the conclusion that backward error recovery must be a design consideration in a

programming language rather than added as an afterthought.



CHAPTER 9

Summary, Conclusions, and Future Work

9.1. Summary

In this dissertation, we have been concerned with programming language primitives that allow the
specification of fault-tolerant concurrent systems, and the impact that such primitives have on other

elements of modern programming languages.

In Chapter 2, we described the previous major proposals for providing software tolerance of
‘software faults. These are the proposals that have included or have hinted at the provision of
programming language support rather than merely being design recommendations. These included both
forward and backward error recovery. We continued to delineate many shortcomings of the backward

error recovery proposals.

Chapter 3 proposed a solution to the problems that we had pointed out in the previous backward
error recovery proposals. The solution is a new backward error recovery primitive and an organization
for its use. We named these the dialog and colloquy, respectively. We also defined programming
language facilities that allow the specification of dialogs and of processes’ participation in colloquys.

These, we named the pIscuss statement and dialog_sequence, respectively.

Appendix A gives detailed semantics of the pIscuss statement and dialeg_sequence, and givesa

possible syntax that would allow static enforcement of their proper use.

Chapter 4 demonstrated by high-level description that the piscuss statement and

dialog_sequence can be implemented in a programming language.
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Appendix B demonstrates that the colloquy is a more general concept than the previous backward
error recovery proposals. It does this by translating each of the previous proposals into a special case of

dialog sequencesS.

By examining the inclusion of the new backward error recovery facilitie;s in a realistic modern
programming language, we revealed problems that are more fundamental than the previous proposals’
shortcomings but that had been obscured by them or that had been simply ignored or “‘assumed away”’ in
the past. The problems evidence themselves in the form of smuggling and of incompatibilities in the

explicit communications philosophies of backward error recovery and the language.

These new problems were introduced in Chapter 5 to be addressed more closely in Chapter 6,
Chapter 7, and Chapter 8. In those chapters, the problems were illustrated using examples of execution-
time situations that might arise if nothing (or the wrong thing) were done about the problems. The
‘illustrating situations are not at all pathological cases. Rather, they are very simplified statements of the

complex situations that can arise in actual programs.

In Chapter 6, we addressed the problem of smuggling via programming language facilities that one
would expect could be used to that end. We elaborated on this problem both through exposition and by
presenting naive approaches to solution along with their shortcomings. To demonstrate the problem, we
examined shared variables, aliasing, and *‘pointers™. We call our solution to the problems of smuggling
via shared variables and aliasing, IMAGEs. Through explicit declaration and constrained usage of any
sharable variable, IMAGEs provides an elegant anti-smuggling wall around the activities of processes
participating in a dialog. We next showed that constraints designed to prevent smuggling through

pointers, or dynamically allocated objects, would severely limit pointers” usefulness.

In Chapter 7, we addressed the problem of smuggling via programming language facilities that one
would not expect could be used to that end. One unexpected source of information flow is the

manipulation of processes. We examined three mechanisms for process manipulation and showed how
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they permit smuggling when backward error recovery is naively combined with them. We used as
examples dynamic process creation, dynamic process destruction, and examination of processes’
execution states. We showed that there are several approaches that one might consider in se¢king a
solution which are unworkable. Our solution to smuggling due to creation of dynamically allocated
processes prescribes dividing the body of a process into a preliminary part and a main part and providing
a rINaL function describing the process’ chance to veto its own creation. We also showed how
smuggling can arise due to the combination of abnormal destruction of processes (aBore, in Ada) and

examination of processes’ execution states (task attributes, in Ada).

Finally, in Chapter 8, we expanded upon the problem of incompatibility between the needs of -
backward error recovery and program structures govemed by the communications philosophy of the
language. That philosophy reflects the precepts of modemn programming practices and design methods.
_Those appropriate to Ada require program organizations that run counter to the needs of processes in the
establishment of planned recovery lines. We delved into the causes of the incompatibility problem, and

outlined some solution approaches that may prove fruitful in future investigations.

9.2, Conclusions

We have defined a primitive, the dialog, that is a basic unit from which backward error recovery
schemes can be constructed. We have introduced a new linguistic construct, the colloquy, which solves
the problems identified in the earlier proposal, the conversation. The colloquy generalizes all previously

proposed linguistic constructs for backward error recovery.
The major features that distinguish the colloguy over the conversation are:

(1) The reversal of the order of priority of alternate communication attempts and of recovery points.
This allows processes to choose the participants in any alternate algorithms rather than being

required to deal with a single set of processes.
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(2) The inclusion of explicit and general timing constraints. This allows processes to protect
themselves against any difficulties in communication that might prevent them from meeting real-

time deadlines. It also deals with the problem of deserter processes.

(3) The use of a two-level acceplance test. This allows much more powerful error detection because it

allows the miloring of acceptance tests to specific needs.

Subsequent to defining the colloquy, we attempted to introduce the concept into a realistic
programming language. That is, a programming language that contains the necessary facilities to
program modern, large-scale applications, It is tempting to think that the colloquy solves- all the
problems that might arise, and that the syntax for the colloguy can be integrated into a programming
language with no further concern. When this was attempted, problems that are at least as serious as the
previous ones were revealed. The difficulties arise because of an inherent conflict between the needs of
‘the applications’ programmer, as exemplified by modern language design, and the fundamental needs of
backward error recovery in concurrent systems. These problems fall into the general categories of

smuggling and program structure.

All of the newly-uncovered difficulties that we discussed use Ada as an example. The actual
programming language is frrelevant, and we stress the fact that the problems raised will occur in other
programming languages. Nor are these problems specific to the colloquy. They arise because of the
fundamental requirements of backward error recovery in concurrent systems, and occur with the
conversation also. In general, other researchers have either assumed these problems would not occur, or
based their research on programming langnages with very limited (and impractical) facilities, such as
CSP [Jalo84]. The problems do not arise in those languages because of the relatively simple semantics

that such languoages have.

We have shown how some of these difficulties can be overcome by making extensive changes to

the programming language. All of our proposed solutions were developed for a particular class of
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programming languages exemplified by Ada. The proposed solutions are unlikely to handle variations in
language design. Neither our approaches to pointers nor our solution to shared variables would solve the
problems with, for example, PL/I's based variables. This shows how awkward the semantics of existing

languages can be.

We have dealt with only a few of the expected mechanisms for smuggling, and only a few of the
unexpected mechanisms for smuggling. There may be others, if not in Ada, then in other languages. The
incompatibility problem is also but one example of the general issue of program structure for systems

incorporating backward esror recovery.

Backward error recovery and many modern programming language facilities in combination
present serious problems not previously addressed or even acknowledged in the literature. Our focus has
been on the identification of heretofore unrecognized problems. Our search for solutions 10 the
‘smuggling and incompatibility problems has been in the form of alterations to the semantics of the
dialog_sequence and minor alterations to the semantics of the language. We have seen many apparent

solutions which, upon closer examination, have proven unsatisfactory.

All of the problems described derive from the rapid growth in size and complexity of programming
languages with no attention to backward error recovery. As a result, the asynchronous nature of
processes makes it difficult to establish a recovery line and certainly to pre-package it with a syntactically

enforceable structure in the manner that a piscuss statement is enforceable for explicit messages.

The concepts of backward error recovery cannot be merged naively into existing realistic
programming languages. Our search for solutions has reinforced the conclusion that backward error
recovery must be a design consideration in a programming language rather than added as an afterthought.
Tt is clear that backward error recovery cannot be included in a programming language after the fact. It
must be a design consideration from the outset. The final solution has to be the design of an entirely new

programming language with backward error recovery as its starting point.
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9.3, Future Work

The obvious course for future work, given our conclusions, is to attempt to design a language with
backward error recovery as a major driving force. A test for success of such a project would be whether
the resulting language retained forms of the other facilities that would make it useful in programming
embedded systems. Below are some of the considerations that the language designer should take into

account.

In the non-backward-error-recovery view, only data and processes exist al execution-time.
Consideration of backward error recovery adds recovery lines (dialogs) to this list. As one of the three
kinds of entities at execution-time, recovery lines should be a major driving factor in processes’
activities. Processes’ activities are specified at compile time. So, any compile time specification needs to
obey the dialog rules. The behaviors known as *‘service processes™ confiict with planned establishment

of recovery lines. Hence, a structure other than service processes is required.

At execution time, data comes and goes, and we recognize that the same datum can be reached via
different source identifiers at different times and may even be unreachable at times via any identifier. We
have the same recognition about processes and the identifiers used in reaching them. Now we need to
deal with execution-time-only entities variously called dialogs or recovery lines or coordinated sets. For
both of the previously recognized classes of execution-time objects, we know that sometimes an identifier
will reach the entity, but we are better off (under rules or restrictions) not using it, or using it under a

protocol. This will also be true of dialogs.

The prscuss statemnent as we have defined it provides for the general case in which all participants
desire a recovery wall around their communication. We might consider modified prscuss statements for
specialized usage of dialogs. We currently refer to these as local and non-local dialogs. One case is that
of a single process which is concerned about its own recovery but not communicating. Another case is a

small group of processes concerned about their own recovery yet which need to communicate with
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outside servers within that time whether the servers care to be able to recover or not. That case would

provide for explicit use of limited recoverable objects.

It may be the case that languages suitable for backward error recovery and languages suitable for
verification are basically the same. This might also instigate a radical change in the form of dialogs or of

processes.

Beyond the design of a language with backward error recovery as a major driving force, and
considering the trends toward distribution of embedded systems, investigation of the resulting language’s

efficient implementability using distributed algorithms would be a reasonable further continuation.



APPENDIX A

Syntax and Detailed Semantics of the Dialog Sequence

The Syntactic entities dialog sequence, discuss_statement and fail_statement facilitating

wse of the dialog and colloquy in an Ada-successor language are detailed here.

Figure A.1 shows the syntax associated with the colloquy. A discuss_statement contains both a
global test designation and a local test. The global test designation is a name that has been declared in a
dialog declaratien. A dialeg declaration associates the name of a parameterless boolean function
with a list of names of variables used within the function and within any discuss_statement which uses

the name of that function as its dialog_name. The local test is simply a boolean expression.

The keyword “‘ngver’’ in the tIMpouT part indicates that the programmer places no timing
requirement on the list of attempts in that diglog__sequence. In the absence of a timing requirement, the
syntax chosen for a dialog_sequence forces the programmer to say so explicitly. The syntax given for
the TIMmouT part, “‘rIMeovt’’, may be disturbing to some who may prefer something like “*or pELAY™,

in which case the keyword ““sever’’ may be changed to *‘FOREVER".

Since it represents a time interval, in Ada the simple expression following the *‘T1mMeovT’”” keyword
would be of type purarron. Should the simple expression return a negative number or zero, control is

transferred immediately to the sequence of statements in the TIMEoUT part.

The sequenée of statements in the TIMeouT part may be empty. Execution of an absent sequence
of statements, or a sequence consisting only of the NvLy statement causes the dialog sequence and
whatever surrounds it to become unsuccessful. The sequence of statements in the TIMEOUT part allows

the programming of a “‘last ditch’” algorithm for the task to achieve its goal in the case in which a timing
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select statement

dialoy sequence

attempt list

attempt

discuss_statement

dialog declaration

timeout part

else part

statement

"

FET e

selective wait
conditional entry call
timed entry call
dialog segquence

SELECYT
attempt_list
timeout part
elie part

END SELECT;

attempt
{ OR attempt }

discuss_sgtatement
[ sequence of statements ]

DISCUSS dialoy name BY
sequence_of statements

TO ARRANGE boolear expression;

DIALOG function name
SHARES ( name list );

TIMEOUT NEVER;

TIMEOUT simple expression;
[ sequence of statements ]

ELSE
[ sequence of statements ]

-- A task participates in a dialog by executing a discuss_statement.
-- A discussion is determined by a task executing a dialeg sequence.

Syntax for the Colloguy

Figure A.1

constraint has been violated during processing of the attempts of this dialog_sequence. If this sequence

of statements is successful, control continues after the dialeg sequence. If the TIMEOUT part is not

successful, further actions are as if the Trmsous part had been empty.
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A sequence of statements is permitted following the discuss_statement within an attempt. This
sequence of statements is logically outside of the encompassing dialeg_sequence, AS such, if the
associated discuss_statement is successful, it is executed after the recovery point is discarded but
before execution of any statement which textually follows the dialog_sequence. It is intended for
specialized post processing of the activities within its associated discuss_statement, Since it is
logically outside of the enclosing dialog_sequence, it is not subject to any timing constraint which may
have been specified in that dialog_sequence’s TIMEOUT part. Also since it is logically outside of the
enclosing dialog sequence, if this sequence of statements becomes unsuccessful, it is not the atternpt

but the sequence of statements containing the dialog_sequence which becomes unsuccessful.

If control is transferred to an ELsE part whose sequence of statements is absent, or if the sequence
consists of a single wuLL statement, the dialog_sequence and whatever surrounds it becomes
unsuccessful. Figure A.2 shows three ELsE parts with equivalent semantics. The sequence of statements
in the ELse part affords the programmer the opportunity to specify some *‘last ditch** actions for the task
to achieve its goal. If this sequence of statements is successful, control continues after the
dialog sequence, If the ELSE part is not successful, further actions are as if the ®rse part had been

empty. Like the rmMeour part, the #rse part does not protect the sequences of statements following

ELSE
END SELECT;

ELSE
NULL;
END SELECT;
ELSE
FAIL;
END SELECT;

Three Equivalent zrse Parts

Figure A2
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discuss_statementS within attempts.

A dialog_sequence is a full statement and need not be restricted to a task body if it contains no
task communication statements. There is no requirement that an attempt actually contain .
communications statements. Thus, the construct can be used to build a recovery block for a sequential

part of a program.

selective waitS, conditional entry call$, timed entry call$, entry call statementS, and
accept_statements may only occur within discuss_statements. No communications statements are
allowed in the =®ise part or the wTmMeour part or the sequences of statements following

diseuss_statements within attempis, at least for the task’s outermost dialeg_sequences.

Tasks have a new attribute (see Figure A.3) associated with dialogs. This attribute returns a
‘Boolean value signifying whether the task T is, at the time the attribute is evaluated, a participant in the
implied dialog. In the case of nested dialogs, the innermost is meant. The task evaluating the attribute
(requesting the information) must itself be in some dialog. The main intended use for this attribute is in
the global acceptance test. There, the test can be made to fail due to desertion by certain “‘ex-officio’
members of the dialog. A more general form (see Figure A.4) would be too difficult to use in the global
tests” bodies. The body would have to bertailored for a particular level of nesting of dialogs to provide
the appropriate dotted dialog name. Another reason for resiricting the attribute is to prevent the

interrogator from smuggling out meta information about dialogs in which it is not a participant.

T/ in this dialog

The in_this_dialog Attribute

Figure A3
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T/in dialog( <dialog_name> }

A More General Atiribute

Figure A4




APPENDIX B

Other Software Fault-Tolerance Facilities as Special Cases

dialog_sequences can be used to construct deadlihes, generalized exception handlers [Salz78],
recovery blocks, traditional conversations, exchanges, and s-conversations [Jalo84]. Thus the colloquy is

at least as powerful as each of these previously proposed constructs for provision of fault tolerance.

The Deadline Mechanism

Figure B.1 shows Campbell’é deadline mechanism implemented with a dialog sequence. The
‘order of primary and alternate actions in a dialog_sequence basically requires the use of Campbell’s
“‘optimistic’” scheduling scheme in which the primary is given the chance to execute first and the
alternate starts when only enough time remains for it to operate. This example shows the construction of
exactly what Campbell describes, with the same problems. The time given is that allowed the primary
rather than, as Campbell prescribes, the timing requirement for the entire statement. Campbell assumes

that the time required by the alternate is known. If the timing requirement for the entire statement and for

. SELECT
attempt -- read sensors; calculate new position;
PIMEOUT 7 * millisecond; -- deadline duration minus time of alternate.
stmts; -- approximate new pesition from old position.
ELSE
stmts; -- same backup algorithm as above.
END SELECE;

Colloguy for Campbell’s Deadline Mechanism

Figure B.1
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the alternate algorithm are known, it should be possible to determine that for the primary algorithm. Also
notice that the Ernse and pmour parts are identical, Campbell’s deadline mechanism does not
distinguish between timing errors and other faulis in the primary algorithm, He even assumes the

alternate algorithm is correct, so we have not protected the algorithm in the Ernse and TIMEOUT parts,

A Generalized Exception Handler

Figure B.2Z shows the nse of 2 dialeg sequence 10 construct a general exception handler. Most
languages with exceptions do not deal with timing, which is the only discrimination the
dialeg_sequence makes; hence, we have not given a timing constraint in Figure B.2. ®arxn statements
can provide an approximation of Ada “‘raise’’ statements in either of the statement sequences in Figure
B.2. This is stil more powerful than Ada’s handler for oteers (Figure B.3) since, in the
‘dialey_saquence, all changes made during the failed attempt are undone before execution of the =rLsz
part begins. In that sense, the example more resembles Cristian’s ideas on exceptions than Ada’s.

Although no particular reason is made apparent for why things went wrong in the attempt, a consistent

FUNCTION abc RETURNS boolean IS BEGIN RETURN TRUE; END abo;

DIALOG abe SHARES { };
SELECT
DISCUSE abc BY
sequence_of statements 1 -- thie is the block being protected
TO ARRANGE TRUE;
TIMEQUT NEVER;
ELSE
sequence of statements 2 -~ this is the handler
END SELECT;

Colloquy for Exception Handler for oTeERS

Figure B.2




192

. BEGIN
sequence_ of statements 1 -~ this is the block being protected
EXCERTION
WEEN OTHERS =>
sequence of statements 2 -- this is the handler
END ...

Ada Exception Handler for oTaERs

Figore B.3

v

state has been established from which the handler can operate in its job of replacing the protected code.

The Recovery Block

A recovery block is a special case of a colloguy in which there is only one process participating,
every dialog uses the same acceptance test, there is no timing requirement, and there are no *‘last ditch™
algorithms to prevent propagation of failures of the construct. Figure B.4 shows a dialog_sequence that
is equivalent to the recovery block shown in Figure B.5. The use of the rars statement in the
dialog sequence makes explicit the propagation of the error to a surrounding context just as does the
else error closing of the recovery block. In the dialog_sequence, the Boolean expression is repeated
in the piscuss statements rather than gathered into the dialog function because we want to be able 1o
include Iocal variables in it as a programmer of the recovery block would. Should an error be detected in
statement_sequence_1, the state is restored and statement sequence_2 is executed, and so on. Finally,
should an error be detected in statement_sequence_3, the state is restored and the error is signaled in a
surrounding context. An error may be detected by evaluation of boolean_expression 110 FALSE, Or by

violation of some underlying interface (such as raising of an exception).
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FUNCTION abce RETURNS boolean IS BEGIN RETURN TRUE; END abe;

DIALOG abc SHARES ( )

SELECT
DISCUSS abc BY
statement sequence 1
TO ARRANGE boolean expression 1;

OR
DISCUSE abe BY
statement_sequence 2
TO ARRANGE boolean expression 1;

OR

DISCUSS abc BY

statement_sequence 3

TO ARRANGE boolean expression 1;
TIMEOUT NEVER;
ELSE

FAIL; —-- Omitting this line does not change the semantics.

END SELECT;

Specification of Colloguy for a Recovery Block

Figure B.4

Traditional Conversations

Since a dialog_seguence can be used to construct a recovery block, and since it can contain
communications statements, a set of dialog sequences within a collection of tasks can also be used to
construct a traditional conversation. To do this, the ELsE and TiMmour parts must be empty. The
srMzouT part is empty since a traditional conversation cannot detect desertion, which is a timing
consideration. The dialog_sequence in each task must have the same number of atiempts as the others.
All attempts must have the same dialog name. The dialog function must simply return TRUE, and no
shared variables should be named in the dialog declaration. Finally, the boolean expressions in all

. attempts of any one DpIscuss statement must be identical and represent that task’s contribution to the
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ENSURE boolean expression 1 BY
statement sequence 1

ELSE BY
statement. sedquence_2

ELSE BY
statement sequence 3

ELSE ERROR;

A Recovery Block

Figure B.S

acceptance test for the conversation. To prevent smuggling, besides admitting no shared variables, no

other task in the system must be allowed to use the dialog name used by these tasks for this

-conversation.

Exchanges

Exchanges can also be constructed using dialog_sequences as is illustrated in Figure B.6. Each
task is an infinite loop to read sensor values, process them, re-synchronize with the other tasks, and
output the results, One pass through the loop represents one frame, Should the processing take too long
or otherwise fail, some emergency actions can be available such as leaving the old (nbw restored) values

in the Iatch variables and noting how ofien this has occurred.

The comment within the pIscuss statement suggests an alternate design in which only a parent
task would contain the loop. During its prscuss statement it would create the tasks that were to do the
actual work, delay for some large fraction of the available frame time while they worked, then destroy
them or, if they had not finished by the time it re-awakened, execute a Fary statement. This latter design

has much task creation overhead but more directly models exchanges.
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FUNCTION abc RETURNS boolean IS BEGIN
~- check up on the latch varlables and inputs, etc.
END abe;
DIALOG abc SHARES
~-— list of inputs and latch variables
}:
LOOF -- in each task:
-~ read sensors, ete,
SELECT
DISCUSS abe BY
sequence of statements
-- (could even start up the tasks and kill them)
TO ARRANGE test;
TIMEOUT eycle length;
~~ pome statements to absorb the fallure
ELSE
-~ gome statements to absorb the failure
END SELECT:
DELAY whatever it _takes to not_go too fast;
-~ putput contents of latech variables te actuators
END LOOP;

Colloquy for Exchanges

Figure B.6

S-conversations

S-conversations are conversations with synchronized entry and explicitly-named participants. The
concept was introduced in the context of CSP which has named send and named receive in ifs
communication statements. In that context, the programmer might as well name all participants in one
place. If each process goes into a loop at the beginning of its attempt waiting on the condition that all
other participants have also arrived in the dialog, the initial synchrony is achieved easily. Thus, we have
a use outside of the acceptance test for the new in_this dialog atiribute which we have associated with

dialogs.



APPENDIX C

Controller for a Robot Arm

This appendix illustrates some uses of dialogs in a set of tasks implementing a controller for a robot
arm, The tasks responsible for the coordinated delicate operations of the *‘fingers’” and *‘wrist’” operate
at the minor frame rare. Those responsible for the gross movements of “*elbow’” and *‘shoulder’” operate
at the major frame rate. Coordination of the two major paris is through a shared positioning database
guarded by a service task. For simplicity, we ignore such things as acquisition of orders (that would
probably be communicated through the database). At the end of its frame, a representative of each part

exchanges information with this database.

In the **hand’’, each participani reads its semsors, then makes (potentially)} two attempts to
coordinate its decision about signals to its actuators with its partner in light of the most recently available
information about what the upper arm is doing. At the end of its frame, the participant sends out its
control signal, Should the attempts take too long or both fail, the previous frame’s output or an

extrapolation from it is used,

The wrist, representing the hand, communicates the group’s decisions to the database, at the same
time retrieving pertinent information about recent upper arm activities. Should that take oo long, or
should some disagreement with the database arise, temporary assumptions are made about the arm’s

status,

The upper arm operates similarly to the hand.

The task guarding the database cycles through dialogs employing selective waits with ELSE part.

Thus, when a representative of one of the groups calls, the task is sitnated within the correct dialog. The
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RENDEZVOUs variable insures that the dialog will not fail for lack of a caller. If there is a caller and the

dialog fails, the database is restored to a consistent state automatically and the failure is not propagated.

Words containing **_soar_1n_*’ stand for task- and dialog- specific local acceptance tests. As

such, they are application-specific and probably quite complicated. Thus, we have abbreviated them.

The text of the robot arm controller follows:



task FINGERS is
~- antries for FINGERS
end FINGERS;

task WRIST is ;
-~ antries for WRIST
end WRIST;

task POSITION is
entry BAND( ... };
entry ARM{ ... };
end POSITION;

task BLBOW is
-~ @ntries for ELBOW
end ELBOW;

task SHOULDER is
-=- entries for SEOULDER
end SHOULDER;

dialog DELICATE WORK is
begin

- gvaluate primary global goal of FINGERS and WRIST returning a Boolean.
end DELICATE WORK;

dialog ALY DELICATE is
begin

«w g@valuate alternate global goal of FINGERS and WRIST returning a Boolean.
end ALT DELICATE;

dialog GROSS WORK is
begin

-- avaluate primary global goal of ELBOW and SBOULDER returning a Boolean.
end GROSS WORK;

dialog ALT GROSS is
begin
- @valuate alternate global goal of ELBOW and SHOULDER returning a Boolean.

end ALT GROSS;

dialog HAND LOCATIOR is
begin

~-- evaluate global goal of WRIST and POSITION returning a Boolean.
end HAND _LOCATION;

dialoy ARM LOCATICN is
begin
~« gvaluate global goal of ELBOW and POSITION returning a Boolean.

end ARM LOCATION;

task body FINGERS is

198



bagin

199

loop

—- pick vp inputs (unrecoverable).

select
discuss DELICATE WORK by
-~ many rendezvous with WRIST while computing new outputs.
to arrange FINGERS GOAL_IN DELICATE WORK;
or
discuss ALT DELICATE by
-~ many rendezvous with WRIST using alternate algorithm
to arrange FINGERS GOAL TN ALY DELICATE;
timeout PART OF MINOR_CYCLE;
-=- emergency: use old outputs.
else
~= emergency: extrapolate from old outputs.
end select;

daelay TO MINOR FRAME BOUNDARY:

-~ gend ocutputs {unrecoverable).

end loop;
end FINGERS;

task body WRIST is

begin

loop

== pick up inputs (unrecoverable).

select
discuss DELICATE WORK by
-— many rendezvous with FINGERS while computing new outputs.
to arrange WRIST GOAL IN DELICATE WORK;
or
discuss ALT DELICATE by
-- many rendezvous with FINGERS using alternate algorithm
to arrange WRIST GOAL IN ALT DELICATE;
timeout PART OF MINOR CYCLE;
-- amergency: use old outputs,
alse
~= gmargency: extrapolate from old cutputs.
end select;

selact

digcuss HAND LOCATION by

POSITION.HAND( ... };

to arrange WRIST GOAL IN HAND LOCATION;
timeocut ANOTHERQ?AR?_OF“yﬁNORhFYCLE;

-- emergency: use old arm info.
else

-~ emergency: extrapolate from old arm info.



end select;
delay 'TO_MINOR FRAME,_BOUNDARY;
-~ gend outputs (unrecoverable).

end loop;
end WRIST;

task body POSITION is
-~ declarations for the (protected) shared information go here.
RENDEZVQUS : boolean;

begin
loop

select
discuss BAND LOCATIOR by
RENDEEVOUS := true;
relact
accept HAND( ... } do
-- store hand position; communicate arm position
end HAND;
else
RENDEZVOUS := false;
end select;
to arrange CONSISTENT POSITION FOR ROBOT or not RENDEZVOUS;
timeout never; -~ this service task depends upon clients to time calls.
else
RENDEZVOUS 1= false; ~~ meaningless statement,
~w= 4ugt stops failure propagatien.
end select;

select
discuss ARM LOCATION by
RENDEZVOUS = true;
select
accept ARM{ ... ) do
-- store arm poeition; communicate hand position
end ARM;
else
RENDEZVOUS := false;
end select;
te arrange CONSISTENT POSITION FOR ROBOT or not RENDEEVOUS;
timeout never; -- thie service task depends upon cliente teo time calls.
else
RENDEZVOUS := false; -- meaningless statement,
== just stops failure propagation.
end select;

end loop;
end POSITION;

task body BLBOW is
begin
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loop

-~ pick up inputs (unrecoverable).

select
disgcuss GROSS WORK by
-~ many rendezvous with SHOULDER whille computing new outputs.
te arrange ELBOW _GOAL IN GROSS WORK;
or
discuss ALT GROSS by
~=~ many rendezvous with SHOULDER using alternate algorithm
te arrange ELBOW GOAL IN ALT GROSS;
timeout PART OF MAJOR CYCLE;
-- amergency: use old output.
else
-- emergency: extrapolate from old cutputs.
end select;

selact
discuss ARM LOCATION by
POSITION.ARM( ... ):
to arrange ELBOW GOAL_IN_ARM TOCATION:
timeout ANOTHER PART OF MAJOR CYCLE;
-- gmergency: use old hand info.
alse

~= emergency: extrapolate from old hand info.
end seleckt;

delay T0_MAJOR _FRAME BOUNDARY;

-- send outputs (unrecoverable).

and loop;
end ELBOW;

task body SHOULDER is

begin

loop

-- pick up inputs (unrecoverable).

select
discuss GROSS WORK by
~- many rendezveus with ELBOW while computing new outputs.
to arrange SHOULDER GOAL IN GROSS WORK;
or
discuss ALT GROSS by
= many rendezvous with ELBOW using alternate algorithm
to arrange SHOULDER GOAL IN_ALT GROSE;
timeout PART OF MAJOR_CYCLE;
-« emergency: use old outputs.
else
-« @mergency: extrapolate from old outputs.

end select;
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delay TO MAJOR_FRAME HBOUNDARY;
~-- gend outputs (unrecoverable}.

end loop;
end SHOULDER;
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