
Hardware Support for Dynamic Access
Ordering:

Performance of Some Design Options

Sally A. McKee

Computer Science Report No. CS-93-08
August 9, 1993

This work was supported in part by the NSF under contract number MIP-9114110.



Abstract

Hardware Support for Dynamic Access Ordering:

Performance of Some Design Options

Sally A. McKee

Department of Computer Science

University of Virginia

Charlottesville, VA, 22903

mckee@virginia.edu

Memory bandwidth is rapidly becoming the performance bottleneck in the application of
high performance microprocessors to vector-like algorithms, including the “grand chal-
lenge” scientific problems. Caching is not the sole solution for these applications due to
the poor temporal and spatial locality of their data accesses. Moreover, the nature of mem-
ories themselves has changed. Achieving greater bandwidth requires exploiting the char-
acteristics of memory components“on the other side of the cache” — they should not be
treated as uniform access-time RAM.

This paper describes the use of hardware-assistedaccess ordering on a uniprocessor sys-
tem. Our technique combines compile-time detection of memory access patterns with a
memory subsystem that decouples the order of requests generated by the processor from
that issued to the memory system. Thisdecoupling permits the requests to be issued in an
order that optimizes use of the memory system.We present numerous simulation results
showing significant speedup on important scientific kernels.
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1. Increasing Vector Memory Bandwidth

Processor speeds are increasing much faster than memory speeds: microprocessor

performance has increased by 50% to 100%per year in the last decade, while DRAM

performance has risen only 10-15% per year [Kat89]. As a result, memory bandwidth is

becoming the limiting performance factor for many applications, particularly scientific

computations. Alleviating the growing disparity between processor and memory speeds is

the subject of much current research.

Although the addition of cache memory is often a sufficient solution to the memory latency

and bandwidth problems in general purpose scalar computing, the vectors used in scientific

computations are normally too large to cache, and many are not reused soon enough to

benefit much from caching. Furthermore, vectors leave large footprints in the cache. For

computations in which vectors are reused, iteration space tiling [Car89, Wol89] can

partition the problems into cache-size blocks, but this can create cache conflicts for some

block sizes and vector strides [Lam91], and the technique is difficult to automate. Caching

nonunit stride vectors leaves even larger footprints, and may actually reduce a

computation’s effective memory bandwidth by fetching extraneous data.

The traditional scalar processor concern has been to minimize memory latency in order to

maximize processor performance. For scientific applications, however, the processor is not

the bottleneck, and as processor speeds continue to increase relative to memory speeds,
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optimal system performance will leave the processor idle at times. Bridging this

performance gap requires changing the way we think about the problem — to maximize

bandwidth for scientific applications, we need to minimizeaverage latency over a coherent

set of accesses.

While many scientific computations are limited by memory bandwidth, they are by no

means the only such computations. Any computation involving linear traversals of vector-

like data, where each element is typically visited only once during lengthy portions of the

computation, can suffer: examples include string processing, image processing and other

DSP applications, some database queries, some graphics applications, and DNA sequence

matching.

2. Access Ordering

The assumptions made by most memory architectures simply don’t match the physical

characteristics of the devices used to build them. Memory components are usually assumed

to require about the same amount of time to access any random location; indeed, it was this

uniform access time that gave rise to the term RAM, orRandom Access Memory. Many

computer architecture textbooks ([Bar92, Hay88, Hwa84, and Man82] among them)

specifically cultivate this view. Others skirt the issue entirely [Mac93, Tom90].

Somewhat ironically, this assumption no longer applies to modern memory devices: most

components manufactured in the last ten to fifteen years provide special capabilities that

make it possible to perform some access sequences faster than others. For instance, nearly

all current DRAMs implement a form of page-mode operation [Qui91]. These devices

behave as if implemented with a single on-chip cache line, orpage (this should not be

confused with a virtual memory page). A memory access falling outside the address range

of the current DRAM page forces a new page to be accessed. The overhead time required
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to set up the new page makes servicing such an access significantly slower than one that

hits the current page.

Other common devices offer similar features, such as nibble-mode, static column mode, or

a small amount of SRAM cache on chip. This sensitivity to the order of requests is

exacerbated in several emerging technologies: for instance, Rambus [Ram92], Ramlink,

andthe new DRAM designs with high-speed sequential interfaces[IEEE92] provide high

bandwidth for large transfers, but offer little performance benefit for single-word accesses.

For multiple-module memory systems, the order of requests is important on yet another

level: successive accesses to the same memory bank cannot be performed as quickly as

accesses to different banks. To get the best performance out of such a system, we must take

advantage of the architecture’s available concurrency.

A comprehensive, successful solution to the memory bandwidth problem must therefore

exploit the richness of thefull memory hierarchy, both its architecture and its component

characteristics. One way to do this is viaaccess ordering, which we define as any technique

for changing the order of memory requests to increase bandwidth. Here we are especially

concerned with ordering a set of vector-like “stream” accesses. For a more thorough

discussion of access ordering, see [Moy92, Moy93, McK93a, McK93b].

The performance benefits of doing such static access ordering can be quite dramatic

[Moy92, Moy93], but without the kinds of address alignment information that are usually

only available at run time, the compiler can’t generate the optimal access sequence. The

extent to which a compiler can perform this optimization is further constrained by such

things as the size of the processor register file. Moreover, the technique isonly suitable for

uniprocessor systems: in a multiprocessor environment, information about other

processors’ streaming activities is unavailable at compile time. The impact of access

ordering on effective memory bandwidth and the limitations inherent in implementing the
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technique statically motivate us to consider an implementation that reorders accesses

dynamically at run time.

There are a number of other hardware and software techniques that can help manage the

imbalance between processor and memory speeds. These include altering the placement of

data to exploit concurrency [Gup88], reordering the computation to increase locality, as in

“blocking” [Lam91], address transformations for conflict-free access to interleaved

memory [Har89, Rau91, Val91], software prefetching data to the cache [Cal91, Kla91,

Soh91], and hardware prefetching vector data to cache [Bae91, Fu91, Jou90, Skl92]. For a

more detailed discussion of how these schemes relate to dynamic access ordering, see

[McK93b]. The main difference between these techniques and the complementary one we

propose here is that wereorder stream accesses to exploit the architectural and component

features that make memory systems sensitive to the sequence of requests.

3. The Stream Memory Controller

The design space of access ordering systems and the rationale for the approach presented

here is discussed in [McK93a, McK93b]. The approach we suggest is generally applicable

to any uniprocessor computing system, but will be described based on the simplified

architecture of Figure 1. Memory is interfaced to the processor through a controller labeled

“MSU” for Memory Scheduling Unit. The MSU includes logic to issue memory requests

as well as logic to determine the order of requests during streaming computations. For non-

stream accesses, the MSU provides the same functionality and performance as a traditional

memory controller. This is crucial — the access-ordering circuitry of the MSU isnot in the

critical path to memory and in no way affects scalar processing.

The MSU has full knowledge of all streams currently needed by the processor: given the

base address, vector stride, and vector length, it can generate the addresses of all elements

in a stream. The scheduling unit also knows the details of the memory architecture,
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including interleaving and device characteristics. The access-ordering circuitry uses this

information to issue requests for individual stream elements in an order that attempts to

optimize memory system performance.

A separate Stream Buffer Unit (SBU) provides registers that the processor uses to specify

stream parameters (base address, stride, length, and data size) and high-speed buffers for

stream operands. As with the stream-specific parts of the MSU, the SBU is not on the

critical path to memory, and the speed of non-vector accesses is not adversely affected by

its presence. Together, the MSU and SBU comprise a Stream Memory Controller (SMC)

system.

There are a number of options for the internal architecture of the SBU: here we describe

one feasible organization. The set of memory-mapped registers mentioned above provides

a processor-independent way of specifying steam parameters. Setting these registers allows

the processor to initiate an asynchronous stream of memory access operations for a set of

string operands. Data retrieval from the streams (loads) and insertion into streams (stores)

may be done in any of several ways; for instance, the SBU could appear to be a traditional

cache, or the model could include a set of FIFOs, as illustrated in Figure 1. In this

organization, each stream is assigned to one FIFO, which is asynchronously filled from (or

drained to) memory by the access/issue logic. The “head” of the FIFO is another memory-

mapped register, and load instructions from or store instructions to a particular stream

reference the FIFO head via this register, dequeueing or enqueueing data as is appropriate.
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This organization is both simple and practical from an implementation standpoint: similar

designs have been built. In fact, the FIFO organization is almost identical to the “stream

units” of the WM architecture [Wul92], or may be thought of as a special case of a

decoupled access-execute architecture [Goo85, Smi87]. Another advantage is that this

combined hardware/software scheme doesn’t require heroic compiler technology — the

compiler need only detect the presence of streams, and Davidson’s streaming algorithm

[Dav90] can be used to do this.

Note that we assume the processor can perform non-caching loads and stores so that non-

unit stride streams can be accessed without concomitantly accessing extraneous data and

wasting bandwidth. While not a common architectural feature, some commercial

processors such as the Convex C-1 [Wal85] and Intel i860 [Int91] include such “cache
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Figure 1  Stream Memory Controller
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bypassing”. Others, such as the DEC Alpha [DEC92], provide a means of specifying some

portions of memory as non-cacheable.

4. Simulation Environment

We have simulated a wide range of SMC configurations, varying

- FIFO depth,

- vector length, stride, and alignment

- dynamic order/issue policy,

- number of memory modules,

- DRAM speed,

The results given here involve the following restrictions:

- All memories modeled here consist of interleaved banks of page-mode DRAMs,

where each page is 2K double-words.

- The DRAM page-miss cycle time is four times that of a DRAM page hit, unless

otherwise noted.

- NonSMC results are for the “natural” reference sequence for each benchmark,

using non-caching loads and stores.

- SMC initialization requires two writes to memory-mapped registers for each

stream; this overhead has no significant effect on results, and is not included here.

- We model the processor as a generator of load and store requests only —

arithmetic and control are assumed never to be a computational bottleneck. This

places the maximum stress on the memory system by assuming a computation

rate that out-paces the memory’s ability to transfer data. Scalar and instruction

accesses are assumed to hit in the cache for the same reason.
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5. Benchmark Suite

The benchmark kernels used are described in Figure 2. Daxpy, copy, scale, and swap are

from the BLAS (Basic Linear Algebra Subroutines) [Law79, Don79]. These vector and

matrix computations occur frequently in scientific computations, thus they have been

collected into libraries of highly optimized routines for various host architectures. Hydro

and tridiag are the first and fifth Livermore Loops [McM86], a set of kernels culled from

important scientific computations. The former is a fragment of a hydrodynamics

computation, and the latter is a tridiagonal elimination computation. Vaxpy is a vector axpy

computation that occurs in matrix-vector multiplication by diagonals; this algorithm is

useful for the diagonally sparse matrices that arise frequently when solving parabolic or

elliptic partial differential equations by finite element or finite difference methods [Gol93].

Mul is a sparse matrix multiply, and msort is a merge sort.

Here “axpy” refers to a computation involving some entity a times a vector x. plus a vector

y. For daxpy, a is a double-precision scalar, so the computation is effectively a scalar times

a vector, plus another vector. In the case of vaxpy, a is a vector, making the computation a

vector times a second vector, plus a third vector.

Figure 2  Benchmark Algorithms
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These benchmarks were selected because they represent access patterns found in real

scientific codes, including the inner-loops of blocked algorithms. Note also that these

benchmarks constitute a representative subset of all possible access patterns for

computations involving a small number of vectors (computations requiring more vectors

can usually be broken down into several parts, each using only a small number of vectors).

Note that although these computations do not reuse vector elements, they are often found

in the inner loops of algorithms that do. Examples include the blocked algorithms of the

Level 3 BLAS libraries [Don90], as well as the matrix-multiply by diagonals operation

mentioned above (which uses vaxpy). Whether or not the vectors are reused has no bearing

on SMC performance, although lack of temporal locality greatly diminishes the

effectiveness of caching. This is one of the main attractions of dynamic access ordering: we

can obtain good memory performance even for computations that do not benefit from

caching.

Results for mul and msort are not addressed here. Our many simulations indicate that the

performance curves for the other benchmarks are remarkably similar: this results from the

SMC’s robust ability to reorder accesses, regardless of the access pattern expected by the

processor.

6. Access-Ordering Algorithms

The SMC attempts to exploit the underlying memory architecture to issue accesses in an

order that optimizes memory bandwidth. For any memory system composed of interleaved

banks of DRAM components, there are at least two facets to this endeavor: taking

advantage of the available concurrency among the interleaved banks, and taking advantage

of the device characteristics. At each “decision point” (i.e. each available memory bus

cycle), the SMC must decide how best to achieve these goals.
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The algorithm design space can be divided into two subspaces: algorithms that first choose

a bank (bank-centric schemes), and algorithms that first choose an access (access-centric

schemes). In the following discussion, we assume a memory composed of interleaved

banks of page-mode DRAMs and a FIFO-based SBU implementation, as depicted in Figure

1.

The Bank-Centric Approach

In these schemes, each bank operates independently, thus each may be on a different

DRAM page at any given time. This kind of memory architecture differs slightly from

traditional interleaving schemes, where each bank “listens” to the page address for each

access, but only one bank responds to the request.

Any bank-centric algorithm for choosing the next access must:

1) select the memory bank(s) to which the next access(es) will be issued, and

2) choose an appropriate access from the pool of ready accesses for each memory

bank (this is equivalent to selecting a FIFO to service).

Here a ready access refers to an empty position in a read FIFO (that position is ready to be

filled with the appropriate data element) or a full position in a write FIFO (the

corresponding data element is ready to be written to memory).

The Access-Centric Approach

These schemes are similar to the bank-centric schemes, except that they perform the two

tasks (access selection and bank selection) in the reverse order. Once the FIFO to service

has been determined, the selection mechanism chooses an appropriate bank from the set of

banks servicing that FIFO.
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6.1  Bank Selection

The access selection mechanism must first decide which bank should be accessed next. The

possible candidates are those banks that are presently idle. Since there may be fewer banks

than potential accesses, it makes sense to determine the set of available banks, and then to

consider only accesses to those.

Strategies for selecting banks vary in the number of banks accessed at a time, and in how

many banks they consider in their search. At one end of the spectrum lies the exhaustive

search strategy — keep looking until the appropriate number of banks is found or no

unexamined banks remain — while at the other end of the spectrum only one bank is

considered. These schemes must also impose an ordering on the banks to determine which

will be considered first.

We have simulated the threebank-selection schemes listed in Table 1.

In the first scheme,Parallel Access Initiation (P), we attempt to initiate accesses to all

available (non-busy) banks. This greedy algorithm attempts to take full advantage of

available concurrency, but is generally impractical to implement, since it requires a separate

bus to each bank. Intuitively, it seems that this algorithm should perform at least as well as

any other, but this isn’t always the case. In general, the interaction between memory bank

availability, access initiation, and processor activity is quite complex, and often non-

intuitive.

In theRound-Robin Selection (R) scheme, we only want to initiate one access, but we

consider each bank in turn until we find an available one or have no more banks left. In a

Table 1: Bank Selection Schemes

P Parallel Access Initiation

R Round-Robin Selection

T Token Round-Robin Selection
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balanced system, where the number of banks is matched to the memory speed, Scheme R

essentially staggers the accesses, so that it performs similarly to Scheme P, but with slightly

greater latency. The advantage of this algorithm is lower implementation cost, since the

bandwidth requirements between the SMC and memory are lower than for Scheme P.

In the last scheme, Token Round-Robin Selection (T), we only want to initiate one access,

and we only consider the next bank in sequence (if it’s busy, we do nothing at the current

time). This is the easiest and least expensive to implement of the three algorithms. In spite

of T’s simplicity, its performance rivals and sometimes exceeds that of Scheme P and

Scheme R.

For the R and T approaches, the most reasonable strategy is to start with the next bank in

sequence after the bank to which the last access was initiated. Starting with a fixed bank

each time would cause some banks to be under-used: accesses to those banks would

effectively have lower priority.

6.2  Fifo Selection

The FIFO-selection algorithms vary in sophistication, ranging from those that use all

available information to decide what to do next, to those that do the easiest (and quickest)

thing they can.

Look for the Page Hit?

Some algorithms first look for an access that hits the bank’s current DRAM page. Others

simply choose the next FIFO in round-robin order, regardless of whether the next access

from that FIFO hits the current page.

Look for Best Candidate?

If an algorithm that looks for a page hit can’t find one, how does it choose the next access?

Some look for a “best” candidate based on how full (empty) the read (write) FIFOs are:
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since we know we’re going to incur the page-miss overhead, we’d like to amortize that cost

over as many page-hits as possible, hence we want to choose a FIFO for which there will

be many accesses to the new DRAM page. Other algorithms simply choose the next FIFO

in sequence when they can’t find a page-hit.

Global versus Local Status Information

When trying to decide which FIFO is “best” to service next, the algorithm may consider the

total contents of the FIFO (this is the global view), or it may restrict itself to just the portion

of the FIFO for which the current bank is responsible, referred to as a subFIFO (this is the

local view). Some algorithms require that a FIFO (subFIFO) meet a certain “threshold” in

order to be considered for service: for instance, an algorithm might require that a read FIFO

(subFIFO) be at least half empty before it can be considered among the best candidates for

the next access. The rationale for this sort of restriction springs from the overhead involved

in accessing a new DRAM page: any time we must switch DRAM pages, we would like to

amortize the cost of that miss over as many accesses as possible. If there are sufficiently

few ready accesses to a given page, it may be worthwhile to wait until the processor has

generated more accesses to that page (by removing elements from the read FIFO or writing

elements to the write FIFO) than to pay the page overhead now. In the event that these

algorithms find no valid candidates, they either choose the next FIFO in sequence, or do

nothing until the next decision-making time.

Where to Start the Search?

There are several possibilities for prioritizing the FIFOs. We could consider them in

random order; we could impose a fixed order, always considering a given FIFO first; we

could give priority to reads (or writes); we could start with the last FIFO the selected bank

serviced; or we could start with the last FIFO any bank serviced. The latter two options

seem most fair and reasonable from an implementation standpoint. The first of these

encourages different banks to be working on different FIFOs, while the second encourages
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several banks to be working on the same FIFO. It is not intuitively obvious which of these

will yield better performance.

We chose a set of ten FIFO-selection algorithms spanning the design space and conducted

numerous simulations for each combination of bank- and FIFO-selection schemes. Table 2

lists these schemes along with an explanation of how they work.

6.3  The Algorithms Simulated

Each pairwise combination of bank-selection and FIFO-selection algorithms (P1 through

T10) describes a particular bank-centric ordering scheme. In addition to these, we

simulated two naive access-centric ordering schemes. Scheme A1 is exceedingly simple:

Table 2: FIFO-Selection Algorithms

1
look for page hit; if none, choose fullest write/emptiest read subFIFO
search round-robin, starting with last FIFO accessed by current bank

2
look for page hit; if none, choose fullest write/emptiest read subFIFO that’s at

least 1/2 full/empty; if none, choose next access found
search round-robin, starting with last FIFO accessed by current bank

3
look for page hit; if none, choose fullest write/emptiest read subFIFO that’s at

least 1/2 full/empty; if none, do nothing
search round-robin, starting with last FIFO accessed by current bank

4
look for page hit; if none, choose next access found
search round-robin, starting with last FIFO accessed by current bank

5
choose next access
search round-robin, starting with last FIFO accessed by current bank

6
look for page hit; if none, choose fullest write/emptiest read subFIFO
search round-robin, starting with last FIFO accessed by any bank

7
look for page hit; if none, choose fullest write/emptiest read FIFO
search round-robin, starting with last FIFO accessed by current bank

8
look for page hit; if none, choose fullest write/emptiest read FIFO
search round-robin, starting with last FIFO accessed by any bank

9
look for page hit; if none, choose next access found
search round-robin, starting with last FIFO accessed by any bank

10
choose next access
search round-robin, starting with last FIFO accessed by any bank
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the SMC looks at each FIFO in round-robin order, issuing accesses for the same FIFO

stream while

- not all elements of the stream have been accessed, and

- there is room in the FIFO for another read operand, or another write operand is

present in the FIFO.

Scheme A2 is similar, except it incorporates the notion of a threshold into the decision

whether to continue servicing the same FIFO: accesses that incur page-misses will only be

issued to the current FIFO if it is empty enough (for a read FIFO) or full enough (for a write

FIFO), otherwise each FIFO in sequence is evaluated according to the same criteria. If none

is found to meet the threshold, no access is initiated at that time.

7. Results

Section 7.1 presents detailed results for each combination of bank-selection schemes and

the first five FIFO-selection algorithms. Each of these fifteen access ordering schemes was

run on a variety of memory systems (a single-bank system, as well as interleaved systems

of two, four, and eight banks) in which DRAM page-misses cost four times as much as

DRAM page hits. Simulation results for the remaining five FIFO-selection algorithms are

extremely similar, thus we omit discussing them at length, but instead provide a brief

summary of their comparative performance in Section 7.2. We then demonstrate in Section

7.3 how the addition of an SMC affects bandwidth as page-miss costs change in relation to

page-hit costs. Section 7.4 summarizes our findings.

7.1  Simulation Results

These results are for the seven benchmark algorithms in Figure 2, run on long (10,000-

element), medium (100-element), and short (10-element) vectors. The hydro and tridiag

benchmarks share the same access pattern, thus their results for these simulations are

identical, and are presented together in each figure.
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We have chosen 10,000 elements as our “long” vectors, although much longer vectors (on

the order of millions of elements) certainly exist in practice. These vectors are long enough

that SMC startup transients become insignificant, thus we do not expect performance for

million-element vectors to be materially different. There’s another argument in favor of

choosing a length of 10,000 as opposed to one million: consider the effects of context

switches when using an SMC in a multiprogrammed environment. Let us consider a

hypothetical RISC system running at 50MHz, and assume that on average it executes one

instruction per 20ns clock cycle. If such a system incurred a context switch about one

hundred times a second, it could execute roughly 500,000 instructions between context

switches. In other words, we could reasonably expect to perform on the order of 10,000

iterations of an inner loop (up to 50-instructions) between context switches. Thus our

choice of “long” vector length is appropriate: long enough that startup transients have

essentially no effect on performance, and short enough that the vectors represent an amount

of work that might reasonably be accomplished between context switches.

Figure 3 and Figure 4, Figure 7, Figure 10, …, Figure 55 show SMC performance for long

vectors as a function of FIFO depth and number of memory banks (available concurrency)

compared to the analogous nonSMC systems. For these simulations, all vectors are aligned

to begin in the same bank. Figure 5, Figure 8, …, Figure 56 depict SMC performance for

medium vectors compared to the analogous nonSMC memory systems, but here the vectors

used for the nonSMC results have a better alignment: the ith vector begins in bank (i mod

n), where n is the total number of banks. Figure 6, Figure 9, …, Figure 57 illustrate SMC

performance on very short (10-element) vectors. NonSMC performance is as depicted in

the long or medium vector graphs, depending on vector alignment; those lines are omitted

from these graphs for clarity.
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7.1.1 Group 1 — Algorithms P1, R1, and T1

Algorithm P1

Recall that this ordering algorithm attempts to initiate an access to each idle bank at every

available bus cycle. For each memory bank b, it examines the FIFOs in round-robin order,

beginning with last FIFO for which an access to b was initiated. If it finds an access that

hits the current DRAM page, it issues that access. If no accesses for the bank hit the current

DRAM page, then an access is issued for the FIFO requiring the most service from b.

Figure 3 through Figure 6 depict P1’s performance.

Figure 3 and Figure 4 show SMC performance for vectors of 10,000 elements as a function

of FIFO depth and number of memory banks. Most of the results presented here will be as

in Figure 3, where performance is given as a percentage of normalized peak bandwidth.

Results for memory systems with a greater number of modules represent a percentage of a

larger bandwidth. The bottom curves in Figure 3 depict the bandwidth attained by the

analogous nonSMC systems. On the daxpy benchmark, for example, an SMC system with

two memory banks achieves 97.8% of peak bandwidth, compared to 18.7% for a nonSMC

system. In general, SMC systems with deep FIFOs achieve in excess of 94% of peak

bandwidth for all benchmarks and memory configurations. The only exception is tridiag,

which attains 91% of peak on the four-bank system, and 85% of peak with eight banks.

Even with FIFOs that are only sixteen double-words deep, the SMC systems consistently

deliver over 80% of the attainable bandwidth. Again, the tridiag benchmark is the lone

exception; here SMC systems with sixteen-deep FIFOS achieve over 73% of peak.

The performance differences between tridiag and the other kernels stem from its access

pattern: it uses three vectors, but accesses each only once per iteration. Vaxpy also involves

three vectors, but it splits the y vector into two streams: read and write. This reuse gives it

a lower percentage of page misses for the SMC to amortize. Similarly, copy and scale are

distinguished by the presence in the latter of a vector that is both read and written.
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Figure3  P1 — Long Vector Performance
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(e) swap (f) vaxpy
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Note that increasing the number of banks reduces relative performance, a somewhat

counter-intuitive and deceptive effect. This is due in part to our keeping both the peak

memory system bandwidth and the DRAM page-miss/hit delay ratio constant. Thus, the

eight-bank system has four times the DRAM page-miss latency of the two-bank system.

Although the percentage of peak bandwidth delivered for the architectures with greater

interleaving is smaller, the total bandwidth is much larger. If, alternatively, we hold the

page-miss cycle time of the memory components constant, decrease the page-hit cycle

time, and assume a faster bus, the peak bandwidth of the total system increases

proportionally to the number of banks. Figure 4 illustrates SMC performance on the hydro

benchmark under these circumstances. Performance is given as a percentage of the peak

bandwidth of a single-bank memory system; gray horizontal lines indicate peak bandwidth

for each architecture. Our benchmark achieves a noticeably lower percentage of total

bandwidth for the four- and eight-bank architectures. Increasing the number of banks

decreases the total number of accesses to each bank, thus page-miss costs are amortized

over fewer accesses.

Figure 4 hydro Long Vector Performance When Bandwidth Scales With Interleaving
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Performance of nonSMC systems is independent of vector length. Since these systems

employ no dynamic access ordering, the number of requests issued and the resulting

percentage of total bandwidth obtained are constant for each loop iteration. This is true of

any system in which access issue is determined at compile time, including those that use

prefetching.

Figure 5 depicts the results of simulating selection algorithm P1 on our benchmarks using

vectors of 100 elements. These SMC results depict the net effect of two competing

performance factors. With deeper FIFOs, DRAM page misses are amortized over a larger

number of total accesses, which can increase performance. At the same time, the processor

has to wait longer to complete its first loop iteration while the SMC prefetches numerous

operands to be used in the following loop iterations. This can decrease performance, as

evidenced by the tail-off beyond depth-32 FIFOs. Optimum FIFO depth could, and

probably should, be run-time selectable in the SMC, since it is so closely related to stream

length.

Lack of dynamic ordering renders the performance of nonSMC systems particularly

sensitive to vector placement. In the graphs depicting long-vector SMC performance, the

vectors are aligned so that they all compete for the same bank on each iteration; this has

little effect on SMC performance (because it reorders requests), but it prevents the nonSMC

systems from taking advantage of the potential concurrency. In order to illustrate the effects

of alignment on bandwidth, the nonSMC results presented for medium-length vectors

represent starting addresses with staggered alignment: the ith vector in the pattern begins in

bank (i mod n), where n is the number of banks. In spite of the more favorable alignment,

nonSMC daxpy performance is limited to 30.0% of total bandwidth for a two-bank

memory; hydro, swap, and vaxpy are limited to 18.8%, 40.0%, and 25.0%, respectively.

Since scale uses only one vector, its performance is unchanged.
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Figure5  P1 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy
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Note that for a memory system with eight banks, eight-deep FIFOs are inadequate. For a

stride-one vector, each bank will be responsible for servicing only one FIFO position,

which severely limits the SMC’s ability to amortize DRAM page-miss costs. The SMC’s

memory access pattern for each bank in this case is almost the same as that generated by

the processor, hence performance tends to sink towards that of a nonSMC system. Note that

even when the SMC can’t take advantage of page-mode accesses, it nonetheless prefetches

reads and buffers writes, thus it still offers some performance advantages. In general, the

greater the concurrency inherent in the memory system, the deeper the SMC’s FIFOs need

to be in order to amortize each bank’s page-miss overhead.

Figure 6 illustrates SMC performance on very short (10-element) vectors. Performance

improvements are not as dramatic as for longer vectors, for there are very few accesses over

which to amortize page-miss costs. Nonetheless, short vector computations benefit

significantly from an SMC. As noted above, nonSMC performance is as depicted in Figure

3 or Figure 5, depending on vector alignment.
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Figure6  P1 — Short Vector Performance
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(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Algorithm R1

This greedy algorithm is identical to P1, except that only one access may be issued during

any one bus cycle. The algorithm examines the banks in round-robin order, beginning with

the bank following the one to which the most recent access was made. It attempts to initiate

an access (according to the scheme described for P1, above) for the first idle bank it finds.

Figure 7 through Figure 9 depict R1’s performance.

All three bank-selection schemes perform identically for all benchmarks on a single-bank

memory system. Note that for this FIFO-selection scheme, R1’s performance is extremely

similar to that of algorithm P1 — for systems with two and four banks, performance is

identical. For SMC systems with eight banks, performance of the two schemes differs only

for very shallow FIFOs, where the SMC is unable to take advantage of page hits.

In fact, performance of all the R algorithms is remarkably similar to that of the P

algorithms. This stems from the design of the SBU. In the parallel scheme, there is a

separate bus to each memory bank, allowing the SMC to initiate several accesses at a time.

The SBU in the SMC simulated here can only process one data value at a time, however.

This is due to the fact that the FIFOs must be dual-ported in order to allow simultaneous

access by both the processor and the MSU; implementing an efficient FIFO to allow more

than two simultaneous accesses would be much more difficult, and would consumer

substantially more chip real estate. Thus read accesses completing simultaneously are

effectively serialized, since all but one of them is delayed until the next cycle. Likewise, the

SMC can only write one value each bus cycle. This has the effect of staggering the initiation

of accesses to the different banks, so that the parallel algorithms end up behaving much like

the greedy round-robin approaches. In light of these limitations, a parallel access-initiation

scheme would afford substantial performance benefit only if the SBU were able to process

several data values at once (or if it processed them serially, but with a cycle time much

faster than that of the memory buses).
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Figure7  R1 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure8  R1 — Medium Vector Performance (for better nonSMC alignment)
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Figure9  R1 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

1 bank
2 banks
4 banks
8 banks



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 28

Algorithm T1

Like P1, Algorithm T1 issues at most one access each bus cycle. Instead of considering

each idle bank in turn when attempting to initiate an access, T1 only considers the next bank

(in round-robin order from the last bank considered). If that bank is busy, or if no ready

access to it exists, then no access is initiated at the current time. Figure 10 through Figure

12 depict T1’s performance.

Again, the performance curves are very similar to those for P1 and R1, with results for all

but the shallowest FIFOs differing by less than 1% of attainable bandwidth. Results for

FIFOs that are only eight double-words deep vary by more than 15% of attainable

bandwidth, but only for the eight-bank memory system, where the SMC cannot take

advantage of page hits. Note that Algorithm T1 slightly outperforms the other two for some

benchmarks.

For short vectors (performance for which is depicted in Figure 12), Algorithm T1 delivers

a higher percentage of peak bandwidth for the scale and vaxpy benchmarks run on a

memory system with two banks, although the margin is only a few percent. For instance,

on the scale computation, Algorithm T1 achieves 36.4% of the peak bandwidth on an eight-

bank system, whereas Algorithm R1 reaches only 32.8%. The same benchmark on a two-

bank architecture yields 69.0% of peak for Algorithm T1, as opposed to 64.5% for

Algorithm R1.

The trends that we have seen among the performances of the P, R, and T bank-selection

schemes are present for all groups of algorithms simulated, but there is simply too much

data to make meaningful comparisons between all ordering algorithms. Since Scheme T is

the most reasonable from an implementation standpoint, we focus most of our discussion

on ordering algorithms employing this strategy, and we use Algorithm T1 as a basis of

comparison for performance of the other algorithms.
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Figure10  T1 — Long Vector Performance
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Figure11   T1 — Medium Vector Performance (for better nonSMC alignment)
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Figure12  T1 — Short Vector Performance
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All the SMC results presented thus far have been for vectors aligned such that

corresponding elements of the vectors reside in the same memory bank. This placement

degrades the memory performance of nonSMC systems, for it generates bank conflicts and

can cause thrashing behavior with respect to DRAM pages. Since the SMC reorders

accesses to take advantage of the memory system’s available bandwidth, it is relatively

insensitive to operand placement and alignment. To illustrate this, Figure 13 through

Figure 15 depict SMC performance for Algorithm T1 using the same vector alignment as

for the nonSMC results in Figure 5, Figure 8, and Figure 11. Recall that in this alignment,

theith vector in the pattern begins in bank (i modn), wheren is the number of banks.

NonSMC results in Figure 13 are as in Figure 10, where vectors are aligned to begin in the

same bank; nonSMC results in Figure 14 use the alignment just describe for this set of

SMC experiments, are thus are the same as in Figure 11. Sinceswap is unaffected by

alignment, results for that benchmark are identical to the corresponding T1 results in

Figure 10 through Figure 12.

The differences in performance are summarized in Table 3. Table entries are obtained by

subtracting the performance numbers from Figure 10, Figure 11, and Figure 12 from the

corresponding results in Figure 13, Figure 14, and Figure 15. A negative entry indicates

that the first (single bank) alignment yielded better performance. Values of magnitude

greater than 1% are rounded to the nearest tenth. For entries of lesser magnitude, the table

contains only the sign of the difference. Blank entries indicate that differences, if any, are

less than one hundredth of one percent; note that such entries comprise most of the table.

The largest differences occur for memory systems with many banks, especially with

shallow FIFOs, where the lack of buffer space prevents the SMC from effectively

amortizing page-miss costs. Differences for shorter vectors, although not included here,

are smaller still.
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Table 3: T1 Long Vector Performance Differences for Two Vector Alignments

Differences in Attained Percentage of Peak Bandwidth
(staggered minus single-bank)
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Figure 13  T1 — Long Vector Performance for a Different SMC Vector Alignment
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Figure 14  T1 — Medium Vector Performance for a Different SMC Vector Alignment
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Figure 15  T1 — Short Vector Performance for a Different Vector Alignment
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7.1.2 Group 2 — Algorithms P2, R2, and T2

These algorithms are similar to those described in Section 7.1.1, except that they

incorporate the notion of a threshold of required service. For each memory bank b selected

by the access-initiation scheme (P, R, or T), the FIFO-selection algorithm examines the

FIFOs in round-robin order, beginning with last FIFO for which an access to b was

initiated. If it finds an access that hits the current DRAM page, it issues that access. If no

accesses for the bank hit the current DRAM page, then it looks for an access from a FIFO

containing at least n / 2 ready accesses, where n is the number of FIFO positions that map

to bank b. If a FIFO requiring the appropriate amount of service is found, an access is

initiated. If no such FIFO exists, the algorithm defaults to using the next FIFO (following

the one for which the most recent access to bank b was initiated), attempting to initiate an

access for it.

The performance of the Group 2 algorithms is depicted in Figure 16 through Figure 24.

Performance is extremely similar to that of the corresponding algorithm from Group 1,

generally differing by less than 1% of peak bandwidth. The only exception is the hydro

benchmark. For medium-length vectors, FIFOs of depth sixty-four, and an eight-bank

memory, Group 1 beats Group 2 by almost 4% of peak, yet for a two-bank system with

FIFOs half that depth, the Group 2 algorithms represent a performance gain of over 2% of

peak. For longer vectors, the differences are magnified, and the effect of the threshold is

erratic. For the four- and eight-bank memories, Group 2 performance varies from 0.3% of

peak worse to 6.7% better (most FIFO depths gain at least 4% of peak), and there is no clear

trend in the variations in performance. For hydro on very short vectors, Group 1 beats

Group 2 by 5.2% of peak for very shallow FIFOs on a two-bank memory system.

The fact that the threshold has relatively little effect on the performance for most

benchmarks suggests that when a DRAM page change is necessary, the FIFO requiring the

most service either meets the threshold or happens to be the default selection.
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Figure16  P2 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure17   P2 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure18   P2 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure19  R2 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale
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Figure20  R2 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale
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8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

1 bank
2 banks
4 banks
8 banks



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 43

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure21  R2 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure22  T2 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure23   T2 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale
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Figure24   T2 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Table 4 summarizes T2’s performance with respect to T1. Recall that numerical values are

given only for differences of magnitude greater than or equal to 1%. Values of lesser

magnitude are indicated by the sign of the difference. Blank entries indicate that

differences, if any, are less than one hundredth of one percent.

Table 4: Performance of Scheme T2 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1

2 + + +

4 + +

8

da
xp

y

1 -

2 + - + + + +

4 + + + + -

8

hy
dr

o

1

2 + - -2.2 + - + + +2.2 +1.9

4 +1.4 +5.9 +1.5 +1.2 +4.1 +4.6

8 -3.6 +5.9 +6.8 +5.8 +6.6

sc
al

e

1

2 + + + + +

4 + + + +

8

sw
ap

1 +

2 + - + + + +

4 + + + + +

8

va
xp

y

1 - +

2 + + + + + +

4 + + + + +

8
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7.1.3 Group 3 — Algorithms P3, R3, and T3

These algorithms are almost identical to those described in the last section, except that

when there are no more ready accesses that hit the current page of the chosen bank and no

FIFO meets the required threshold for service, no access is initiated. The intent is to

amortize the cost of a DRAM page miss over as many page hits as possible; if we have to

switch pages, but there are sufficiently few accesses that would hit the new page, we delay

paying the page-miss cost until there are more accesses to offset the overhead.

The performance of the Group 3 algorithms is depicted in Figure 25 through Figure 33. The

fact that these algorithms occasionally choose to do nothing has little or no effect on long

vector performance, but medium vector performance is tends to be slightly lower than for

the algorithms in Group 1 or Group 2, and short vector performance generally suffers a bit

more.

For long vectors, the differences in performance between the Group 3 and Group 1 schemes

is generally within 1% or 2% of peak bandwidth, plus or minus. Again, thehydro

benchmark represents the exception. Here the mean performance gain for all FIFO depths

and interleaving factors is 4.1% of peak, and the maximum is 10.6% for eight banks and

depth-64 FIFOs.

Performance is more erratic for medium vectors, ranging from a 5.8% gain in peak

bandwidth to an 11.9% drop (as compared with the corresponding Group 1 algorithms).

Performance for short vectors exhibits similar fluctuations, ranging from a 6.9% increase

in attainable bandwidth for thedaxpy andhydro benchmarks, to a 15.3% decrease forcopy.

Again, there is no discernible pattern to the performance variations, but nowscale is the

only benchmark whose performance remains unchanged. For instance, Algorithm R3’s

performance ondaxpy for 100-element vectors and a four-bank memory using sixteen-deep

FIFOs is 67.0% of peak. R2 and R1 both deliver 69.3%, a difference of only a few percent.
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On the copy benchmark on a two-bank system with eight-deep FIFOs, however, the

difference goes the other way — R3 attains 68.3% of peak, whereas R2 and R1 deliver

66.4%. For FIFOs of sixteen double-words and the same number of banks, R2 and R1 once

again win out with 80.0% over 77.8%.

There seems to be little advantage in waiting for a certain number of accesses to a DRAM

page to accumulate before paying the page-miss overhead — doing so occasionally

improves bandwidth, but it also frequently diminishes performance, and the drops we’ve

seen are about twice as large as the gains. Indeed, performance may suffer appreciably

under such a policy. This is good news from an implementation standpoint, since

incorporating the threshold would require extra circuitry, and would complicate the

selection logic.
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Figure25  P3 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure26  P3 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

1 bank
2 banks
4 banks
8 banks



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 52

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

Figure27  P3 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure28  R3 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure29  R3 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure30  R3 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure31  T3 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure32  T3 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure33  T3 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Table 5 summarizes T3’s performance with respect to T1. Recall that blank entries indicate

that differences, if any, are less than 0.01%. Numerical values are given for differences of

magnitude greater than 1%; entries of lesser magnitude are represented by the sign of the

difference.

Table 5: Performance of Scheme T3 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 + -11.9 - +

2 +2.0 -2.5 -11.5 + + - - +

4 - -10.8 - + + + +

8 -7.5 - - -

da
xp

y

1 - - - - - - -

2 +1.9 - -1.9 +1.4 + + - -

4 +1.7 + + + -

8 -1.3 +1.7 + + +

hy
dr

o

1

2 +5.0 + -3.2 + +6.0 +3.8 +2.7 +1.9 +2.3 +1.5

4 +1.8 -3.2 - +6.3 +4.4 +3.6 +5.2 +4.4

8 -1.5 -3.2 - +6.0 +10.6 +8.2 +6.8

sc
al

e

1

2 + + + + +

4 + + + +

8

sw
ap

1 + +1.0 +1.0 -2.2 + + + + - -

2 + +1.8 +2.3 -1.6 +1.8 + + + + + +

4 + +1.2 -1.2 +3.8 + + + + +

8 + +1.4 +5.8 + + + -

va
xp

y

1 -1.6 - - - - -

2 - -1.5 - + + + + + +

4 -1.6 - + + + + +

8 +3.5 - + - -
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7.1.4 Group 4 — Algorithms P4, R4, and T4

These algorithms simply look for accesses that hit the current page of the selected bank,

and if they find none, they choose the next FIFO in sequence. Unlike the previous schemes,

they do not try to choose the “best” FIFO to service in the event of a necessary page miss.

Intuitively, it would seem that these “less intelligent” algorithms would not perform as well

as their more sophisticated counterparts in Groups 1 through 3. This turns out not to be the

case. As depicted in Figure 34 through Figure 42, performance of these algorithms rivals

that of the corresponding members of Group 1 and Group 2.

For long vectors, shown in Figure 34, Figure 37, and Figure 40, percentages of peak

bandwidth obtained by these algorithms are usually within a few tenths (plus or minus) of

those obtained by the more sophisticated algorithms. For the hydro benchmark, these

algorithms often beat the others by over 10% of the attainable bandwidth (up to 13.2%, in

the case of depth-64 FIFOs on an eight-bank memory system).

For medium vectors, depicted in Figure 35, Figure 38, and Figure 41, performance is

virtually identical to that for Group 1 on most benchmarks (copy, daxpy, scale, and vaxpy).

Hydro again benefits from this simpler FIFO-selection algorithm, although by a somewhat

smaller margin than for long vectors. For eight- and sixteen-deep FIFOs, T4 delivers 62.3%

and 76.5% of peak bandwidth on a two-bank system, whereas T1 reaches only 57.4% and

72.3% — a difference of over 4% of peak in both cases. On an eight-bank memory using a

FIFO depth of sixty-four, however, T4 delivers only 65.2% of the attainable bandwidth, but

T1 is able to deliver 68.8%. T1 again beats T4 by a few percent on the swap benchmark for

very shallow FIFOs on two- and eight-bank systems. Performance for the P and R schemes

is similar: hydro performance of the Group 4 schemes is several percent better than that of

the corresponding Group 1 schemes in some cases, but swap performance tends to be a few

percent worse in others.
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The short vector performance shown in Figure 36, Figure 39, and Figure 42 is precisely the

same as for Group 1, except forhydro. Here the Group 4 schemes deliver slightly over 5%

less of peak bandwidth than the Group 1 schemes for very shallow FIFOs and a two-bank

memory, and they exhibit smaller performance fluctuations for memory systems with a

higher interleaving factor.

This set of algorithms both performs well (for deeper FIFOs, performance is very

competitive with that of the corresponding Group 1 schemes) and would be easier to

implement than the others described thus far. The combination of bank-selection and FIFO-

selection algorithms represented by T4 would be particularly straightforward.
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Figure34  P4 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure35  P4 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure36  P4 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure37  R4 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure38  R4 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure39  R4 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure40  T4 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure41  T4 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure42  T4 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Table 6 summarizes T4’s performance with respect to T1. Recall that blank entries indicate

that differences, if any, are less than 0.01%. Numerical values are given for differences of

magnitude greater than 1%; entries of lesser magnitude are represented by the sign of the

difference.

Table 6: Performance of Scheme T4 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 - -

2 - - + + + +

4 + + + + + +

8

da
xp

y

1 - - - - - -

2 - - + + + +

4 + + - + + +

8

hy
dr

o

1 - - - - - +

2 +4.9 +4.2 +1.4 +7.1 +6.5 +5.3 +3.3 +3.0 +2.2

4 +4.8 +3.0 +2.1 +7.1 +10.2 +7.2 +6.2 +6.5 +5.3

8 +2.2 +2.9 +2.4 -3.6 +2.7 +9.2 +10.4 +13.2 +10.7 +8.8

sc
al

e

1

2 + + + + + +

4 + + + + + +

8

sw
ap

1 - - - - - -

2 - + - + + + +

4 + + + + + +

8 -2.3 -3.8 - -

va
xp

y

1 - - - - + +

2 + + + + + +

4 + + + + + +

8
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7.1.5 Group 5 — Algorithms P5, R5, and T5

We saw in the last section that a simpler ordering algorithm may yield better performance.

How simple can we make the scheme and still achieve high bandwidth? To test this, we

implemented an ordering scheme that doesn’t even look for accesses that hit a bank’s

current DRAM page. These algorithms merely issue accesses for the current FIFO until no

more ready accesses remain, then they move on to the next FIFO in round-robin order.

Figure 43 through Figure 51 illustrate the performance of this group of algorithms.

Figure 43, Figure 46, and Figure 49 illustrate long vector SMC performance. The curves

for copy and scale are virtually identical to those for the Group 1 algorithms. On the hydro

benchmark, performance is identical to that of the Group 4 schemes. For daxpy, swap, and

vaxpy using shallower FIFOs, the performance for eight-bank memory systems is worse

than that for the Group 1 schemes — up to 17.1% of attainable bandwidth less for T5 on

swap using eight-deep FIFOs and an eight-bank system, or a 13% of peak drop over T4’s

performance. For deeper FIFOs, i.e. when FIFO depth is scaled with the interleaving factor,

performance differences are small.

Medium vector SMC performance is depicted in Figure 44, Figure 47, and Figure 50. These

performance curves exhibit similar trends as those for long vectors when compared with

the corresponding curves for Group 1. Daxpy and vaxpy fare slightly worse for shallow

FIFOs, and swap’s performance is slightly lower overall. Again, these algorithms achieve

a higher percentage of peak bandwidth on the hydro benchmark, but performance drops

slightly (3.6% of peak) for depth-64 FIFOs and an eight-bank memory. For deep FIFOs,

performance for all benchmarks converges to that achieved by the other selection

algorithms.

Short vector performance is almost identical to that of the corresponding algorithms in

Group 4, except for a slight drops for eight banks and shallow FIFOs.
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Figure43  P5 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

1 bank
2 banks
4 banks
8 banks



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 74

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

Figure44  P5 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure45  P5 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure46  R5 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure47  R5 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure48  R5 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

1 bank
2 banks
4 banks
8 banks



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 79

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

Figure49  T5 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

1 bank
2 banks
4 banks
8 banks



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 80

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 o

f 
pe

ak
 b

an
dw

id
th

SMC

nonSMC

Figure50  T5 — Medium Vector Performance (for better nonSMC alignment)

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure51  T5 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Table 7 summarizes T5’s performance with respect to T1. Recall that blank entries indicate

that differences, if any, are less than 0.01%. Numerical values are given for differences of

magnitude greater than 1%; entries of lesser magnitude are represented by the sign of the

difference.

Table 7: Performance of Scheme T5 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 - -

2 - - + + + +

4 + + + + + +

8

da
xp

y

1 +1.2 + - - - + + +

2 +1.8 +1.2 + - + + + +

4 -2.9 - +2.4 - - - - + +

8 -8.4 - - -12.8 + - - +

hy
dr

o

1 - - - - - +

2 +4.9 +4.2 +1.4 +7.1 +6.5 +5.3 +3.3 +3.0 +2.2

4 +4.8 +3.0 +2.1 +7.1 +10.2 +7.2 +6.2 +6.5 +5.3

8 +2.2 +2.9 +2.4 -3.6 +2.7 +9.2 +10.4 +13.2 +10.7 +8.8

sc
al

e

1

2 + +

4 + + + + +

8

sw
ap

1 - - - - - - +

2 -3.4 -1.0 -3.0 - - - + +

4 -3.3 -3.0 -4.2 -3.1 -1.1 - - +

8 -12.1 -3.7 -2.5 -17.1 -4.2 -3.1 -1.1 - -

va
xp

y

1 + + - - - + +

2 + + + + + + + +

4 -2.8 - -3.8 + - + + +

8 -2.4 -2.9 -4.0 -4.5 - - +



Hardware Support for Dynamic Access Ordering: Performance of Some Design Options 83

7.1.6 Group 6 — Algorithms A1 and A2

The algorithms discussed thus far generate memory accesses by first choosing a bank (or

banks) to access, and then choosing the appropriate FIFO (or FIFOs) for which to initiate

accesses. The algorithms in Group 6 perform their duties in the opposite order: first they

choose a FIFO to service, and then they choose the bank to access.

Algorithm A1 goes round-robin through the FIFOs, initiating accesses for the current FIFO

until it contains no ready accesses. At that point, the SMC advances to the next FIFO and

proceeds to initiate accesses for it. While servicing a particular FIFO, if the next ready

access from that FIFO is to a busy bank, the SMC waits until the bank is idle; it does not

try to find an access to a currently idle bank. Simulation results for this ordering scheme are

depicted in Figure 52 through Figure 54.

Algorithm A2 is a slightly more sophisticated version of A1, incorporating a threshold

similar to that of the algorithms in Group 3. If the SMC determines that the next access from

the current FIFO will generate a DRAM page miss, it decides whether or not to switch to a

different FIFO. When it must issue an access that misses a bank’s current page, it attempts

to choose the access from a FIFO that contains ready accesses equal to at least half its depth.

If the current FIFO requires enough service, the access is issued for it. Otherwise the SMC

looks at the next FIFO in sequence, and so on. If no FIFOs meet the threshold, the algorithm

issues no accesses at that time. Performance of this algorithm is illustrated in Figure 55

through Figure 57. As expected, simulation results for these algorithms exhibit the same

degradation in performance that we saw with many of the other algorithms for shallow

FIFOs on memory systems with a high degree of concurrency.

For long vectors, performance tends to be lower than that of Algorithm P1 for most

benchmarks run with FIFOs up to 32 double-words deep. Hydro is the exception to this:

Algorithm A1 outperforms the Group 1 schemes for all FIFO depths and memory systems.
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For deeper FIFOs, A1’s performance for all benchmarks is within a few percent of that for

the Group 4 algorithms, but for shallow FIFOs (especially on a memory system with many

banks), its performance dips to 16.9% of peak less.

For medium vectors, performance again tends to be lower than that of the Group 1

algorithms for FIFOs of depth eight, sixteen, and thirty-two. When compared with Group

4, these algorithms provide virtually identical performance for deeper FIFOs, but

performance is often over 10% of peak worse for shallow FIFOs and higher interleavings.

Short vector performance is similar to that of Algorithm P1, but A1 performed worse in a

few instances. Most benchmarks fare worse with eight-deep FIFOs, regardless of the

number of banks in the memory system. A1’s performance on the swap kernel on a two-

bank system is about 5% of peak below that of P1’s.

On long vectors, A2 performs almost identically to A1. On medium vectors, however, A2

fares significantly worse for deeper FIFOs on the copy benchmark. Smaller drops in

performance are evident for the swap and hydro benchmarks for FIFOs of sixty-four or

more double-words. Medium vector performance for the other benchmarks is about the

same as for A1, with performance generally dropping by less than 2% of attainable

bandwidth. On short vectors, the bandwidth delivered by A2 on the copy benchmark is

much lower — almost 20% of peak difference for a single-module system. A2 performs

about the same as A1 on the scale benchmark, and performance for the two algorithms is

similar for the daxpy, vaxpy, and swap kernels with FIFOs at least sixteen deep. A2

consistently outperforms A1 for very shallow FIFOs and 8-bank interleavings, and for

swap in general on all but the single-bank memory (but only by one or two percent of peak,

in the latter case). Neither of these is a strong argument in favor of A2.
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Figure52  A1 — Long Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure53  A1 — Medium Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure54  A1 — Short Vector Performance

(a) copy (b) daxpy

(c) hydro/tridiag (d) scale

(e) swap (f) vaxpy
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Figure55  A2 — Long Vector Performance
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Figure56  A2 — Medium Vector Performance
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Figure57  A2 — Short Vector Performance
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Table 8 summarizes A1’s performance with respect to T1. Table 9 does the same for A2.

Recall that blank entries indicate that differences, if any, are less than 0.01%. Numerical

values are given for differences of magnitude greater than 1%; entries of lesser magnitude

are represented by the sign of the difference.

Table 8: Performance of Scheme A1 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 - -

2 + + + + + +

4 +1.0 + + + + +

8 -10.9 + -13.8 +

da
xp

y

1 +1.2 + - - - + + +

2 -2.6 - +1.2 -3.4 -2.2 -1.1 - - +

4 -9.6 -2.6 -11.5 -5.4 -2.1 -2.0 -1.0 -

8 -12.6 -7.1 -4.1 -16.1 -11.5 -6.0 -2.1 -2.1 -

hy
dr

o

1 - - - - - +

2 +2.4 +2.7 +4.6 +4.8 +4.2 +3.1 +2.6 +2.0

4 -1.5 +4.4 +8.3 +5.5 +5.0 +6.0 +5.0

8 -2.8 -1.7 + -4.7 -2.8 +2.1 +8.3 +11.7 +9.6 +8.2

sc
al

e

1

2 -6.0 -2.7 - - - -6.6 -3.2 -1.6 - - -

4 -11.0 -4.0 - - - -14.1 -6.6 -3.2 -1.5 - -

8 -9.1 -6.5 +1.0 +1.0 +1.0 -13.3 -14.2 -6.6 -3.2 -1.5 -

sw
ap

1 - - - - - - +

2 -5.5 -1.4 -1.5 - -4.7 -2.1 -1.6 - - +

4 -6.1 -4.9 -1.8 - + -6.7 -5.9 -1.8 -1.4 -

8 -16.6 -6.9 -2.5 - -1.4 -20.7 -8.6 -5.9 -2.5 -1.6 -

va
xp

y

1 + + - - - + +

2 - - -1.3 - - -1.7 - - - - +

4 -5.2 -4.0 -1.1 - - -7.5 -4.4 -2.2 -1.1 - -

8 -5.1 -4.6 - - - -6.2 -10.4 -2.3 -2.7 -1.9 -
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Table 9: Performance of Scheme A2 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 -11.9 -

2 + -2.5 -11.5 + + - - +

4 +1.0 - -10.8 + + + + + +

8 -10.9 + -8.4 -13.8 - - -

da
xp

y

1 +1.2 + - - - + + +

2 -2.6 - +1.2 -3.4 -2.2 -1.1 - - +

4 -9.6 -2.6 -11.5 -5.4 -2.1 -2.0 - -

8 -11.5 -7.1 -4.1 -16.1 -11.5 -6.0 -2.1 -2.1 -

hy
dr

o

1 =

2 +4.9 +3.3 - - +4.6 +4.8 +4.2 +3.1 +2.6 +2.0

4 -1.5 +4.0 -1.8 -2.4 - +8.3 +5.5 +5.0 +6.0 +5.0

8 -1.7 -1.7 + -8.2 -2.0 -2.8 +2.1 +8.3 +11.7 +10.6 +8.2

sc
al

e

1

2 -6.0 -2.7 - - - -6.6 -3.1 -1.6 - - -

4 -11.0 -4.0 - - - -14.1 -6.5 -3.1 -1.5 - -

8 -9.1 -6.5 +1.0 +1.0 +1.0 -13.3 -14.2 -6.6 -3.2 -1.5 -

sw
ap

1 - - - -3.5 - - - - - - +

2 -5.3 -1.9 -2.2 -3.3 - -5.8 -2.2 -1.6 - - +

4 -6.3 -4.9 -1.5 -2.8 - -6.7 -5.9 -1.9 -1.4 -

8 -14.7 -6.1 -3.6 - -1.8 -19.9 -8.6 -5.9 -2.5 -1.6 -1.0

va
xp

y

1 + + + - - - -

2 -2.8 - - - - -2.2 -1.0 -1.4 - - +

4 -5.9 -3.4 - - - -7.5 -2.2 -2.2 -1.7 - -

8 -4.4 -7.0 + - - -6.2 -10.4 -2.3 -2.7 -1.9 -
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7.2  Performance Summary of the Remaining FIFO-Selection Schemes

As we saw in the last section, performance of the different access ordering schemes tends

to be very similar. Here we summarize the performance of the remaining five FIFO-

selection algorithms (6 through 10) when paired with the T bank-selection scheme. Table

4 through indicate relative performance of these schemes as compared to Scheme T1.

Recall that Algorithm 1 continues to issue accesses to the current DRAM page for the

current bank, b, until no more such ready accesses exist. It then looks for the FIFO requiring

the most service from b, considering first the FIFO last accessed by b. Algorithm 6 is

identical to Algorithm 1, except that the search for the FIFO requiring the most service from

the current bank begins with the last FIFO accessed by any bank. Performance of

Algorithm 6 is summarized in Table 4. Entries are computed by subtracting T1’s

performance from T6’s. Values are rounded to the nearest percent; values that round to zero

are represented simply by either “+” or “-”, according to the value’s sign; and values with

magnitude smaller than one hundredth of one percent are left blank.

Algorithm 7 is similar, except that when a page-miss is inevitable, it chooses the next access

from the FIFO requiring the most service from all banks, starting the search with the last

FIFO accessed by the current bank. Algorithm 8 is identical, except that the search for the

FIFO requiring the most service begins with the last FIFO accessed by any bank.

Performance for Algorithm 7 is summarized in Table 5. Performance of Algorithm 8 is

summarized in Table 6.

Algorithm 10 resembles Algorithm 5: neither explicitly tries to initiate accesses that hit the

current DRAM page. Algorithm 10 issues the next access it finds, and considers the FIFOs

in round-robin order beginning with the last FIFO accessed by any bank. Algorithm 5

begins its search with the last FIFO accessed by the current bank. Algorithm 10’s

performance is summarized in Table 8.
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Table 10: Performance of Scheme T6 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1

2

4

8

da
xp

y

1

2 +

4 -

8

hy
dr

o

1

2

4

8 +

sc
al

e

1

2

4

8 -8.3 -13.3

sw
ap

1

2 +1.1 - + + - -

4 - + + +

8 + +

va
xp

y

1

2 + + -

4 + + + + + -

8 -1.2 - +
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Table 11: Performance of Scheme T7 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1

2 - + + + + +

4 + + + + + +

8

da
xp

y

1

2 +1.4 + - +1.4 + + + + +

4 -2.5 + +1.8 -1.7 + - + + +

8 -4.4 -3.3 -3.4 -6.8 -4.4 - - +

hy
dr

o

1

2 +3.4 +4.2 +2.3 +7.0 +6.5 +5.2 +3.3 +2.8 +1.7

4 -1.4 +1.2 -1.9 -1.3 +4.6 +7.1 +5.9 +5.8 +5.0

8 +1.5 -1.9 -3.6 +2.6 + +1.0 +13.2 +7.5 +4.8

sc
al

e

1

2 + + + + + +

4 + + + + + +

8

sw
ap

1

2 - + - + + + +

4 -1.5 - - + + +

8 -6.6 -11.2 - - -

va
xp

y

1

2 -2.0 -4.8 - - -1.1 + + - - +

4 -6.8 -7.7 -4.9 - -6.6 -6.5 -3.9 - - -

8 -1.7 -5.9 -2.3 + + -2.9 -10.2 -5.8 -2.2 - -2.4
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Algorithm 9 resembles Algorithm 4, in that it tries to issue accesses that hit the current

DRAM page, but when it cannot, it chooses the next access found. Algorithm 4 begins its

Table 12: Performance of Scheme T8 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1

2 - + + + + +

4 + + + + + +

8

da
xp

y

1

2 +1.4 + - +1.4 + + + + +

4 -1.6 +1.6 + +1.0 - + - +

8 -9.1 -2.4 -3.3 -12.8 + - - +

hy
dr

o

1

2 +4.1 +4.2 +2.3 +7.3 +6.5 +5.2 +3.3 +2.8 +1.7

4 - +2.7 -3.8 - +3.6 +6.9 +5.9 +5.8 +5.2

8 +1.1 -1.7 -4.3 -3.6 +2.6 + +1.0 +13.2 +10.3 +5.5

sc
al

e

1

2 + + + + + +

4 + + + + + +

8 -8.3 -13.3

sw
ap

1

2 + - + + + +

4 + +1.1 + + +

8 -6.6 -10.0 + + +

va
xp

y

1

2 -1.8 + -4.8 - - -1.1 + + - - +

4 -7.4 -4.7 -5.3 -6.6 -6.5 -3.9 - - -

8 -1.8 -6.3 -4.1 -2.3 -2.9 -10.2 -5.8 -2.2 - -2.4
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search for this access with the last FIFO accessed by the current bank; Algorithm 9 begins

with the last FIFO accessed by any bank. Table 7 summarizes this algorithm’s performance.

Table 13: Performance of Scheme T9 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 - -

2 + + + + +

4 + + + + + +

8

da
xp

y

1 - - - - - -

2 + - + + + +

4 + + + +

8 + -1.3 -

hy
dr

o

1 - - - - - +

2 +4.9 +4.2 +1.4 +7.2 +6.5 +5.3 +3.3 +3.0 +2.2

4 +4.8 +3.0 +2.1 +7.1 +10.2 +7.2 +6.2 +6.5 +5.3

8 + +2.9 +2.4 -3.6 + +9.2 +10.4 +13.2 +10.8 +8.8

sc
al

e

1

2 + + + + + +

4 + + + + + +

8 -8.3 -13.3

sw
ap

1 - - - - - -

2 - + + + + + +

4 +1.9 + + + + +

8 -3.9 - -6.8 + +

va
xp

y

1 - - - - + +

2 -1.2 + + + + + +

4 + + -1.4 - + +

8 -1.4 -2.4 + - +
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 Algorithms 1, 2, 3, 4, 5, and 7 thus use a local FIFO priority, whereas the other algorithms

use a global FIFO priority. Likewise, schemes 1, 2, 3, and 6 uses local (subFIFO) status

Table 14: Performance of Scheme T10 with Respect to T1

Differences in Attained Percentage of Peak Bandwidth

be
nc

hm
ar

k

ba
nk

s

medium vectors long vectors

FIFO depth FIFO depth

8 16 32 64 128 8 16 32 64 128 256

co
py

1 - -

2 -2.8 -1.2 + - + +

4 + + + + + +

8

da
xp

y

1 +1.2 + - - - - + +

2 -1.6 + +1.2 -4.5 - + + + +

4 -4.8 -3.7 -1.1 -5.5 -2.9 - - + +

8 -11.9 -4.2 -7.2 -4.7 -17.6 -4.4 -2.0 - - 0.2

hy
dr

o

1 - - - - - +

2 +4.0 +4.2 +1.4 +5.8 +6.0 +5.1 +3.3 +2.90 +2.2

4 -7.7 +3.7 +2.1 -2.3 +8.5 +6.5 +5.9 +6.5 +5.3

8 -2.3 -7.7 -2.9 -10.7 -2.8 - +8.5 +12.7 +10.4 +8.7

sc
al

e

1

2 + + + + + +

4 + + + + + +

8 -8.3 -13.3

sw
ap

1 - - - - - - +

2 -3.4 -1.0 -3.0 -1.7 - - + +

4 -10.8 -7.1 -8.7 -4.0 -1.5 - - +

8 -19.9 -10.6 -8.2 -8.0 -10.1 -29.2 -10.2 -15.6 -1.4 - -

va
xp

y

1 + + - - - + +

2 + + + + -5.4 -6.2 + + + +

4 -9.0 -10.4 + -11.7 -5.0 - - + +

8 -4.3 -14.8 -3.0 -3.9 + -6.2 -10.2 -5.0 - - +
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information to choose the next “best” access. The others use global (FIFO) status

information to make this decision.

Of these algorithms, only T9 and T10 represent viable alternatives to the schemes explored

in the last section. Algorithm T6 offers no real advantage — its performance is almost

identical to T1’s. Algorithms T7 and T8 perform inconsistently in comparison to T1,

sometimes yielding results several percentage points lower even for relatively deep FIFOs.

They both perform better for the hydro benchmark and long vectors, but their performance

on the other benchmarks, and even hydro with shorter vectors, is unpredictable, and

unimpressive. Algorithm T9, on the other hand, only performs worse for very shallow

FIFOs and memory systems with many banks. In general, its performance is competitive

with the schemes from the previous section, although Algorithm T4 tends to perform

slightly better in general for our benchmarks. Algorithm T10 performs much worse for

shallow FIFOs and high interleaving factors, but if it were sufficiently cheap to implement,

it might be a reasonable alternative, provided we could implement deep FIFOs.

7.3  Changing DRAM Page-Miss/Page-Hit Cost Ratios

Figure 58 through Figure 62 illustrate SMC performance for long vectors (10,000

elements) as the memory’s DRAM page-miss to page-hit cost ratio increases. As before, all

performance curves are given as a percentage of peak bandwidth, thus for the systems with

a miss/hit cost ratio of sixteen, it’s as if the page-misses required sixteen times as long to

service. Figure 58 through Figure 61 may therefore appear a bit misleading, since the miss/

hit ratio is likely to increase primarily as the result of a reduction of the page-hit time, rather

than an increase in the page-miss time. At a ratio of sixteen the SMC is delivering a

somewhat smaller percentage of a much larger available bandwidth — resulting in a

significant net increase. To illustrate this, Figure 62 shows the performance of hydro for

long vectors if we hold the page-miss cost constant and decrease the page-hit cost,

increasing the total bandwidth proportionately.
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If we hold the number of modules fixed and increase the page-miss/page-hit cost ratio,

deeper FIFOs are required in order to amortize the page-miss costs. Note that relative

performance is approximately constant if we scale FIFO depth linearly with miss/hit cost.

The near-horizontal gray lines in Figure 61(a), Figure 61(c), and Figure 61(e) highlight this

effect. Consider the hydro benchmark, for example. For an eight-bank memory with a miss/

hit cost ratio of sixteen, an SMC with 256-deep FIFOs delivers 75.11% of peak bandwidth.

With FIFOs that are 128 deep, the SMC achieves a similar performance — 75.93% — with

a miss/hit cost ratio of eight. Likewise, when the miss/hit cost ratio is four and the FIFO

depth is halved again, the SMC delivers 77.43% of peak bandwidth.

As we’ve seen before, as the interleaving factor grows, so must the FIFO depth. This is

evident in the results of all benchmarks, including scale, which nonetheless achieves near-

optimal bandwidth for all memory systems. Since this computation only involves one

vector, every access after the first hits the current DRAM page. Performance is therefore

invariant of the miss/hit cost ratio. For computations involving more than one vector,

shallow buffers limit the number of page hits over which the SMC can amortize the cost of

the inevitable page misses. Scale doesn’t suffer from this, but its performance on the eight-

bank memory system demonstrates another problem: with shallow FIFOs, the SMC cannot

prefetch enough data to keep the processor from stalling. This inability to adequately

overlap memory access with computation causes the benchmark to achieve over 20% less

of the attainable bandwidth for eight- or sixteen-word buffers than it does for deeper FIFOs.

Note that even the faster systems — those with a high interleaving factor or a high miss/hit

cost ratio — still require only modest amounts of buffer storage.
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Figure 58  Varying Miss/Hit Cost Ratios on a Single-Bank Memory System
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Figure 59  Varying Miss/Hit Cost Ratios on a Two-Bank Memory System
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Figure 60  Varying Miss/Hit Cost Ratios on a Four-Bank Memory System
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Figure 61  Varying Miss/Hit Cost Ratios on an Eight-Bank Memory System
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7.4  Results Summary

The overwhelming similarity of the performance curves presented in Section 7.1 leads us

to conclude that neither the ordering strategy nor the processor’s access pattern has a large

effect on the SMC’s ability to optimize bandwidth. In fact, the simpler algorithms usually

do as well or better than their more sophisticated counterparts. For the benchmarks and

memory systems simulated, algorithms involving a “threshold of service” requirement

behave inconsistently, and generally fail to outperform the simpler schemes.

Explicitly trying to take advantage of the memory system’s available concurrency by

initiating accesses in parallel (the P family of selection schemes) turns out to be of no real

benefit, and occasionally hinders performance. Given that the SMC can only process one

access at a time, it makes sense to initiate only one access each bus cycle. Performance

between the “greedy round-robin” (R) scheme and the simpler “token passing” (T) scheme

is sufficiently similar that deciding which is preferable becomes a question of

implementation cost. The anitcipated additional complexity of implementing the former

(R) scheme seems an unnecessary expense, as the latter (T) scheme should prove simpler

and indeed faster.

Whether to choose T4 or T5 over A1 depends on the complexity of the circuitry required

to implement each. The bank-centric schemes, T4 and T5, give better overall performance,

but if A1 is sufficiently cheap to implement, the cost/performance tradeoffs might be

worthwhile.

These simulation results reinforce the intuitive notion that FIFO depthmust scale with the

interleaving factor if we are to achieve good performance on a memory system with a large

number of banks. Even the best ordering algorithms will fail to deliver good performance

is stifled by inadequate buffer space. One final observation is that when faced with a choice
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between implementing a more complicated (and better-performing) access ordering

scheme and building deeper FIFOs, the latter will generally yield better performance.

8. Conclusions

Memory bandwidth is rapidly becoming the performance bottleneck in the application of

high performance microprocessors to vector-like algorithms, including many of the “grand

challenge” scientific problems. Caching is not the sole solution for these applications due

to their poor temporal and spatial locality.

Achieving greater bandwidth requires exploiting the characteristics of the entire memory

hierarchy; it cannot be treated as though it were uniform access-time RAM. Moreover,

exploiting the memory’s properties will have to be done dynamically — essential

information (such as alignment) will generally not be available at compile time.

Reordering can optimize accesses to exploit the underlying memory architecture. By

combining compile-time detection of streams with execution-time selection of the access

order and issue, we achieve near-optimal bandwidth for vector-like accesses relatively

inexpensively. This complements more traditional cache-based schemes, so that overall

effective memory performance need not be a bottleneck.

Here we have reported the basic design of a uniprocessor Stream Memory Controller

(SMC) and have analyzed its performance for a wide variety of design parameter values.

Using current memory parts and only a few hundred words of buffer storage, an SMC

system can consistently achieve nearly the peak bandwidth that the memory system can

deliver. Moreover, it does so with naive code, and performance is independent of operand

alignment.
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