
Interoperability of Parallel Systems: Running PVM Applications in the
Legion Environment1

Roger R. Harper
May 5, 1995

1. This work was supported by NSF grants ASC-9201822 and CDA-8922545-01.

Interoperability of Parallel Systems 2

1.0 Introduction

Parallel programming systems based on loosely coupled networks of computers

are becoming more and more popular. Although they may not have as fast a communica-

tion system as that present in massively parallel processors (MPP’s), networks of comput-

ers are desirable because of their availability, their cost-to-performance ratio and the rich

set of development and support tools that are available.

Although there is a large set of available tools for developing parallel programs for

networked computers, these tools are by and large incompatible with each other. This

means that a user must be certain that the development environment that was used in

developing his/her application is present on every system that he/she intends to use. This

inevitably restricts developers in the resources (available computers) that they may use, in

that, even though a more powerful computer is available, the programmer may not be able

to use it because the development system that he/she uses is not available on that machine.

This project - the development of a software library that will allow programs writ-

ten for version 3 of the Parallel Virtual Machine software system to execute in the Legion

environment - is an attempt to provide a solution to that problem. This project is important

for a two main reasons. First, as explained above, a library of this kind provides develop-

ers with an opportunity to exploit resources that previously may have been inaccessible to

them. Secondly, this library meets one of the goals of the Legion system to be able to sup-

port other parallel programming models, in this case PVM, and to be able to execute appli-

cation programs written for those models.

In addition, by running in their applications in the Legion environment, developers

are able to take advantage of Legion features that may not be present in their native sys-

tems. These features include accounting and resource management mechanisms,

improved scheduling abilities, improved protection and security, a distributed file system

that presents a singe, persistent namespace to applications, and improved fault-tolerance.

(For a complete description of these Legion features see [9] & [10].)

Interoperability of Parallel Systems 3

This document is divided into the following sections: Section 2 provides brief

descriptions of both the PVM and Legion systems, Section 3 describes the design of the

software library, Section 4 examines the performance of the library software, Section 5

looks at PVM features that were not included in the library, and Section 6 describes how

to use the library software.

2.0 The Parallel Virtual Machine and Legion Systems

This section of the document gives a small description of the features and system

architectures of the PVM and Legion parallel programming systems.

2.1 Parallel Virtual Machine

The Parallel Virtual Machine (PVM) is a “... programming environment for the

development and executing of large concurrent or parallel applications” [1]. It was devel-

oped as a result of a collaborative effort between researchers at Oak Ridge National Labo-

ratory, the University of Tennessee, Emory University, and Carnegie Mellon University.

PVM allows an application developer to think of a set of heterogenous (or homogenous)

computers as a single parallel virtual machine. PVM transparently handles all message

routing, data conversion, and task scheduling across the network of computer architec-

tures.

There are two parts to the PVM system, a dæmon process that resides on each of

the computers that make up the virtual machine, and a library of interface routines that the

user links in with his/her application program. The user is able to access the PVM

resources by means of these routines. In addition, these routines allow for the creation and

termination of tasks, as well as communication and synchronization between tasks. The

communication routines include the “usual” ones that send and receive messages to and

from a certain task, as well as routines that allow for multicasting and broadcasting to a

group of tasks. The synchronization routines provide the ability to perform barrier syn-

chronizations as well as global operations. Figure 1 presents a simplified view (adapted

from [5]) of the PVM system architecture.

Interoperability of Parallel Systems 4

A user develops his application as a collection of cooperatingtasks, identified by a

unique task ID (TID), and each task is responsible for a part of the application’s computa-

tions. The PVM system currently supports applications written in C, C++, or Fortran. As a

result of its simplicity of, and the rich set of features that it provides, “... PVM system has

gained widespread acceptance in the high-performance scientific computing community”

[2].

2.2 The Legion Project

The principal goal of the Legion project is to combine the communication and

computation resources already available into a nation-wide virtual computer. Legion is

intended to be made up of workstations, and vector and parallel supercomputers connected

by local networks and by the national information infrastructure. The benefits of having a

system such as Legion include: (1) increased productivity due to increased resource avail-

ability for researchers, (2) reduced gross computation resource requirements due to more

Tasks

Application 1

Application 2

MPP

Vector SCSUN
SUN SUN CUBE

LAN 1

LAN 2

Figure 1. Simplified PVM Architectural Model.

PVM System

VAX

Interoperability of Parallel Systems 5

efficient utilization of resources already available, and (3) the ability to do larger problems

than is currently possible [10].

Legion will be built on the foundation that was laid by Mentat [3]. This approach

has two major advantages. First, it will reduce the amount of new code that must be writ-

ten before Legion can be used, and second, it provides Legion with a foundation that is

known to work well. In addition, the Legion architecture is an object-based one in which

objects have a class and communicate via messages. The architecture is implemented as a

layered virtual machine with a scalable, distributed control [10]. Figure 2 presents a sim-

plified view of the Legion architecture.

Although Legion is designed using the object-oriented paradigm, it is imperative

that it provide support for applications that are written in languages, such as Fortran, that

are not object-oriented. Legion intends to provide this support in one of three ways [10]:

(1) by implementing “wrappers” for applications written in other languages; (2) by export-

ing the Legion run-time system interface and retargeting existing compilers, and (3) by a

combination of the two.

In the first alternative, the original application code is encapsulated in a function

that is written in a language that Legion directly supports (for example the Mentat pro-

gramming language, MPL). In this way, the original application becomes nothing more

Legion Run-Time System

Legion System Objects

User Application Objects

Legion Object Interface Protocol

Figure 2. Layered Architecture of the Legion System

Interoperability of Parallel Systems 6

than another member function in a Mentat class and so it can interact with Legion is via

the regular Legion object interface protocol (Figure 3a).

If the second option is used, compilers for other parallel processing systems could

be redesigned in one of two ways. First, they could be changed so that application are pro-

vided with direct “hooks” into the Legion run-time system, or second, they could provide

compatibility libraries that emulate the native services with Legion services (Figure 3b).

2.2.1 Mentat Features Used in Legion

Mentat was “... designed to directly address the difficulty of developing architec-

ture-independent parallel programs” [3]. Its objectives are to provide easy-to-use parallel-

ism, to achieve high performance through parallel execution, and to permit the execution

of applications across a wide range of platforms. Mentat aims to provide high-level

abstractions that “... mask the complex aspects of parallel programming, communication,

synchronization, and scheduling, from the programmer”[3]. There are two main parts of

the Mentat system, the Mentat Programming Language (MPL) and the Mentat run-time

system.

MPL is based on the C++ language, and in much the same way as a regular C++

class, each Mentat class consists of local and member variables and member functions. In

(a)

MPL Wrapper

Application
Code

Legion Object Interface Protocol

Method
Invocation

Compatibility Library

Application
Code

(b)

Figure 3. Interoperability in Legion

Interoperability of Parallel Systems 7

addition, however, each Mentat class also has its own thread of control. The Legion sys-

tem objects are coded using MPL The Legion run-time system is currently composed of

three dæmons: phoenix (the current fault-tolerance dæmon), the instantiation manager

(IM), and the token matching unit (TMU). The IM and TMU are Mentat dæmons that

have been adapted for use in Legion.

MPL is one of the languages that is currently supported by Legion. It is based on

the C++ language, and in much the same way as a regular C++ class, each MPL class con-

sists of local variables and member functions. MPL classes are those whose member func-

tions the programmer thinks are computationally intensive enough to be worth doing in

parallel. As such, each MPL class has its own thread of control. The Mentat class is desig-

nated by the use of thementat keyword. The Mentat compiler detects and manages invo-

cation of, communication between, and synchronization among Mentat objects (instances

of Mentat classes are called Mentat objects).

3.0 Design of the Library Software System

The library system is composed of a set of routines that interact with the Legion

run-time system. For each PVM routine, there is a corresponding library routine that pro-

vides an identical interface and response. When an application makes a call to a PVM

function, the call goes through the library and is serviced by the Legion run-time system

instead of the PVM system (as described in section 2.2). Figure 4 illustrates this process.

PVM Application

Legion Run-Time System

Compatibility Library

pvm_function()

Figure 4. Handling PVM Function Calls

Interoperability of Parallel Systems 8

The interfaces to the PVM functions are unchanged, so that all that is required to

run current applications is a recompilation (see Section 6). This section describes the

design of the library software system, and the factors that influenced the design decisions.

3.1 Process Identification

As was stated earlier, each process in PVM has a unique TID. This ID is a 32 bit

integer that contains information that the PVM system can extract and use. The Mentat

system also provides a name to objects. Each Mentat object has a unique name that is cur-

rently composed of two integer parts, a host number (which host is the object on) and a

port number (which port is the object using for communication). The library software uses

the Mentat object name to assign unique names to PVM applications. The TID that is

assigned by the library software is a 32-bit integer that is made up of the object name’s

host number in the upper 16 bits, and the port number in the lower 16 bits (see Figure 5).

The mapping between object names and TID’s, and vice versa, are accomplished

by means of two functions:

int encodetid(object_name);and
object_name decodetid(int);

The first function takes a Mentat object name and returns the corresponding TID, while

the second function takes a TID as its parameter and returns the matching Mentat object

name.

As a consequence of building TID’s from Mentat object names, the library is

restricted to a Legion environment of at most 65,535 hosts and to port numbers smaller

than 65,535. This should not be a problem, however, since it is unlikely that in practice a

Legion system will have that many hosts. It should also be noted that the Legion identifi-

31 15 0
Port NumberHost Number

Figure 5. Format of the Library Assigned TID

Interoperability of Parallel Systems 9

cation method is currently being redesigned to a format that is different from the current

(host-number, port-number) format to a new Legion ID. The new Legion ID’s will be a

128-bit entity that will have system information embedded within it. This change will

have to be reflected in a redesign of theencodetid() anddecodetid() functions to allow them

to build TID’s based on the new Legion ID’s.

Instead of building the TID’s from Mentat object names, alternative approaches

that were considered included: (1) to have each task keep a complete list of TID’s and the

corresponding object names, and (2) to have a centralized repository of TID’s and object

names. Neither of these alternatives would have been a good choice. The first alternative

would necessitate the sending extra messages to every task each time a new task is created

or destroyed so that tasks could invalidate the TID’s in their list. This would have had neg-

ative, and unacceptable, repercussions on the performance of the system. The second

alternative would have introduces a potential bottleneck and a “single point of failure”

into the system, and is not scalable to large numbers of processes or hosts. This too, would

have been unacceptable.

By choosing to build the TID’s from the object names, the library functions are

able to translate from one into the other, thus removing the need for any type of lists. Con-

sequently, the system is quite scalable and more distributed (task management functions

are kept as local to the tasks as possible), and has good performance (no need to perform

any table lookups).

3.2 Process Control and Information

One of the more important features of PVM, and thus of the library software, is the

ability to create and manage new processes (tasks). New tasks are created by means of the

pvm_spawn() function. The library implements this function as a call to theinstantiate()

function of the IM. Consequently, when no location hints are used in the call to

pvm_spawn(), the library is able to use the scheduling algorithm of the run-time system to

create and place the new task on the host that is best suited for it. When a specific host is

given as a location hint topvm_spawn(), the new task is created there, whereas, if an archi-

Interoperability of Parallel Systems 10

tecture type is used, the new task is placed on the host (of the architecture type) with the

lowest CPU load.

When a task makes its first call to a library function, it is registered with the IM

and assigned a TID. In addition, resources that the library requires (for example, memory

for lists and message buffers) are allocated and the task gets its parent’s TID. The

pvm_exit() function releases any resources held by the process, and breaks the “connec-

tion” between the process and the Legion run-time system (by unregistering with the IM,

calling mentat_cleanup()(a Legion system function), and clearing the socket connection

tables.).

The pvm_kill() function, used to kill another task, also makes use of the functional-

ity of the IM. This function (pvm_kill()) first maps the given TID into a corresponding

Mentat object name, extracts the host from the object name, then uses the set_node_id() and

kill_object() functions of the IM to kill the process.

The PVM process information routines are also implemented by making calls to

relevant functions of the IM. pvm_config(), which returns information about the configura-

tion of the virtual machine, and pvm_mstat(), which determines the status of a specific host,

both make a call to the IM’s get_name_map() function which returns information about the

current Legion system. The get_name_map() function returns a name_map_rec_list structure.

This structure is a list of name_map_rec structures (Figure 6a), one for each host in the sys-

tem. The information from these structures is then mapped into the appropriate fields of

the pvmhostinfo structures (Figure 6b) that are passed as parameters to pvm_config(). The

host_id field is mapped into the string name of the host, the hosttype field is mapped

into the string name of the host’s architecture type, and the mipsrating field is used as the

relative speed of the host’s CPU. pvm_mstat() simply looks at the active field of the

name_map_rec structures. This field indicates whether the host is up or not.

The pvm_pstat() function, which determines the status of a specific task, first con-

verts the TID, that was passed as a parameter, into the corresponding Mentat object name.

It then gets the host that the process is on (from the object name) and makes a call to the

Interoperability of Parallel Systems 11

IM’s get_instances() function, which returns a list of instance_rec structures (Figure 7a), each

one representing an active Legion processes on the host. This list is then searched for a

matching object name. (It should be noted that the current implementation of

get_instances() does not indicate whether the processes are “hung”. Improvements to this

function are being made.)

The pvm_tasks() function also makes use of the get_instances() function. (pvm_tasks()

returns information about all the tasks that are running in the virtual machine.) In this case,

however, the information that is returned from the call to get_instances() is used to fill in the

fields of the pvmtaskinfo structures (Figure 7b) that pvm_tasks() returns. The d_name field of

the instance_rec structure is mapped into the ti_tid of the pvmtaskinfo structure. The

d_name field also provides the number of the host that the task is on. This host number is

then combined with the port number that the IM uses, to get the ti_host field. The

obj_class_name and u_pid fields provide the executable name and process PID that go

into the ti_a_out and ti_pid fields respectively. Unfortunately, there is no information

struct name_map_rec {

int
int
int
int
supported_host_type
int
char

};

host_id;
active; // Is this host active or not?
mipsrating;
mflopsrating;
hosttype;
processors;
host_name[32];

(a)

struct pvmhostinfo {
int

};

hi_tid;
*hi_name; // Host name.
*hi_arch; // Architecture type.
hi_speed; // Host’s relative CPU speed.

char
char
int

(b)

// TID of PVM daemon on this host.

enum supported_host_type {is_sun4, is_hp, is_solaris, is_sgi,

is_rs6000, is_gamma);

Figure 6. Host Information Structures of Legion and PVM

Interoperability of Parallel Systems 12

that corresponds to the ti_ptid and ti_flag fields, and so these are always returned with

a value of 0 (see Section 5).

3.3 Communication

Communication in the library system, as well as in PVM, is accomplished by

means of message passing. The software was designed so that message passing would be

as efficient as possible, both in terms of time and space. Again, as in other facets of the

library, the real work of sending and receiving messages is left to the Legion run-time sys-

tem. In addition, the library borrows heavily from the original PVM system when it comes

to the packing and unpacking of messages.

The library’s messages are stored in buffers that are allowed to grow dynamically

as more data is packed into it. The class that is used to hold a message is defined in Figure

struct instance_rec {
object_name
int
int
char
state_type
long
int

};

d_name; // Object name of this process.
in_use;
u_pid;
obj_class_name[20]; // Executable name.
state;
last_time_used;
access_cnt;
percent_requested, percent_set,
percent_used, mem_set;

f loat

int
timeval
#ifdef M_VIRT_HOST
int
#endif

num_calls, data_volume;
cpu_use;

node;

(a)

enum state_type {suspend, suspend_all, resume, user_prog};

struct pvmtaskinfo {
int
int
int
int
char
int

};

ti_tid; // Task TID.
ti_ptid; // Parent’s TID.
ti_host; // TID of the daemon on this task’s host.
ti_f lag; // Task’s status f lags.
*ti_a_out; // Executable’s name.
ti_pid; // Process PID.

(b)

Figure 7. Legion and PVM Task Information Structures

Interoperability of Parallel Systems 13

8a. This has fields for each part of the message header, as well as a pointer to the actual

data that will make up the message. The message header provides information that the

receiving task uses to identify the origin of the message. The message buffer is originally

allocated to be PvmFragSize bytes (by default this is 4096 bytes), but as was stated above, it

is allowed to grow as needed.

When the message is being sent, the message structure is compressed into the for-

mat shown in Figure 8b. The message header is thirty-two (32) bytes long and contains the

source TID, the wait ID, the message tag, length, encoding, and an indication of how

much space must be allocated for the data by the receiver. (Since the data buffer is allowed

to grow dynamically, the receiver must know how much space is needed to store it, and

the length of the message would not always give a correct indication. For example when

strings are being sent, the buffer also contains an integer that indicates the length of the

string.)

After the message has been compressed, it is stored in a mentat_message structure,

and passed on to the Mentat run-time system to be sent to the specified task. (Since the

run-time system sends the messages, they must be packed into a mentat_message.). The

class pvm_message {

int
int
int
int
int
int
int
char
XDR
pvm_message
pvm_message

srctid;
wait_id;
tag;
length;
encoding;
data_sz;
unpkpos;
*msg_data;
xdr_ptr;
*next;
&operator=(pvm_message &);

};

// Source TID.
// Wait ID for this message.
// Message tag.
// Message length (in bytes).
// Message Encoding format.
// How much space for message.
// Where to start unpacking data.
// Message data buffer.
// XDR pointer for this message.

(a)

0 31

Message Header Message Data

(b)

Figure 8. Message Structure and Buffer Definitions

public:

Interoperability of Parallel Systems 14

messages are then sent by means of the run-time system’s invoke_fn() function. This func-

tion is asynchronous, so that processing is able to continue as soon as possible.

Messages are received (pvm_recv()) by making a call to the run-time system’s

block_predicate() function. This is a blocking function call, that waits until a message has

been received before processing is allowed to continue. When a message is received, the

steps that were taken to send the message are done in reverse. A mentat_message structure

is received, from which a buffer (of the form in Figure 8b) is extracted. A pvm_message

structure (as in Figure 8a) is then built from the fields in the buffer. If this message is not

the one that was expected, it is placed in a message queue and the receiving task blocks

and waits for another message to arrive. (The message queue is actually a linked-list of

pvm_message objects.)

Although the block_predicate() function is a blocking one, non-blocking receives

(pvm_nrecv() and pvm_trecv()) are also implemented in the library. Both of these function

first check the task’s message queue to see if the requested message is there, and if the

message was not found, they then use the run-time system’s test_predicate() function, which

simply checks to see whether a message has arrived but does not block to await one.

As part of the initialization of the library system, each task is assigned a set of ten

(10) pvm_message structures that are available for sending and receiving. Each structure in

the set is indexed so that the user is allowed to save (using pvm_setsbuf() and pvm_setrbuf()),

recall (using pvm_getsbuf() and pvm_getrbuf()), and get information about (using

pvm_bufinfo()) a message buffer. The set of pvm_message structures is allowed to grow (to

more that 10) as needed.

3.4 Dynamic Process Group Support

PVM’s support for process groups is also present in the library software. Support

is provided for tasks to join and leave groups, as well as for the synchronization of tasks

within a group and the broadcasting of data to tasks in a group. In order to perform the

group operations, the group server process must be present and running.

Interoperability of Parallel Systems 15

The library’s group server is implemented as a persistent Mentat object, and its

definition is given in Figure 9e. (For a complete description of Mentat object types, see

[7].) With the server being implemented as a Mentat object, it is no longer necessary for

the programmer to explicitly start it before calling a group function. Instead, the server is

started automatically when an application is started at the command line, and is destroyed

when the “main” program calls pvm_exit() (the “main” program is considered to be the task

that is started at the command line, not spawned ones). This means that there is one group

server per application, and not one per virtual machine. When the “main” program spawns

new tasks, the TID of the group server is passed to these new tasks. In this way, the chil-

dren are able to access the same group server as their parent. The list of groups that the

server maintains is initially set up for ten (10) groups, but more space can be reallocated as

necessary.

Tasks are able to join (using pvm_joingroup()) and leave (pvm_lvgroup()) groups at

will, without having to consult with any other tasks that are in the group. When a task

joins a group, it is assigned an instance-number, which serves to identify the task in that

group. (This is similar to the <name, instance-number> identification method of earlier

versions of PVM.) Instance numbers start at 0 and go to the number of tasks in the group.

If a task leaves a group and then rejoins it, there is no guarantee that it will receive the

same instance-number. A task joining a group, however, will receive the lowest available

instance-number. (The list of tasks in a group is actually an array (Figure 9a & 9b), so the

instance number that is assigned is simply the index of the first free slot in the array.)

Tasks can be members of different groups at the same time

Process synchronization (using the pvm_barrier() function) is accomplished by

means of message passing. When a task calls pvm_barrier(), a message is sent to the group

server notifying it of the barrier that is being waited for and the quorum that is to be met.

The task then blocks and waits for a message from the group server telling it to proceed.

When the server receives the barrier message, it first searches its list of barriers to see if

the barrier already exists. If the barrier does not exist, the server creates a new

barrier_object (Figure 9c) for this barrier, and adds it to its list of barriers. If the barrier

Interoperability of Parallel Systems 16

persistent mentat class group_server {
private:
group_object
int
barrier_object
int
int

public:
int
int
int
int
int
int
int
int

*grp_tbl;
gtbl_len;
*barriers;
delete_barrier(barrier_object *);
in_group(task_object, string *);

initialize(void);
cleanup(void);
join_group(string *, task_object);
leave_group(string *, task_object);
getsize(string *);
gettid(string *, int);
barrier(task_object, string *, int);
getinst(string *, int);
*get_tasks(string *);task_object_list

};

// Global group table.
// Size of the table.
// List of barriers.

Figure 9. Definition of the Group Server and Relevant Classes

class task_object {
public:
char

};

tname[32]; // Task’s name

class group_object {
public:
char
int

};

class barrier_object {

gname[32]; // Group name.
gsize; // Group size.

public:
char
int
int
object_node
barrier_object

};

bname[32]; // Barrier Name.
quorum; // Number for quorum.
num_waiting; // Number waiting currently.
*waiting_objs; // List of waiting tasks.
*next;

class object_node {
public:
task_object
object_node

};

t_obj;
*next;

int
int

tid; // Task’s TID.
inumber; // Task’s instance number.

(a)

int ttbl_len; // Number of tasks in the group.
*tasks; // List of tasks in the group.task_object

(b)

(c)

(d)

(e)

Interoperability of Parallel Systems 17

exists, the server checks to see if the quorum for this barrier has been met. If the quorum

has been met, the server sends a “go-ahead” message to each task that was blocked at this

barrier, and removes the barrier from the list. The “go-ahead” messages are of a different

type from the regular data messages. This is to ensure that a process that is blocked at a

barrier would not proceed prematurely.

The broadcast function (pvm_bcast()) is implemented as a sequential send to each of

the tasks in the group under consideration. The pvm_bcast() function first sends a message

to the group server asking for a list of the tasks currently in the group. It then sends the

data to each task in turn. This method is not the most efficient algorithm for implementing

broadcasting, but it is the best that could be done without resorting to modifications of the

Legion run-time system.

Also included in the library software are the pvm_gather(), pvm_scatter(), and

pvm_reduce() functions. These are functions that perform global operations on the members

of a group. The pvm_scatter() function distributes data to the members in a group,

pvm_gather() collects data from the members of a group, and pvm_reduce() performs an

arithmetic operation on the members of a group. The operations that are provided include

global sums, products, minimums, and maximums (PvmSum, PvmProduct, PvmMin, and

PvmMax respectively).

3.5 Multi-language Support

One of the features of PVM is its ability to support applications written in both the

C and Fortran programming languages. The library software allows for the development

of applications in either of the C, C++, or Fortran languages. Supporting C++ applications

was straightforward since the Legion run-time system and Mentat applications are written

in C++. Support for the other languages involved minor changes to the run-time system.

The major problem involved the calling of the constructors of global Legion sys-

tem objects when the PVM application was written in either C or Fortran. The construc-

tors for C++ objects are called in the linking phase of compilers, and since the application

Interoperability of Parallel Systems 18

would have to be compiled (at some point) by either a C or Fortran compiler, the linker

function that calls system constructors would not be properly set. This meant that the

library software would have to explicitly perform the functions of the constructors.

Making sure that the global objects were initialized was accomplished in three

steps:

1. A new function, initialize(), was added to each global Legion object class (Figure
10a). This function had the same signature as the class constructor and performed
the same duties.

2. Create a new Legion system source file, mentat_globals_init.c, containing one func-
tion, mentat_globals_init(), which called the initialize() function of all the global objects
from the original system source files (Figure 10b).

class pred_globals {
private:

...

public:
void pred_globals();
void initialize();

...
};

(a)

mentat_globals_init.c:

extern pred_globals pg;

void mentat_globals_init(void)
{

pg.initialize();
... // Call other initialize functions.

};
(b)

pvm_utils.c:

void init_mentat_globals(void)
{

mentat_globals_init();
}

(c)

Figure 10. Handling Global Constructors

mentat_pred.h:

... // Other mentat global objects.

Interoperability of Parallel Systems 19

3. The library contains a function, init_mentat_globals(), which calls mentat_globals_init()
(Figure 10c). init_mentat_globals() is called during the library’s initialization phase.

This approach has one main advantage. If new global objects are added to the

Legion system, the only changes that would be necessary would be changes to

mentat_globals_init.c, and not to the library source files.This would increase the likelihood

that the new global object would be properly initialized when the library initializes the

other objects.

The Fortran library functions are implemented as calls to the corresponding C/C++

library functions. For example, a call to the pvmfspawn() function is actually a call to the

pvm_spawn() function with the parameters organized accordingly. To implement the For-

tran functions, the library makes use of the original PVM code and its use of the m4 macro

language processor to facilitate the proper passing of arguments between Fortran and C

functions.

4.0 Performance of the Library Software

In order for the library to become widely used, it is necessary that it not introduce

a large performance overhead when it is used and that it produce correct results. This sec-

tion looks at the performance of PVM application programs when they are executed both

in the PVM environment, and with the library software.

4.1 Timing and Bandwidth Measurements

This test used an application that is distributed with the PVM system. It consists of

two (2) programs, a master that sends messages of varying sizes, and a worker program

that acknowledges the receipt of the messages by sending a small message back to the

master. The timings reported here (in Table 1) are the average of three (3) runs of the

application, with each run being the average of twenty (20) sends and receives. These tests

were conducted using PVM v3.0, on a network of eight (8) 40 MHz Sun Sparc 2’s.

The results show that the library out-performs PVM for small messages (≤ 10,000

bytes). This is a result of the better message passing system of Mentat. The fact that the

Interoperability of Parallel Systems 20

library performs better than PVM for small messages is significant, because most applica-

tions send mainly small messages.

4.2 Benchmark Performance

The library was also tested with actual applications. In this case, the NAS bench-

marks were used. These benchmark programs are a set of applications that “... embody the

key computational and data-movement characteristics of typical processing in computa-

tional aerodynamics[6].” The benchmark programs consist of five kernels and three appli-

cations, and they are rigorous and come very close to “real” application. For testing the

library, only the following kernels were used:

• Kernel EP: This kernel executes 226 iteration os a loop in which a pair of random

numbers are generated and tested for whether Gaussian random deviates can

be made from them. This is one of the “embarrassingly parallel” kernels which

is requires little or no communications between processors.

• Kernel MG: This kernel executes four iterations of the V-cycle multigrid algo-

rithm to obtain an approximate solution to the discrete Poisson problem ∇2u =

v on a 128x128x128 grid with periodic boundary conditions. This application

utilizes both long- and short-distance communication.

• Kernel IS: This kernel performs 10 rankings of 221 integer keys in the range [0,

19). This application uses frequent, but low-volume communications.

Message
Size (bytes)

100

1,000

10,000

100,000

1,000,000

PVM Time
(msec)

PVM/Legion Time
(msec.)

PVM Bandwidth
(bytes/sec.)

PVM/Legion
Bandwidth
(bytes/sec)

Table 1. Timing and Bandwidth Measurements

8.81 8.48

9.87 9.75

27.52 26.58

194.23 196.78

1,920.62 1,951.62

11,80011,310

101,260

363,380

514,860

520,670

102,550

376,220

509,880

512,790

Interoperability of Parallel Systems 21

• Kernel CG: This kernel uses the power and conjugate gradient methods to

approximate the smallest eigenvalue of a symmetric, positive definite, sparse

matrix (of order 1,400) with a random pattern of non-zeros. (Memory restric-

tions prevented larger problem sizes from being attempted.) The communica-

tion patterns are long-distance and unstructured.

• Kernel FT: This kernel uses Fast Fourier Transforms on a 64x64x64 complex

array to solve a 3-dimensional partial differential equation. (Memory restric-

tions prevented larger problem sizes from being attempted.) Communication

patterns are structured and long-distance.

The performance of the benchmarks with the library system and with PVM v3.0

are shown in Table 2. As with the timing measurements, a network of eight (8) 40MHz

Sun Sparc 2’s was used (except for Kernel CG, which used 41). In addition, all data was

sent using raw encoding and the pvm_send()/pvm_recv() functions.

1. Kernel CG requires a square number of processors, and 4 is the largest number of processors that was
available in the testing environment.

Benchmark Time (sec.) Comm. Time (sec) Comm. Vol. (MB)

Application PVM 3.0 PVM 3.0 PVM 3.0
PVM/

Legion
PVM/

Legion
PVM/

Legion

Kernel IS

Kernel EP

Kernel MG

226.28 256.28 202.61 207.00 140.02 140.02

346.07 350.22 NA NA NA NA

123.76 110.06 61.94 59.37 48.77 48.77

Table 2. NAS Benchmarks Performance

Kernel CG

Kernel FT

87.10 67.85 12.54 12.5441.7751.80

92.63 70.84 49.0087.56 65.43 49.00

Interoperability of Parallel Systems 22

5.0 Unsupported PVM Features

As much as it would have been desirable to support all the functionalities of PVM,

the library software does lack some features. This section describes the functions that are

not currently supported and explains those which are only partially supported.

• pvm_addhosts() & pvm_delhosts() :- these functions allow a user to dynamically

add and delete hosts from the virtual machine. They will not supported due to

the fact that the Legion design philosophy does not allow for a user to dynami-

cally add/delete hosts. The Legion system handles these functions.

• pvm_catchout() :- this function causes the calling task to cap-

ture output from any tasks that it may later spawn. It will be supported when

the necessary functionality is added to the run-time system.

• pvm_config() :- this function returns information concern-

ing the current virtual machine configuration. The library’s implementation

bases its value of the relative CPU speed on the value of the “MIPS_RATING”

variable from the Mentat configuration database file config.db. It is the user’s

responsibility to ensure that this value is accurate and reasonable. The default

value is 1. (For more information on the config.db file, see [8].)

• pvm_getopt() & pvm_setopt() :- these functions retrieve and set various

library options. Not all of the options to these functions are supported, how-

ever. The only supported options are PvmFragSize and PvmAutoErr, which control

the size of the message fragments, and the printing of error messages respec-

tively (the default values for these options are 4096 bytes and 1 respectively).

Values for the tracing options as well as the routing options may be passed to

the functions, but they are currently disregarded. Passing values to the PvmDe-

bugMask, PvmOutputTid, PvmOutputCode, and PvmResvTids options is reported as a

warning. (These options control the debugging mask, the output device for a

task’s children, the message tag to be used for children’s output messages, and

the reserving of message tags and TIDS respectively.)

Interoperability of Parallel Systems 23

• pvm_halt() :- this function is only partially supported.

The PVM function shuts down the entire PVM system (including remote tasks

and daemons), while the library’s implementation simply destroys any running

tasks and the group server. The underlying Legion system is left running to be

shut down in its normal manner.

• pvm_hostsync() :- this function gets the time-of-day from a

remote task. Currently it is not supported, but it may be when signal support is

added to Legion.

• pvm_initsend() :- thePvmDataInPlace option to this function is

not fully supported. Although it may be used, the data is actually packed as

though thePvmDataDefault option was used. (ThePvmDataInPlace option speci-

fies that data is to be place during packing. The message buffer contains only

the sizes of, and pointers to, the data items to be sent.)

• pvm_insert() & pvm_lookup() :- these functions are used to insert data into,

and retrieve data from, the pvmd database. (The pvmd database is used to store

information such as TID’s and make them available to tasks within the virtual

machine. This is useful for applications like the group-server.) The library does

not make use of such a database, and thus these functions are not supported.

• pvm_notify() & pvm_sendsig() :- pvm_notify() tells a task when an event of

interest, for example a host going down, happens.pvm_sendsig() sends a signal

to a specific task. These functions are not currently supported, but could be

when signal support is added to Legion.

• pvm_reg_hoster() & pvm_reg_tasker() :- pvm_reg_hoster() registers the calling task as

being responsible for adding new hosts to the virtual machine, while

pvm_reg_tasker() registers the calling task as being responsible for starting new

tasks (the PVM daemons usually handle these tasks). These functions will not

be supported due to the fact that Legion does not allow for users to add hosts

“on the fly” or for user defined objects responsible for starting new tasks.

Interoperability of Parallel Systems 24

• pvm_reg_rm() :- pvm_reg_rm() registers the calling task as

a resource manager, meaning that it will play a role in scheduling policies. This

function will not be supported since the Legion daemons already handle sched-

uling, and Legion does not allow for users to take over this responsibility.

• pvm_spawn() :- the PvmTaskTrace, PvmTaskDebug, and Pvm-

MppFront options to this function are not currently supported. The PvmTaskTrace

option implies that the spawned tasks will generate tracing data, the PvmTaskDe-

bug option causes the spawned tasks to start up under a debugger, and the Pvm-

MppFront option causes the spawned tasks to start on an MPP front-end. In

addition, since Legion does not currently provide for the passing of arguments

to tasks created by the IM, the argv parameter to pvm_spawn() is disregarded.

• pvm_start_pvmd() :- this function allows the user to start a new

PVM daemon on another host. This function is used mainly when adding new

hosts to the virtual machine. Since this ability (to add new hosts) is not pro-

vided to the Legion user, this function will not be supported.

• pvm_tasks() :- this function returns information about the

tasks that are currently running on the virtual machine. In the library’s imple-

mentation, the fields of the pvmtaskinfo structures that are returned, have the

following values:

ti_tid :- the TID of the task is in this field.

ti_ptid :- this field is supposed to contain the TID of the task’s parent.
However, the library is unable to determine the parent of an
arbitrary task (without explicitly asking the task). Conse-
quently, this field contains the TID of the IM on the host on
which the task resides. (Legion considers all objects to be
children of the IM’s, so technically this information is cor-
rect.)

ti_host :- this field is supposed to contain the TID of the daemon on
the host that the task is on. The library returns the TID of
the IM on the host on which the task resides. (Same as for
ti_ptid.)

Interoperability of Parallel Systems 25

ti_flags :- this field is supposed to indicate the status of the task: is it
connected to the daemon, or is it waiting for authorization,
is its connection being closed, or is it a special (hoster,
resource-manager, or tasker) task. The library returns a
value of 0 in this field since none of the PVM task states
have any meaning in the Legion environment.

ti_a_out :- this field contains the name of the task. The library returns
the correct name for all tasks except the one that was started
by hand on the command line. For that task, the library
returns the string PVM_parent.

ti_pid :- this field contains the process ID of the task.

Although some of the more advanced features of PVM are missing from this ver-

sion of the library software, it should be noted that all the important features are included

and that most “real” applications could be developed with the features that are included.

6.0 Building and Using the Library

6.1 Obtaining the Software

The library software can be obtained in the same manner as the Mentat system

software. Complete information on getting access to the Mentat distribution files can be

gotten by sending mail to mentat@Virginia.edu.

6.2 Building the Library

The library is distributed in compressed tar format. It is recommended that the dis-

tribution file be copied to home directory of the Mentat account that was set up when the

Mentat system was installed. To unpack the source one must enter the following com-

mands:

$ uncompress pvmlegion.tar.Z

$ tar xvf pvmlegion.tar

These commands will create a directory, pvmlegion, and place the source code for

the library there. This directory should contain eleven (11) source (and header) files, as

well as three subdirectories, the PVM Applications Compiler (pac), and a makefile. One

subdirectory will contain macros that are used during the compilation of the library on the

Interoperability of Parallel Systems 26

different platforms, another contains the source code for the Fortran library functions, and

the final one contains example applications. There should also be a README file that fur-

ther explains the contents of the subdirectories.

To build the library, change to the pvmlegion directory and enter the command

“make all”. The makefile will determine which platform it is currently on and build

libpvm3.a libfpvm3.a and group_server (the group server executable) accordingly (the

steps in the compilation process are different for the different platforms). During compila-

tion, the compiler will output a number of error messages of the form “error!: Illegal use of

Mentat class member variable!” or of the form “error!: Identifier name is being redeclared”.

These messages can be safely disregarded. The warnings concerning unreachable state-

ments and unset variables can also be disregarded.

When the compilation is complete, the libraries will be placed in the proper subdi-

rectory of the $MENTAT_LIB directory. (For example, on a SUN4 machine the library will

be placed in $MENTAT_LIB/att. It is assumed that Mentat has been already installed and the

Mentat environment variables are properly set.) The group server executable will be

placed in $MENTAT_USR_BIN. The user should copy pac to $MENTAT_BIN.

6.3 Compiling Applications with the Library

The PVM Applications Compiler (pac) is used to compile PVM applications that

need the library. This compiler is actually a shell program that first compiles the applica-

tion into a “.o” object file using the appropriate language compiler, and then uses a C++

compiler to link the object file and the necessary libraries to produce an executable. Table

3 lists the platforms and compilers with which the library has been tested.

The syntax for the pac command is:

pac [-C] [-C++] [-F] [-v] [Compiler options] sourcefile [objectfiles]
where:

-C
Specifies that the PVM application is written in C.

-C++
Specifies that the PVM applications is written in C++.

-F

Interoperability of Parallel Systems 27

Specifies that the PVM applications is written in Fortran.
-v

Verbose mode: show explicitly what pac is doing.
Compiler options

Other Fortran, C, or C++ compiler options that may be necessary.
sourcefile

The name of the PVM application source file.
objectfile

The names of any other needed object files.

For example:

pac -F -v test.f -o test

pac -C -DDEBUG -g hello.c -o hello

On-line help for pac is also available through man pages (type: man pac or man pvm-

legion).

A new error code has also been added to pvm3.h. As a result, the user should either

use the header files that are supplied with the library or make the necessary changes to

their header file. The change to be made involves adding the following line to the pvm3.h

header file:

#define PvmNotSupported -34 /* A function or option is not yet sup-
ported. */

6.4 System Dependent Libraries

In order for pac to successfully compile Fortran PVM applications, it must make

use of certain libraries that may be in different locations on different systems. The follow-

ing libraries are necessary, and the user must ensure that pac can reference them:

Platforms
C C++ Fortran

CompilerCompilerCompiler

SUN4

SOLARIS

SGI

RS6000

cc CC_CenterLine f77

cc CC_CenterLine f77

cc CC f77

xlfg++gcc

Table 3. Supported Platforms and Compilers

✝

✝ Requires SunOS 4.1.2 (at least)

Interoperability of Parallel Systems 28

In order to specify the path to these libraries, the user must change the value of the

FLDIRS variable in the source code for pac. The value of the variable is set based on the

platform that is being used.

7.0 References

[1] Vaidy S. Sunderam, PVM: A Framework for Parallel Computing. Concurrency:

Practice and Experience, Vol. 2, No. 4, December 1990, pp315-339.

[2] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy

Sunderam, PVM: Parallel Virtual Machine, A Users’ Guide and Tutorial for Net-

worked Parallel Computing. MIT Press, 1994.

[3] Andrew S. Grimshaw, Easy to Use Object-Oriented Parallel Programming with

Mentat. IEEE Computer, May 1993, pp39-51.

[4] Andrew S. Grimshaw, Jon B. Weissman, W. Timothy Strayer, Portable Run-Time

Support for Dynamic Object-Oriented Parallel Processing. Computer Science Tech-

nical Report CS-93-40, University of Virginia, July 1993.

[5] G. A. Geist, V. S. Sunderam, Network Based Concurrent Computing on the PVM

System. Journal of Concurrency: Practice and Experience, Vol. 4, No. 4, June 1992,

pp293-311.

Platforms Libraries

SUN4

SOLARIS

SGI

RS6000

libF77.a

libF77.a, libM77.a, libsunmath.a

libftn.so, libbsd.a, libl.a

libbsd.a, libxlf90.a, libl.a

Table 4. System Dependent Libraries

Interoperability of Parallel Systems 29

[6] S. White, A. Ålund, and V. S. Sunderam,Performance of the NAS Parallel Bench-

marks on PVM Based Networks. RNR Technical Report RNR-94-008, NASA Ames

Research Center, May 1994.

[7] The Mentat Research Group,Mentat 2.8 Programming Language Reference Man-

ual, 1995.

[8] The Mentat Research Group,Mentat 2.8 Users Manual, 1995.

[9] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, Paul F.

Reynolds Jr., A Synopsis of the Legion Project. Computer Science Technical Report

CS-94-20, University of Virginia, June 1994.

[10] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, Paul F.

Reynolds Jr., Legion: The Next Logical Step Towards a Nationwide Virtual Com-

puter. Computer Science Technical Report CS-94-31, University of Virginia, June

1994.

[11] Andrew S. Grimshaw, Anh Nguyen-Tuong, William A. Wulf, Campus-Wide Com-

puting: Early Results Using Legion at the University of Virginia. Computer Science

Technical Report CS-95-19, University of Virginia, March 1995.

