
Applying Decay Strategies to Branch Predictors for
Leakage Energy Savings

– Univ. of Virginia Tech. Report CS-2001-24 –

Zhigang Hu, Philo Juang
Department of Electrical Engineering

Princeton University
hzg,pjuang@ee.princeton.edu

Kevin Skadron
Department of Computer Science

University of Virginia
skadron@cs.virginia.edu

Doug Clark
Department of Computer Science

Princeton University
doug@cs.princeton.edu

Margaret Martonosi
Department of Electrical Engineering

Princeton University
mrm@ee.princeton.edu

Abstract

This paper shows that substantial reductions in leakage energy can be obtained by deac-
tivating groups of branch-predictor entries if they lie idle for a sufficiently long time. Decay
techniques, first introduced by Kaxiras et al. for caches, work by tracking accesses to cache
lines and turning off power to those that lie idle for a sufficiently long period of time (the de-
cay interval). Once deactivated, these lines essentially draw no leakage current. The key trick
is in identifying opportunities where an item can be turned off without incurring significant
performance or power cost.

Branch predictors are, like caches, large array structures with significant leakage; as such,
it is natural to consider applying decay techniques to them as well. Applying decay techniques
to branch predictors is, however, not straightforward. The overhead for applying decay to indi-
vidual counters in the predictor is prohibitive, so decay must be applied to groups of predictor
entries. The most natural grouping is a row in the square data array used to implement the
branch predictor, but then decay will only be successful if entire rows lie idle for sufficiently
long periods of time. This paper shows that branch predictors do exhibit sufficient spatial and
temporal locality to make decay effective for bimodal, gshare, and hybrid predictors, as well
as the branch target buffer. In particular, decay is quite effective when applied intelligently
to hybrid predictors, which use two predictors in parallel and are among the most accurate
predictor organizations. Hybrid predictors are also especially amenable to decay, because in-
active entries in one component can be left inactive if the other component is able to provide
a prediction. Overall, this paper demonstrates that decay techniques apply more broadly than
just to caches, but that careful policy and implementation make the difference between success
and failure in building decay-based branch predictors.

1 Introduction

Power dissipation is an increasingly important problem in high-performance CPUs. As high-end
processors increasingly stress both current-delivery and thermal limits in CMOS integrated cir-
cuits, methods for reducing both maximum and average power dissipation become crucial, not

1

only for mobile computing but for all classes of processors. While circuit-level techniques re-
main an important mainstay in managing power problems, architecture-level approaches to power
management have become increasingly popular and successful in complementing the circuit-level
techniques.

Until quite recently, most architecture-level approaches for CPU power efficiency have fo-
cused on dynamic or switching power, which arises from the repeated charging and discharging
of transistors and wires due to computing activity. Leakage or static power is another source of
power dissipation and is due to the sub-threshold current that flows through transistors even when
they are not switching. This static power has so far been a less significant component of power
dissipation and hence has not been heavily studied at the architecture level. But as fabrication pro-
cesses have worked to maintain clock speeds while scaling supply voltage, threshold voltages are
being lowered to the point where leakage has become an important and growing fraction of total
power dissipation in high-performance CMOS CPUs. If it is not addressed through fabrication or
circuit-level changes, some forecasts predict as much as a five-fold increase in leakage energy per
technology generation [2]. At such rates, the current leakage component, roughly 5% of total chip
power now, would balloon to 50% or more in just a few generations.

In response to this trend, researchers have proposed circuit- and architecture-level mechanisms
for managing leakage energy [10, 18]. In particular, prior work by Kaxiras et al. on cache decay
techniques [10] showed that turning cache lines off if they have not been used in a long time
(the decay interval) can be an effective way of reducing leakage energy with little performance
impact. Evaluation must of course consider the power overhead that arises from any additional
state required for applying decay, from any extra cache misses that are induced when decay is too
aggressive, and from any increase in execution time. The appropriate metric is therefore the net
reduction in cache leakage energy.

After caches, branch predictors are among the largest array structures in current CPUs and thus
can be large dissipators of leakage power. Since applying decay techniques to caches has proven
effective, applying decay techniques to branch predictors is an obvious next step.

Unfortunately, several factors complicate this task, for it is much less obvious when a branch
predictor entry may be considered “dead” and can therefore be turned off with little performance
impact. First, many branches may map to the same predictor entry and since this sharing is some-
times beneficial, notions of cache conflicts and eviction do not translate directly into the branch
prediction world. Second, a branch predictor entry is not simply valid or invalid, as in a cache. A
branch predictor entry may have reached the “strongly not taken” state due to the effects of several
different branches and may be useful to the next branch that accesses it, even if this branch has
never been executed before. Third, individual branch predictor entries are too small to deactivate
individually, so one must consider some larger collection, such as a row of the square array in
which the predictor is likely implemented. The challenge here is that unlike a grouping of data
into a cache line, the grouping of branch predictor entries in a row is not something for which ap-
plication programmers and systems builders have a sense of spatial locality. This paper evaluates
design options related to these questions.

Further interesting questions arise when moving from simple bimodal branch predictors [15],
which simply keep one two-bit counter per predictor entry, to multi-table predictors like hybrid pre-
dictors [13], which operate several prediction structures in parallel. For example, hybrid predictors
may encounter instances when one of the predictor components has decayed but the other one has
not. The chooser might be designed to pick the non-decayed component in such situations. Al-
ternatively, for some branches, the chooser may exhibit a strong bias for one predictor component
over the other. In this case, predictor entries that are not being selected might be deactivated.

This paper shows that although branch predictor decay methods cannot be adapted directly
from their cache counterparts, one can nevertheless devise effective branch predictor decay ar-
rangements despite their more nuanced behavior. The paper then goes on to explore the interaction

2

of decay policies with some of the wealth of branch predictor design parameters. We show that:

� Decay can reduce net leakage energy in the conditional branch predictor by 40–60%.

� Decay can reduce net leakage energy in the branch target buffer (BTB) by 90%.

� Decay is slightly less effective for two-level predictors than for structures indexed strictly by
branch PC.

� In hybrid predictors, decay policies can achieve 50% higher reductions in leakage energy if
the decay policy takes advantage of the hybrid predictor organization to boost decay oppor-
tunities.

� Decay is most effective for intervals of 64K cycles or larger. If decay is applied too aggres-
sively, extra mispredictions result with significant costs in both performance and dynamic
power.

The next section describes the power-performance simulation infrastructure, benchmarks, and
metrics used in this study. Section 3 lays out our basic decay ideas, which are then evaluated for
three branch predictor types in Sections 4 (bimodal), 5 (gshare) and 6 (hybrid). Branch predic-
tors commonly operate in cooperation with branch target buffers, so Section 7 shows that decay
methods can work with these structures too. Section 8 concludes the paper and includes some
suggestions for future work.

2 Experimental Setup

This section describes our simulation technique and benchmarks, our method for evaluating energy
savings, and the branch predictor types used in our evaluation.

2.1 Simulation Setup

Simulations in this paper are based on the SimpleScalar 3.0 toolkit [1, 4]. Our model processor
has microarchitectural parameters that resembles in most respects the Intel PIII processor [6]. The
main processor and memory hierarchy parameters are shown in Table 1. For performance estimates
and behavioral statistics, we use SimpleScalar’s sim-outorder simulator. For energy estimates, we
use the Wattch simulator [3]. Wattch uses SimpleScalar’s sim-outorder cycle-accurate model and
adds cycle-by-cycle tracking of power dissipation by estimating unit capacitances and activity
factors. Because most processors today have pipelines longer than 5 states, our simulations extend
the sim-outorder pipeline by adding three additional stages between decode and issue. For Wattch,
it is necessary to specify technology parameters and clock speed. We chose a feature size of 0:18�,
a Vdd of 1.9V, and a clock speed of 1 GHz.

2.2 Benchmarks

We evaluate our results using benchmarks from the SPEC CPU2000 suite [17]. The benchmarks
are compiled and statically linked for the Alpha instruction set using the Compaq Alpha compiler
with SPEC peak settings and include all linked libraries. For each program, we skip the first 1
billion instructions to avoid unrepresentative behavior at the beginning of the program’s execution.
We then simulate 500M (committed) instructions using the reference input set. Simulation is
conducted using SimpleScalar’s EIO traces to ensure reproducible results for each benchmark

3

Processor Core
Instruction Window 16-RUU, 8-LSQ
Issue width 4 instructions per cycle
Functional Units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts

Memory Hierarchy
L1 D-cache Size 16KB, 4-way, 32B blocks
L1 I-cache Size 16KB, 1-way, 32B blocks
L2 Unified, 256KB, 4-way LRU,

64B blocks,6-cycle latency, WB
Memory 18 cycles
TLB Size 128-entry, 30-cycle miss penalty

Branch Predictor
4K-entry bimod or

Branch predictor 16K-entry gshare or
21264-style hybrid

Branch target buffer 2048-entry, 4-way
Return-address-stack 32-entry

Table 1: Configuration of simulated processor

across multiple simulations. Table 2 provides a list of the benchmarks we study along with their
basic branch and performance characteristics.

2.3 Energy Evaluation

An evaluation of the net energy savings from branch predictor decay must account for two opposite
effects resulting from decay. On one hand, turning off Vdd in idle counters or rows can prevent them
from leaking; on the other hand, decaying the counters causes them to lose history information
stored with them, possibly degrading performance of the branch predictor and hence possibly
resulting in more energy spent on mis-speculation and longer run time.

We use Wattch [3] to measure the total processor dynamic energy before and after applying
decay, and subtract them to obtain the dynamic energy overhead. For leakage energy, from the
low-Vt data given in Table 2 in [18], we know that each bit (SRAM cell) consumes about 1740 �
10
�9 nJ per cycle. Here we are assuming a 1GHz processor frequency. Therefore, the 4K bimod

predictor, 16K gshare predictor and 21264 style hybrid predictor consume about 0.014nJ, 0.056nJ
and 0.030nJ leakage energy each cycle respectively. The overall leakage energy for the branch
predictor can be calculated as

leakage energy per bit per cycle * number of bits * number of cycles

The leakage energy of the extra status bits can be calculated similarly. Since these status bits only
switch infrequently (at most once every decay interval, e.g., once every 64K cycles), we ignore
their dynamic energy overhead in our calculation.

To evalulate the net effectiveness of decay for reducing leakage energy, we combine the new,
reduced value for leakage energy with the extra overhead energy associated with the decay tech-
nique, and then compare to the original value for leakage energy. For each of the predictor types
we study, we present plots of normalized leakage energy for different decay intervals, where the
basis for normalization is the original value for leakage energy.

This approach for measuring the net reduction in leakage energy is similar to the techniques
used by Kaxiras et al. in their work on cache decay [10].

4

Dynamic Conditional Prediction Rate Prediction Rate Prediction Rate
Branch Frequency w/ Bimod 4K w/ Gshare 16K w/ Hybrid 21264-style

gzip 9.40% 87.58% 90.67% 92.40%
vpr 11.08% 90.00% 97.68% 97.03%
gcc 2.56% 99.61% 99.74% 99.75%
mcf 19.40% 98.42% 99.27% 98.94%
crafty 11.13% 91.76% 93.33% 94.38%
parser 15.60% 91.25% 94.31% 94.89%
eon 11.08% 81.03% 89.71% 91.76%
perlbmk 12.43% 95.15% 97.29% 97.60%
gap 6.62% 90.10% 96.50% 96.96%
vortex 16.00% 97.85% 97.61% 97.87%
bzip2 12.13% 94.06% 94.05% 94.12%
twolf 12.24% 86.44% 88.53% 88.48%
wupwise 10.50% 92.05% 97.54% 96.66%
swim 1.35% 99.36% 99.54% 99.55%
mgrid 0.33% 92.57% 97.77% 97.95%
applu 0.28% 93.07% 98.70% 98.21%
mesa 8.73% 94.09% 96.98% 96.31%
galgel 6.09% 99.13% 99.27% 99.29%
art 11.29% 92.99% 99.02% 96.40%
equake 17.13% 98.04% 99.39% 99.28%
facerec 3.49% 97.92% 99.04% 99.21%
ammp 21.67% 98.77% 99.27% 99.23%
lucas 8.67%% 90.84% 98.70% 98.84%
fma3d 18.09% 95.93% 98.39% 97.68%
sixtrack 8.08% 89.58% 99.72% 99.78%
apsi 3.51% 86.22% 96.52% 97.12%

Table 2: Benchmark summary.

2.4 Branch Predictors Studied

Although a wealth of dynamic branch predictors have been proposed, we focus on the effects of
decay for a representative sample of predictor types: bimodal, gshare, and hybrid.

The bimodal predictor [15] consists of a simple pattern history table (PHT) of saturating two-
bit counters, indexed by branch PC. This means that all dynamic executions of a particular branch
site (a “static” branch) map to the same PHT entry, and means that there are never more PHT
entries in use at any one time than there are active branch sites. This paper models a 4 K-entry (8
Kbit) bimodal predictor. This is the configuration that appears in the Alpha 21064 [7], although
the 21064 uses one-bit rather than two-bit counters. The Alpha 21164 [8] used a larger PHT of 8
K entries, but we conservatively choose the smaller PHT to make it more difficult to show benefits
from decay.

The gshare predictor [13], shown in the left-hand portion of Figure 1, is a variation on the
two-level global-history predictor [14, 19]. The advantage of global history is that it can detect
and predict sequences of correlated branches. In a conventional global-history predictor, a history
(the global branch history register or GBHR) of the outcomes of the N most recent branches is
concatenated with some bits of the branch PC to index the PHT. Combining history and address
bits provides some degree of anti-aliasing to prevent destructive conflicts in the PHT. In gshare, the
history and the branch address are XOR’d. This permits the use of a longer history string, since
the two strings do not need to be concatenated and both fit into the desired index width. This paper
models a 16 K-entry gshare predictor in which 12 bits of history are XOR’d with 14 bits of branch
address. This is the configuration that appears in the Sun UltraSPARC-III [16].

5

taken/not−taken

 PHT
(16K)

xor

branch address

GBHR

14

1412

component #1
 (global)

component #2
 (local)

taken/not−taken

GBHR (12)

PHT
(4K) selector

(uses global hist)

PHT
(1K)PHT

(4K)

BHT
 (1K
 x10)

Figure 1: Gshare predictor in the Sun UltraSPARC-III (Left) and 21264-style hybrid predictor
(Right).

Instead of using global history, a two-level predictor can track history on a per-branch basis. In
this case, the first-level structure is a table of per-branch history registers—the branch history table
or BHT—rather than a single GBHR shared by all branches. The history pattern is then combined
with some number of bits from the branch PC to form the index into the PHT. Local-history predic-
tion cannot detect correlation, because—except for unintentional aliasing—each branch maps to a
different entry in the BHT. Local history, however, is effective at exposing patterns in the behavior
of individual branches.

Because most programs have some branches that perform better with global history and others
that perform better with local history, a hybrid predictor [5, 13] combines the two. It operates
two independent branch predictor components in parallel and uses a third predictor—the selector
or chooser—to learn for each branch which of the components is more accurate and chooses its
prediction. Choosing a local-history predictor and a global-history predictor as the components is
particularly effective, because it accommodates branches regardless of whether they prefer local
or global history. This paper models a hybrid predictor with a 4K-entry selector that only uses 12
bits of global history to index its PHT; a global-history component predictor of the same configu-
ration; and a local history predictor with a 1 K-entry, 10-bit wide BHT and a 1 K-entry PHT. This
configuration appears in the Alpha 21264 [11] and is depicted in the right-hand portion of Figure 1.

3 Opportunities for Decay in Branch Predictors

3.1 Overview of Proposed Implementations

Our predictor decay techniques have the following general structure. At regular intervals, all
groups of predictor entries that have not been used during the interval are assumed to have decayed
and are therefore deactivated. The interval, called the decay interval, is measured in processor cy-
cles, and is a critical parameter for these schemes. The shorter the interval, the more opportunities
for rows to be deactivated but the more likely it is that rows are deactivated prematurely and induce
extra mispredictions. Intervals long enough to mimimize extra mispredictions, on the other hand,
result in the deactivation of fewer entries.

The groups of entries are the rows of a square memory array (see Figure 2). One bit per row,

6

PHT index

two−bit counter

 row
decoder

 column
decoder

asserted
wordline

chosen
bitlines

b b/2

b/2

Figure 2: A schematic of a squarified branch predictor table of two-bit counters (the PHT).

the reference bit, indicates whether any predictor entry in that row has been accessed within the
last decay interval. All reference bits are cleared at the end of each interval. A second bit for
each row, the active bit, indicates whether that row is currently active (i.e., not decayed). If a
predictor lookup tries to access a decayed row, the predictor signals that a prediction cannot be
made; the row is re-activated and possibly initialized to some desired starting state; the active bit
is set; and in the meantime a default prediction is made. Upon activation, our experiments use a
default prediction of not taken and initialize all the counters to 01. Thus, all subsequent branches
using the re-activated line start in the weakly not taken state.

The active ratio in a particular experiment is the average percentage of predictor rows found
to be active (not decayed) at the end of each interval; it is a proxy for the actual leakage energy
consumed by the predictor. Of course shorter decay intervals yield smaller active ratios (and larger
leakage energy savings), but performance may suffer, since useful predictor entries are sometimes
deactivated. Exploring this power-performance tradeoff is a key objective of this paper.

As mentioned in the previous section, the net reduction in leakage energy is calculated by
measuring the savings in leakage energy from deactivated rows, and subtracting both the leakage
energy from the decay status bits and the extra dynamic energy resulting from extra mis-speculation
and execution time caused by induced mispredictions. If decay is therefore causing too many
mispredictions or the overhead of the decay status bits is too large, this is indicated by a lack of net
energy savings or even higher energy costs.

Logically, branch predictor structures are tall and narrow. That is, they may be thought of
as having many entries (which makes them tall) but each entry is typically just two bits wide
(which makes them narrow). And logically, when first considering applying decay techniques to
branch predictors, it might be tempting to consider deactivating individual predictor entries. This
is untenable, however, because our methods require two bits of state per independently-activated
unit; such overhead would be excessive if applied to individual two-bit predictor entries.

Physically, however, branch predictors are, like caches, typically implemented as square or
nearly-square array structures. “Squarifying” the predictor array helps to minimize the complexity
of the row and column decoders and balance wordline and bitline length and delay. The predictor
array is similar to a cache array, except that it needs no tags. Since predictors are squarified,
a predictor structure consists of approximately

p
entries wordlines (rows), each connected to

approximately 2 �
p
entries bits. On a branch predictor access, the row decoders activate one

wordline, and the values of these entries are then sent on the bitlines to the column decoder, which

7

selects the one entry specified by the predictor index. Figure 2 shows a diagram of a typical branch
predictor.

The physical implementation of branch predictors as squarified arrays is relevant to our branch
predictor decay studies, because it means that a natural choice for turning off entries might be at
the granularity of rows in the array structure rather than individual entries. This requires only two
bits of state per row (the reference bit and the active bit) and hence a total overhead of 2�

p
entries

bits.

3.2 Spatial and Temporal Locality in Branch Predictors

The first question in exploring decay for branch predictors is to determine how often an entire row
of branch predictor entries is likely to lie idle long enough for decay techniques to be effective.
In today’s machines, branch predictor rows typically include 16-64 counter entries apiece. Very
large programs with random branch distributions might be expected to scatter branches across the
predictor and keep at least one of these counter entries active at all times. But if program branches
are clustered rather than random, then we should see some rows with heavy activity while other
rows are idle and can be deactivated. A basic test, then, is to show that branch-predictor accesses
exhibit spatial or temporal locality at the granularity of array rows.

3.2.1 Spatial Locality

Clearly, programs exhibit spatial locality in the instruction cache. Over a short period of time,
only one or a few small contiguous regions of the program are likely to be active, and branch
accesses are therefore likely to be close in terms of their PC. Even taken branches are often likely
to remain close in terms of PC, since many taken branches just perform short jumps associated
with if-then-else statements.

Code locality can translate to spatial locality in branch predictor array rows as well. This is
most true for the bimodal predictor, which is indexed only by PC. Indeed, the probability that two
successive conditional branches fall into the same row in a 4 K-entry bimodal predictor is greater
than 40% for all our benchmarks, and greater than 50% for all but five. If the branches were uni-
formly distributed, we would expect rates close to 1=rows (about 2% for this 4 K-entry predictor
array). For gshare or hybrid predictors, spatial locality is not as pronounced as for bimodal, since
these other predictors are indexed by the branch history. Nevertheless, in half of the benchmarks
the probability of hitting the same row as the previous branch is above 10%. This is much higher
than a random distribution (about 1% for the large, 16 K-entry gshare), so these predictors also
exhibit some spatial locality.

3.2.2 Temporal Locality

Strong spatial locality means that at any point in the program, active rows are likely to have many
counters active and idle rows are likely to be entirely idle. But without temporal locality, the
rows that are active might change rapidly, reducing opportunities for decay. Fortunately, many
benchmarks have small static branch footprints (the number of unique branch instruction sites that
are executed), as seen in Table 3. Decay will therefore clearly help bimodal prediction, because
each static branch touches only one predictor entry and we know from the data above that these
are clustered.

Other predictor structures, however, may not do as well. With gshare in particular, the branch
address is XOR’d with the global branch history, so that one branch can touch many PHT entries.
It is therefore helpful to measure, for various interval lengths, how many rows stay inactive for

8

sample interval 1K cycles 10Kc 100Kc 1Mc Overall
gzip 24 32 45 103 281
vpr 31 45 58 65 742
gcc 2 9 79 193 512
mcf 65 83 92 116 565
crafty 104 305 592 855 1701
parser 53 90 157 294 2265
eon 81 289 357 415 652
perlbmk 90 453 631 1112 1541
gap 62 281 325 576 745
vortex 124 502 1227 1642 1996
bzip2 22 33 45 56 460
twolf 48 210 300 334 351
wupwise 42 52 53 55 193
swim 3 6 11 15 687
mgrid 3 6 9 25 500
applu 1 2 4 7 579
mesa 83 114 139 267 697
galgel 2 6 8 10 508
art 2 2 5 18 109
equake 167 192 193 202 226
facerec 7 24 25 39 144
ammp 11 26 105 230 794
lucas 3 3 3 4 242
fma3d 80 450 452 465 499
sixtrack 39 49 55 99 734
apsi 14 85 117 125 342
geomean 20 46 70 109 529

Table 3: Average number of static branches touched every sample interval for SPEC2000. The
rightmost column labeled ‘Overall’ gives the static branch footprint for the whole simulation pe-
riod.

the duration of the interval. This can be measured by the active ratio. Smaller active ratios are
better for decay. Figure 3 shows the geometric mean for active ratio across the benchmarks for
both banked and unbanked 16 K-entry gshare predictors and the 4 K-entry bimodal predictor.

As expected, the active ratio is quite small for the bimodal predictor. The active ratio is larger
(i.e., worse from a decay point of view) for gshare. Yet significant numbers of rows remain un-
touched. This indicates that even for predictor structures designed to smear branch addresses over
many entries, decay-based techniques still show significant promise for addressing leakage con-
cerns.

We include data in Figure 3 for a banked version of gshare, because breaking the predictor
into banks makes the active ratio smaller (better for decay) by reducing the granularity over which
activity is measured. Indeed, the active ratio for the banked organization is 15–35% smaller if the
large gshare predictor is broken into four banks of 4K entries each.

4 Decay with Bimodal Predictors

The active-ratio statistics in the previous section suggest substantial opportunities for decay to
reduce leakage power with minimal performance penalty. This section and the two that follow
therefore look in more detail at the success of decay techniques for bimodal, gshare, and hybrid
predictors.

9

0

10

20

30

40

50

60

70

80

90

100

1000 10000 100000 1000000 overall

sample interval(cycles)

%
ro

w
s

to
u

ch
ed

gshare unbanked gshare banked bimod

Figure 3: Mean active ratio for unbanked and banked gshare predictors and a bimodal predictor.

Figure 4 shows the active ratio and direction prediction accuracy for 4K-entry bimodal branch
predictors with different decay intervals. We see from the active ratio graph that decay is very
effective at shutting off idle counters in bimodal predictors. The geometric mean active ratio,
which is the percentage of predictor entries powered on (so smaller values are better), is 37%,
28%, 22% and 18% for decay intervals of 4096K, 512K, 64K and 8K cycles respectively. This
means that decay techniques have the potential to reduce branch predictor leakage by 2X or more.
Since bimodal predictors are indexed by PC, benchmarks with large static branch footprints tend to
have higher active ratios, as shown in crafty, perlbmk, gap and vortex. Other benchmarks typically
leave more than half of their counters deactivated due to their small footprints.

Furthermore, the prediction rate graph shows that shutting off these idle counters comes with
minimal loss in performance except for the apparently too-aggressive decay interval of 8K cycles.
With a 64K cycle decay interval, the overall loss in prediction accuracy is about 0.14%, with only
one benchmark (mgrid) over 1%.

Interestingly, in some benchmarks (wupwise and facerec) we actually observed tiny improve-
ments in prediction accuracy. We attribute this to the effect of removing some destructive interefer-
ence. Interference occurs when two different branches map to the same counter. The interference
is destructive when the branches are biased in opposite directions, for example, when one of the
conflicting branches is strongly taken and the other is strongly not taken. Deactivation resets
the counter to the neutral, weakly not taken value, which effectively isolates the two conflicting
branches.

Figure 5 compares the leakage energy before and after applying decay. When decay is enabled,
we add to the leakage energy the extra leakage energy from the decay status bits as well as any
dynamic-energy overhead due to extra mispredictions or longer run time. We show the geometric
mean reduction in leakage energy for SPEC2000 benchmarks. The figure demonstrates the trade-
off between savings in leakage energy and the overhead incured. With a small decay interval such
as 8K cycles or less, branch prediction rate degrades enough so that the dynamic energy overhead
dominates the savings in leakage energy. When the decay interval is longer, few mispredictions
are induced, the extra dynamic energy incurred becomes minimal, and over 60% of the original
leakage energy can be saved.

10

0

10

20

30

40

50

60

70

80

90

100

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

ac
ti

ve
ra

ti
o

(%
)

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

b
p

re
d

d
ir

ra
te

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

Figure 4: Active ratio (Left) and prediction success rate (Right) for a 4 K-entry bimodal predictor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

orig 4096K cycle 512Kc 64Kc 8Kc

decay interval

n
o

rm
al

iz
ed

b
p

re
d

le
ak

ag
e

en
er

g
y

Figure 5: Normalized leakage energy for the 4K bimodal predictor

5 Decay with Gshare Predictors

Figure 6 shows active ratio and direction prediction accuracy for an un-banked global-history pre-
dictor. The geometric mean active ratio across the 26 benchmarks is 46% for a 64 K-cycle decay
interval, and the average drop in predictor accuracy is negligible. 10 benchmarks stand out as hav-
ing less energy benefit from decay, but even these benchmarks suffer negligible loss in prediction
accuracy, so decay does not harm their performance. Because gshare is designed to spread branch
state across the predictor to minimize aliasing, its decay benefits are not as pronounced as for the
bimod predictor. Nevertheless, decay still produces substantial reductions in leakage power with
minimal performance impact. For example, Figure 7 shows that the reduction in leakage energy is
41% for a 64 K-cycle decay interval.

Further gains can be realized by breaking the predictor into banks. In the interests of space,
we do not present extra graphs for active ratio and misprediction rate. But for the same 64 K-cycle
interval and the banked 16K gshare predictor, the active ratio falls to 36% and, as with unbanked,
misprediction rate remains unaffected. Leakage energy falls to 51% of its original value.

Note that, with the banked predictor, the reduction in leakage energy will be somewhat less than
the reduction in active ratio for two reasons. First, because the banked organization has smaller
rows and hence the overhead of more decay status bits. Second, because the banked organization is
more aggressive than unbanked gshare in deactivating rows for the same decay interval. This makes
it more likely that the banked organization will deactivate a row that actually harms prediction
accuracy. This extra dynamic-power overhead, however, decreases with increasing decay interval

11

0

10

20

30

40

50

60

70

80

90

100

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

ac
ti

ve
ra

ti
o

(%
)

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

b
p

re
d

d
ir

ra
te

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

Figure 6: Active ratio (Left) and prediction success rate (Right) for unbanked gshare predictor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

orig 4096K cycle 512Kc 64Kc 8Kc

decay interval

n
o

rm
al

iz
ed

b
p

re
d

le
ak

ag
e

en
er

g
y

banked unbanked

Figure 7: Normalized leakage energy for gshare branch predictor for both unbanked and banked
predictors.

because for very long intervals, even a banked row that is idle is extremely likely to have genuinely
decayed. This is why the difference in energy savings is larger for 512K cycles and 4096K cycles
than for 64K cycles.

6 Decay with Hybrid Predictors

This section examines decay for hybrid predictors. First we examine the effectiveness of decay for
a straightforward application of decay to a predictor like that in the Alpha 21264; then we explore
more sophisticated decay policies. Note that when a row in the chooser is reactivated after decay,
its counters are set to “weakly choose local.”

6.1 Naive Decay

In Figure 8, we see that even though decay has negligible impact on prediction rate for intervals of
64K cycles or larger, the active ratios are also higher than bimod or gshare. (In order to compute
active ratio sensibly on a multi-table structure, it is computed over all prediction and chooser bits
in the structure.) Nevertheless, as Figure 9 shows, decay still realizes strong reductions in energy
savings—40% for a 64 K-cycle interval.

12

0

10

20

30

40

50

60

70

80

90

100

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

ac
ti

ve
ra

ti
o

(%
)

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

b
p

re
d

d
ir

ra
te

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

Figure 8: Active ratio (Left) and prediction rate (Right) for 21264’s hybrid predictor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

orig 4096K cycle
decay interval

512Kc 64Kc 8Kc

decay interval

n
o

rm
al

iz
ed

b
p

re
d

le
ak

ag
e

en
er

g
y

naive believe the chooser

Figure 9: Normalized leakage energy of 21264-style Hybrid predictor with naive and “believe the
chooser“ policies

This energy savings is larger than the preceding gshare data would suggest: the two sub-
components in the hybrid predictor are only 4K-entry each and should have higher active ratios
than the 16K-entry structures examined previously. The reason decay performs better here is that
the components are indexed based solely on history bits, rather than being indexed by history bits
XORed with the branch address. Omitting the XOR allows more spatial locality in the branch ar-
ray, and improves the potential for decay. Space considerations prevent us from presenting active
ratio information separately for all three components.

We can obtain even better energy savings by taking advantage of particular aspects of the hybrid
structure. For example, in the naive approach, all three predictor structures are probed every cycle.
Even if the row in one component has decayed while the other remains active and capable of
making a prediction, all three components are forced active. This is true even if the decayed row
will not be chosen by the selector. This observation suggests more intelligent wakeup policies,
which are explored in the next section.

6.2 Decay Choices in Hybrid Predictors

By improving on the previous subsection’s naive decay policy, this section’s proposals give the
hybrid predictor excellent decay performance, making it one of the most power-efficient predictor
organizations while still preserving its excellent prediction accuracy. The interaction of decay
policies and hybrid-predictor parameters also highlights some interesting design choices.

13

In a hybrid predictor, a lookup is performed on both component predictors for every branch.
Only one result, however, is selected by the chooser, while the other is discarded. This redundency
allows more flexible decay policies to be employed. Since the three components (global, local
and chooser) each can be in either of two states (active or decayed), there are a total of eight
possible combinations of decayed and active components. Our schemes take advantage of the fact
that in the 21264’s hybrid predictor, the chooser has the same configuration as the global-history
component and hence they always share the same index. This in turn means that a particular row is
always in the same state of decay in both the global-history predictor and the chooser. Only three
combinations of decay may therefore occur in the 21264 predictor:

1. The rows in all three components are active. Here no decay or wakeup decisions need to be
made. Each component assumes its normal function as in a conventional hybrid predictor.

2. The rows in all three components have decayed. In this situation all three rows are acti-
vated. The branch is predicted “weakly not taken,” which is the default value when decayed
components are reactivated.

3. The row in only one of the two components is decayed. Since one of the predictors is still
active, it will most likely be more accurate than the other, which has lost all history infor-
mation due to decay. So the prediction from the active component is used as the prediction
of the whole hybrid predictor, regardless of whether the chooser is awake and regardless of
what its choice would be.

In this situation, there remains the decision of whether to reactivate the decayed component.
In the naive approach of Section 6.1, we always reactivate the decayed component, which
results in high active ratios. In this section, however, the deactivated component will be
reactivated only if the chooser wants to select it. Note that if the row in the global-history
component is inactive, the same row in the chooser must also be inactive. In this case the
chooser has no useful information, so we leave the chooser and the global-history component
inactive and return the prediction from the local-history component. We call this policy
“believe the chooser”.

As shown in Figure 9, this more sophisticated policy leads to leakage power reductions that are
about 50% better than for the naive policy.

7 Decay with the Branch Target Buffer

In addition to the structure for predicting the direction of conditional branches, a branch target
buffer (BTB) [9, 12] is commonly used to store the targets of taken branches. The BTB is typically
organized like a cache, either direct-mapped or set associative, but tagged in order to identify hits
and misses. Since it is solely indexed by PC, it has similar locality characteristics as instruction
caches and bimodal predictors. However, the granularity in the BTB is single branch instructions,
instead of instruction blocks as in instruction caches. This allows even finer control for decay.
To round out our exploration of decay for branch prediction, this section briefly evaluates the
effectiveness of decay for a 2048-entry, 4-way associative BTB, which appears in the Intel PIII
processor [6].

Figure 10 depicts active ratios and hit rates of the BTB with different decay intervals. Most
benchmarks have a very low active ratio, except for vortex, perlbmk, crafty. This is no surprise,
considering that the static footprints of most benchmarks in Table 3 are very small compared to our
BTB capacity. With decay, these static footprints are automatically tracked and all other idle slots

14

0

10

20

30

40

50

60

70

80

90

100

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

ac
ti

ve
ra

ti
o

(%
)

orig 4096Kc decay interval 512Kc 64Kc 8Kc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g
zi

p

vp
r

g
cc

m
cf

cr
af

ty

p
ar

se
r

eo
n

p
er

lb
m

k

g
ap

vo
rt

ex

b
zi

p
2

tw
o

lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu

m
es

a

g
al

g
el ar
t

eq
u

ak
e

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

[g
eo

m
ea

n
]

b
p

re
d

ad
d

r
ra

te

orig 4096K cycle decay interval 512Kc 64Kc 8Kc

Figure 10: Active ratio (Left) and hit rate (Right) for BTB

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

orig 4096K cycle 512Kc 64Kc 8Kc

decay interval

n
o

rm
al

iz
ed

b
p

re
d

le
ak

ag
e

en
er

g
y

Figure 11: Normalized leakage energy for BTB with different decay intervals

are turned off to save leakage energy. On the other hand, BTB hit rates observe only negligible
degradation until decay interval drops to 8K cycles. Figure 11 depicts the effect of decay on
leakage energy. Overall, about 90% of the leakage energy can be saved.

8 Conclusion and Future Work

In this paper we have explored the application of decay-based techniques to reduce static or leakage
power in branch predictor structures. Our results show that all the predictor organizations we
studied have significant numbers of rows that are inactive for long periods of time. For sufficiently
long decay intervals, decay can therefore be highly effective, while barely affecting performance.
For all the configurations we studied and for decay intervals of 64 K-cycles or larger, the reduction
in branch prediction accuracy is always less than 1% and less than 0.2% for most benchmarks. For
these same decay intervals, branch predictor leakage energy can be reduced by 40–60%.

Over all the configurations we explored, the best reductions in leakage power were achieved
with the bimodal predictor (Section 4), but the power savings achieved with the “believe the
chooser” policy for hybrid prediction were nearly as good. Since hybrid prediction has superior
prediction accuracy and hence performance, hybrid prediction remains the best choice from both a
performance and energy standpoint.

Some of our interesting results were specifically due to the fact that in the 21264’s hybrid
predictor, the chooser and GAg component were the same. This let us deduce useful facts about

15

one based on state in the other. More generally, the influence of indexing on decay may suggest
that the choice of predictor index is worth revisiting (yet again). In the past, indexing functions
have been chosen to minimize aliasing, usually by spreading the state from branches in the same
working set as widely as possible. In contrast, decay can be made more effective by clustering
this state into rows, with the goal of making as many counters in a row as possible idle or active
at any point in time. This observation therefore sets up a tradeoff between reducing aliasing and
increasing decay opportunities. Although beyond the scope of this paper, seeking index functions
that can balance the two factors is an area for future work. It may be possible to develop tractable
index functions that cluster state into rows with minimal increase in aliasing. In addition, large
predictors in particular may be able to accommodate index functions that boost row clustering.

The techniques in this paper applied fixed decay intervals. Kaxiras et al. [10] showed that
for caches, even better decay rates can be achieved with adaptive decay intervals that adapt to
changing program behavior. While studying adaptive branch predictor decay was beyond the scope
of this paper, it is worth investigating since our data showed that some benchmarks suffered no
performance loss even with a short, 8 K-cycle decay interval (and would get even more benefit
from decay), while others suffer severely with such a short interval.

A further consideration is that banked and multi-table organizations provide substantial benefits
in reduced dynamic energy, by reducing word- and bit-line lengths. Furthermore, when decay is ap-
plied to multi-table predictors, some tables can be left inactive, as in the “believe the chooser” pol-
icy. Another example arises in local-history prediction, where timing issues may require caching
the predicted direction for each BHT entry in the BHT. As with “believe the chooser”, decay might
permit the PHT update and lookup in such a local-history organization to be omitted if that PHT
entry is inactive and the cached direction was correct. Such a policy might be called “believe the
BHT”. Not only do these “believe” policies reduce leakage energy, they avoid the dynamic power
associated with accessing that table. Our work here did not model these extra savings, but doing
so would only make decay more valuable.

Another issue that warrants study is interference in branch predictors. In our experiment we
observed interesting improvements in prediction rate with decay (see Section 4). This shows that
decay (by setting the two-bit counters to a weak state) may have the effect of reducing destructive
interferences, something we plan to quantify in our future work.

Leakage energy is expected to become a substantial portion of total energy expended in the
processor in future CMOS generations. The results in this paper show that decay can mitigate
these effects by dramatically reducing leakage energy expended in the branch predictor and BTB.

References
[1] T. M. Austin. SimpleScalar home page. http://www.simplescalar.org.

[2] S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4), 1999.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architecture-Level Power Analysis and
Optimizations. In Proc. of the 27th Int’l Symp. on Computer Architecture, ISCA 2000.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Computer Architecture News, 25(3):13–
25, June 1997.

[5] P.-Y. Chang, E. Hao, and Y. N. Patt. Alternative implementations of hybrid branch predictors. In Proceedings of
the 28th Annual International Symposium on Microarchitecture, pages 252–57, Dec. 1995.

[6] K. Diefendorff. Pentium III = Pentium II + SSE. Microprocessor Report, Mar. 8 1999.

[7] Digital Semiconductor. DECchip 21064/21064A Alpha AXP Microprocessors: Hardware Reference Manual,
Jun. 1994.

[8] Digital Semiconductor. Alpha 21164 Microprocessor: Hardware Reference Manual, Apr. 1995.

16

[9] R. W. Holgate and R. N. Ibbett. An analysis of instruction fetching strategies in pipelined computers. IEEE
Transactions on Computers, C-29(4):325–329, Apr. 1980.

[10] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Generational Behavior to Reduce Cache Leakage
Power. In Proc. of the 28th Int’l Symp. on Computer Architecture, July 2001. To appear.

[11] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 microprocessor architecture. In Proceedings
of the 1998 International Conference on Computer Design, pages 90–95, Oct. 1998.

[12] J. J. Losq. Generalized history table for branch prediction. IBM Technical Disclosure Bulletin, 25(1):99–101,
June 1982.

[13] S. McFarling. Combining branch predictors. Tech. Note TN-36, DEC WRL, June 1993.

[14] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy of dynamic branch prediction using branch correla-
tion. In Proceedings of the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 76–84, Oct. 1992.

[15] J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th Annual International Symposium
on Computer Architecture, pages 135–48, May 1981.

[16] P. Song. UltraSparc-3 aims at MP servers. Microprocessor Report, pages 29–34, Oct. 27 1997.

[17] The Standard Performance Evaluation Corporation. WWW Site. http://www.spec.org, Dec. 2000.

[18] S.-H. Yang et al. An Integrated Circuit/Architecture Approach to Reducing Leakage in Deep-Submicron High-
Performance I-Caches. In Proc. of the Seventh Int’l Symp. on High-Performance Computer Architecture, 2001.

[19] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In Proceedings of the 24th Annual
International Symposium on Microarchitecture, pages 51–61, Nov. 1991.

17

