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1 Introduction

Tt is well-known (see, e.g. [2] and [4]) that the use of red/black or multicolor
orderings to parallelize SSOR or ILU preconditioning may seriously degrade the
rate of convergence of the conjugate gradient method, as compared with the natural
ordering.

The SOR iteration itself, however, does not suffer this degradation. Indeed, if
the coefficient matrix is consistently ordered with property A, the asymptotic rates
of convergence of the natural and red/black orderings are identical (Young[9]);
moreover, in practice one quite often sees faster convergence in the red/black or-
dering than in the natural ordering. This suggests the possible use of SOR as a
parallel preconditioner. It cannot be a preconditioner for the conjugate gradient
method on symmetric positive definite systems since the corresponding precondi-
tioned matrix is not symmetric. But this restriction does not apply to nonsymmet-
ric systems and conjugate-gradient type methods such as GMRES ([6]). In fact,
Saad[5] showed promising results using several steps of Gauss-Seidel iteration as a
preconditioner in conjunction with the GMRES iteration, and the present paper
complements his results. Shadid and Tuminaro[7] have also reported experiments
using Gauss-Seidel as a preconditioner. However, they used only one Gauss-Seidel
iteration and, as our experiments show, this is usually not competitive.

2 Experimental Results on a Model Problem

We first present some experimental results on a two-dimensional convection-
diffusion equation (see, e.g., [3])

= (tpe + tuyy) + 0 (uz +uy) = f(2,9) (2.1)

on the unit square with Dirichlet boundary conditions. For simplicity we take

o to be constant. The equation (2.1) is discretized by standard five-point finite

differences using centered differences for the first derivative terms. The right hand

side f of (2.1) is chosen so that the exact solution of the discrete system is known.
If there are n = N? interior points, this results in an n x n linear system

Au=b (2.2)



in which a typical equation is of the form

duui + Buipr + Yuio1 + Puipn +yui-n = h*fi (2.3)
where L L
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Thus, in the natural ordering of the grid points used in (2.3), A has the same five-
diagonal structure as the coefficient matrix of the corresponding Poisson problem.
In the red/black ordering the coefficient matrix has the form

Dr F
' Dp

where Dg and Dp are diagonal. The Gauss-Seidel iteration is then
wht! = D! (br— Fuk), wht = Dy (bs — Fuk)

which can be implemented very effectively in parallel.

We first give some results for a serial code on an IBM RS/6000, Model 250,
for the algorithm GS(k)—GMRES(m) in which we use m GMRES vectors before
restarting and k Gauss-Seidel iterations as the preconditioner. GMRES was imple-
mented with unmodified Gram-Schmidt orthogonalization.

51?7 Equations 1512 Equations
Natural Red/Black Natural Red/Black
Algorithm iters  time | iters time | iters time | iters time

GMRES(5) || 508 10.9 | 508 11.2 | 4720 893 | 4720 909
ILU(0)-GMRES(5) | 75 23| 142 44| 359 96 | 1108 290
GS(1)-GMRES(5) || 236 6.9 | 139 4.3 | 2069 539 | 1180 318
GS(5)-GMRES(5) || 46 2.9 | 44 28| 296 167 | 242 139
GMRES(10) || 281 7.4 | 281 7.4 | 2455 555 | 2455 562
ILU(0)-GMRES(10) || 62 21| 108 39| 276 84| 662 204
GS(1)-GMRES(10) || 180 6.0 | 110 3.8 | 919 267 | 659 199
GS(5)-GMRES(10) || 44 28| 44 30| 157 89| 140 83
GS(10)-GMRES(20) || 20 21| 22 25| 70 67| 73 72
GS(20)-GMRES(20) || 14 24| 15 27| 55 89| 58 97

Table 1: Natural vs. Red/Black Orderings, FEquation (2.1)

Table 1 shows CPU times in seconds and iterations for various values of £ and
m for two problem sizes: 517 = 2601 equations, and 1512 = 22,801 equations. The
convergence criterion is ||r||2 < 107%|A[|o and the initial approximation is zero.
(We also used an initial approximation that was a random vector with elements
between 0 and 1, uniformly distributed. The results are similar and not shown.)



For comparison, we also show results for no preconditioning and for TLU(0) as
the preconditioner. As expected, the red/black ordering has little effect on the
GMRES iteration but leads to a large degradation in the rate of convergence when
TLU(0) is the preconditioner. With Gauss-Seidel as the preconditioner, there is no
degradation between the natural and red/black orderings; in fact, the red/black
ordering is usually better, sometimes markedly so. Finally, Table 1 shows that
improvements can be expected for larger numbers of Gauss-Seidel iterations and
GMRES vectors. This is consistent with the observations of Saad[5] for the Gauss-
Seidel iterations. For these particular problems, the lowest times are obtained for
GS(10)-GMRES(20).

The results of Table 1 are for ¢ = 5. From (2.4) the off-diagonal terms of the
matrix are about —1 =+ .05 for the 512 problem and —14.017 for the 1512 problem.
Thus, the matrices may be viewed as small perturbations of the Poisson matrix.
We will return in Section 4 to the effect of larger o.

3 The Effect of w

Saad[5] reports results only for the Gauss-Seidel iteration and in [1] there is
a footnote to the effect that SOR is never used as a preconditioner because no
polynomial acceleration is possible if the optimal w i1s used. However, Figure 1
shows the effect of using SOR as a preconditioner for various values of w. For
this particular problem, roughly a factor of two improvement is obtained using the
optimal w rather than w = 1. Similar results are obtained for the 1512 problem:
140 iterations for w = 1 and 61 iterations for the optimal w = 1.8.
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Figure 1: Herations for 2601 Equations, SOR(5)-GMRES(10), Red/Black Ordering

The curve in Figure 1 is similar to, but not nearly as pronounced as, the cor-
responding convergence curve for SOR as a stand-alone iteration. In Figure 2, we
compare the time to convergence curve for SOR with that for SOR(10)-GMRES(20)
for a region near the optimal w’s. (SOR and SOR-GMRES each may have its own
optimum.) This figure, which is for the 1512 problem, illustrates two things. First,
near the optimum w’s the times for SOR and SOR-GMRES are almost identical,
presumably corroborating the previous statement that polynomial acceleration of
SOR with the optimal w is not effective. But for values of w smaller than opti-

mal, SOR-GMRES is considerably better than SOR. Moreover, the SOR-GMRES
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Figure 2: Time for SOR and SOR(10)-GMRES(20). 22801 Equations

convergence curve is relatively flat for w < w,ps, indicating that a rather crude
approximation to w,,; may be almost as good as the optimal w.

4 The Effect of o

W
o[ T]13[14] 15] 16] 17 175] 18] 19]
4192 ] 75| 71 | DNC | DNC | DNC | DNC | DNC | DNC
3190 | 77| 71| 60 | DNC | DNC | DNC | DNC | DNC
21 (8| 79| 59| 61| 56|DNC|DNC|DNC | DNC
11 (79| 58| 46| 49| 50| 42| 40| 83 | DNC
5|57 39|39 39| 37| 35| 32| 32| 88
0 42| 40| 35| 31| 20 30| 30| 29| 31
504431 26| 26| 22| 20| 19| 20| 28
1|42 22|20 18| 15| 12| 12| 14| 31

21|35 | 15| 11 9 7 9 12 18 | DNC
31 26 | 10 8 5 7 15 20 | DNC | DNC
41 || 19 7 4 6 10 149 | DNC | DNC | DNC

Table 2: Tterations for SOR(5)-GMRES(10), 2601 Equations, Natural Ordering

In the previous sections, we have used only o = 5, giving an almost symmetric
system. Tables 2 and 3 show iteration counts as a function of both w and o
in the natural and red/black orderings. DNC indicates no convergence due to
stagnations. Tn the natural ordering (Table 2), as ¢ increases, the iterations usually
decrease whereas as o becomes more negative, the iterations tend to increase. This
is explained by the fact that as o increases, the system is becoming more strongly
lower triangular, which is beneficial for Gauss-Seidel. But as ¢ becomes more
negative, the system is becoming more upper triangular. This is, however, not the
case for the red/black ordering (Table 3) and the iterations tend to increase as ||
increases.

For small values of |o| the iterations decrease as a function of w until the op-
timum w is passed. As |o| increases, the optimum w decreases. Indeed, the whole



W
o[ 1131415 16] 17] 175] 18] 19]
4168 ] 30 ] 19] 40 | DNC [ DNC | DNC | DNC [ DNC
31 (59| 31| 30| 18| 52| DNC | DNC | DNC | DNC
21 || 61| 38| 30| 21| 18| 40| 104 | DNC | DNC
11|54 36| 30| 22| 19| 18| 19| 26| DNC
50[44(30] 30| 26| 20| 19| 19| 20| 32
040 21| 19| 12| 11| 12| 13| 16| 28
50443030 26| 20| 19| 19| 20| 32
11 (54| 36| 30| 22| 19| 18| 19| 26| DNC
21 (/61| 38| 30| 21| 18| 40| 104 | DNC | DNC
31 (59| 31| 30| 18| 52| DNC | DNC | DNC | DNC
41 || 68 | 30 | 19| 40 | DNC | DNC | DNC | DNC | DNC

Table 3: Tterations for SOR(5)-GMRES(10), 2601 Equations, Red-Black Ordering
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Figure 3: w Effects, 2601 FEquations, Red/Black Ordering

convergence curve shifts to the left as illustrated in Figure 3. The typical very
rapid increase in the number of iterations as w moves to the right of the optimum
w occurs for smaller w as |o| increases and leads to no convergence for sufficiently
large w.

5 Other Test Problems

We next give experimental results on two problems used in [7]:

and

— Upp — Uyy + 100(1‘2ux + yzuy) — fu = f(z,y) (5.2)

Both problems are on the unit square with Dirichlet boundary conditions and
forcing function f chosen so that the exact solution of the differential equation



(5.1) or the discrete system for (5.2) is known. Both problems are discretized with
centered differences and a uniform mesh.

Table 4 gives experimental results for (5.1) for various values of the number of
SOR steps, the number of GMRES vectors and the relaxation parameter w. For
the smaller problem, w = 1.7 is a nominal guess for the optimum w, and likewise
for w = 1.9 for the larger problem. Again, for all results in this section, the initial
approximation is zero, the convergence criterion is [|r|l2 < 107%||4||c, and the

machine is the same TBM RS/6000, Model 250.

51?7 Equations | 151% Equations
Algorithm iters time | iters time

GMRES(10) || 499  12.18 | 3347  738.98
GS(1)-GMRES(10) || 199  6.28 | 1162  338.02
SOR(1.7,1)-GMRES(10) || 152 4.90 | 1005  293.65
SOR(1.9,1)-GMRES(10) | 137 447 | 872  254.62
GS(5)-GMRES(10) || 50  3.25 | 270  152.38
SOR(1.7,5)-GMRES(10) || 24 152 | 96  54.07
SOR(1.9,5)-GMRES(10) || 28  1.82| 65  36.80
GS(10)-GMRES(10) || 36  3.57 | 137  124.10
SOR(1.7,10)-GMRES(10) || 18  1.85| 44  40.18
SOR(1.9,10-GMRES(10) || 18  1.83| 32 2952
GS(1)-GMRES(20) || 112 4.65 | 649  242.47
SOR(1.7,1)-GMRES(20) || 102 4.32 | 578  216.58
SOR(1.9,1)-GMRES(20) || 169  6.95 | 58  218.85
GS(10)-GMRES(20) || 27 298 | 90  86.37
SOR(1.7,10-GMRES(20) || 15 155 | 40  38.73
SOR(1.9,10-GMRES(20) || 18 193 | 25 2430
GS(1)-GMRES(60) || 74 568 | 260  181.78
SOR(1.7,1)-GMRES(60) || 75  5.65 | 258  181.13
SOR(1.9,1)-GMRES(60) || 109  8.62 | 274  191.42
GS(10)-GMRES(60) || 26  3.05| 65  83.28
SOR(1.7,10)-GMRES(60) || 15 1.58 | 32  34.00
SOR(1.9,10)-GMRES(60) || 18  1.98 | 24  23.98

Table 4: GMRES for Equation (5.1) - Red/Black Ordering

The results in Table 4 show the same general pattern as was seen for the model
problem in Section 2: using only one step of the Gauss-Seidel preconditioner is
always far worse than using multiple steps. Moreover, with only one step, the
introduction of w produces relatively little benefit, especially for larger numbers
of GMRES vectors. However, when at least five SOR iterations are used, there 1s
always a significant benefit from either of the two nominal values of w. The optimal
w’s are not known for the problem of Table 4. However, additional experiments



for the 1512 problem showed that for SOR(1)-GMRES(60), any w in the interval
(1.47, 1.60) produces the lowest iteration count: 252. For SOR(10)-GMRES(60),
w = 1.9 was indeed an optimal w.

The effect of the number of GMRES vectors is not so clear. For the larger
problem, more vectors are beneficial when using only one GS iteration but for
multiple SOR iterations, there is little benefit in using more than 20 GMRES
vectors. This, of course, may be a consequence of this particular problem.

We cannot give a direct comparison of our results with [7] since they used larger
problem sizes than we could. For example, for a 512x512 grid, they reported a time
(on 256 processors of an NCUBE2) of 237 seconds for GMRES using 64 vectors
and with one GS step as the preconditioner. Our results suggest that if they
had used multiple GS/SOR steps and a nominal value of w, the time might have
been decreased by a factor of six or more. On this particular problem, a factor
of six improvement would have made the SOR preconditioner comparable to their
best least squares polynomial preconditioner, which in turn was far slower than a
multigrid preconditioner.

However, on the other three (and more difficult) problems in [7] the multigrid
and polynomial preconditioners did not show such superiority and, in fact, failed
on some problems. We next consider (5.2), which was Problem 4 in [7]. Table 5
gives results for a nominal value of g = 100 and for 64 GMRES vectors.

| Algorithm | iters time |
GMRES(64) | DNC  DNC
GS(1)-GMRES(64) | 2556 1961.7
SOR(1.7,1)-GMRES(64) | 1779 1360.9
SOR(1.9,1)-GMRES(64) | DNC  DNC
GS(5)-GMRES(64) 118 117.0
SOR(1.7,5)-GMRES(64) 44 37.8
SOR(1.9,5)-GMRES(64) 100 93.6
GS(10)-GMRES(64) 56 72.3
SOR(1.7,10)-GMRES(64) 25 25.9
SOR(1.9,10)-GMRES(64) 42 48.9
GS(20)-GMRES(64) 39 70.5
SOR(1.7,20)-GMRES(64) 16 26.5
SOR(1.9,20)-GMRES(64) 22 37.1

Table 5: Equation (5.2) 3 =100 - Red/Black Ordering, 22801 Equations

The results in Table 5 show some of the same patterns as in Table 4, but in a
more pronounced way. First, with only one GS or SOR step, the times are more
than a factor of 10 higher than with five or more GS/SOR steps. Second, with only
one SOR step, the use of w has relatively little benefit as opposed to when at least
five SOR steps are taken, and w = 1.9 causes no convergence. Third, we see that



whereas using 10 GS/SOR steps is rather significantly better than using 5, going
to 20 steps produces little benefit. Additional experiments showed that for 5 and
10 SOR steps an optimal w was indeed 1.7, and for 20 steps an optimal w slightly
larger than 1.7 required 15 iterations. We note that we also ran the problem of
Table 5 using 32 GMRES vectors but the results were considerably worse.

6 BiCGSTAB

We next give some experimental results using BICGSTAB[8] as the base iteration.
Table 6 is for the model equation (2.1) and corresponds to Table 1. We see that, as
with GMRES and as expected, the natural and red /black orderings are comparable.
However, as opposed to GMRES, the Gauss-Seidel iteration has relatively little
effect as a preconditioner, possibly because BICGSTAB is already so effective on
this problem relative to GMRES without a preconditioner. Moreover, the use of
five GS iterations is superior for both problem sizes, and 20 GS iterations is worse
than no preconditioning.

51?7 Equations 1512 Equations
Natural Red-Black Natural Red-Black
Algorithm iters  time | iters time | iters  time | iters  time

BiCGSTAB 86  3.10 88 3.15 | 225 64.23 | 249 73.20
GS(5)-BiCGSTAB 20 2.32 20 2.43 64 58.12 52 5047
GS(10)-BiCGSTAB 14 2.63 14 2.75 39 60.28 40  64.65
(GS(20)-BiCGSTAB 9 3.30 9 3.30 27 7548 29 84.62

Table 6: BiCGSTAB for Equation (2.1)

Tables 7 and 8 give results for equations (5.1) and (5.2) respectively, corre-
sponding to Tables 4 and 5 for GMRES. As in Table 6, we see that Gauss-Seidel
has relatively little effect in most cases and using many Gauss-Seidel iterations can
be detrimental.

For example, in Table 7, five Gauss-Seidel iterations produce some benefit but
ten i1s worse than no preconditioning. Similarly, in Table 8, five Gauss-Seidel iter-
ations produce a definite benefit whereas 10 and 20 iterations are worse than just
one iteration. Both Tables 7 and 8 also show that the use of SOR with a nominal
value of w may produce far better results than just Gauss-Seidel although, as with
GMRES, a value of w that is too large may be detrimental and even lead to no
convergence.

It is interesting that, although with no preconditioning BiCGSTAB performs
very much better than GMRES, with the SOR preconditioner the best GMRES
times are comparable with the best BICGSTAB times on all problems, and rather
considerably better on Equation (5.2).



51?7 Equations | 151% Equations

Algorithm iters time | iters time
BiCGSTAB 92 3.22 | 238 67.45
GS(1)-BiCGSTAB 51 2.68 | 140 6023

SOR(1.7,1)-BiCGSTAB 49 2.55 | 169 71.72
SOR(1.9,1)-BiCGSTAB 73 3.65 | 149 63.33
GS(5)-BiCGSTAB 27 3.12 67 63.65
SOR(1.7,5)-BiCGSTAB 14 1.77 35 34.38
SOR(1.9,5)-BiCGSTAB 17 2.07 30 29.83
GS(10)-BiCGSTAB 20 3.85 50 79.77
SOR(1.7,10)-BiCGSTAB 11 2.23 25 41.22
SOR(1.9,10)-BiCGSTAB 12 2.33 16 27.50

Table 7: BiCGSTAB for Equation (5.1), Red/Black Ordering

7 Summary and Conclusions

We have shown by experimental results on some two-dimensional convection-
diffusion type equations that the SOR iteration may have promise as a precon-
ditioner for conjugate gradient type iterations such as GMRES. The rate of con-
vergence is not degraded by the red/black ordering, which implies that efficient
parallel implementation should be possible. We have shown for GMRES that using
multiple GS/SOR steps is always far superior to using just one, and that at least a
factor of two improvement over Gauss-Seidel as a preconditioner can be expected
on these type problems by use of an approximation to the optimum w. Moreover,
the sensitivity to w is very weak for w < w,ps, leading to the possibility of a suitably
good w even with a crude approximation. However, there is very strong sensitivity
to w if w > w,ps, and a slightly too large w may cause no convergence. Thus, it is
critical to always estimate w on the low side.

For the BiICGSTAB iteration, the situation is not so clear. Multiple Gauss-
Seidel steps have relatively little benefit but SOR with a nominal value of w can
reduce the time by a factor of two.

Future work will include parallel implementations, other test problems, and
hopefully a better theoretical understanding of why and when SOR may be a good
parallel preconditioner.
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