
Leveraging Indirect Branch Locality
in Dynamic Binary Translators

Balaji Dhanasekaran

University of Virginia

balaji.dhanasekaran@email.virginia.edu

Kim Hazelwood

University of Virginia

hazelwood@virginia.edu

Abstract

Dynamic Binary Translators (DBTs) have a wide range of
applications like program instrumentation, dynamic opti-
mization, and security. One of the main issues with DBTs
is their performance overhead. A significant part of this
overhead is caused by indirect branch (IB) translation. In
this paper, we show that the percentage of instructions
spent in translating indirect branches is as high as 50% of
the total guest application’s instructions. The time spent
in indirect branch translation is so high that in some ap-
plications, bounding the code cache size actually results
in an increased performance, since code cache flushes also
remove stale indirect branch information along with the
translated code. In order to improve the performance of in-
direct branches, we analyze the locality of indirect branch
targets and show that the locality is as high as 70%. We
propose an indirect branch translation algorithm which ex-
ploits this available locality. We analyze the performance
of the proposed algorithm and show that the proposed al-
gorithm achieves a hit rate of 73% compared to 46.5%
with the default algorithm.

Keywords Dynamic Binary Translators, Code Cache, In-
direct Branch Translation, Branch Target Locality

1. Introduction

Dynamic binary translators act as a middle layer between
the guest application and the OS. They provide the ability
to inspect, instrument, and translate instructions that
are being executed. They allow the user to access the
application’s attributes that are available only at run time.
For example, consider a compiler optimization like code
motion, which may improve or hurt the performance of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© 2010 ACM [to be supplied]. . . $10.00

an application depending on how frequent a particular
code path is executed. It is extremely difficult to make
optimization decisions like these at compile time. But,
with the help of binary translators, we can instrument
the application at runtime and choose the appropriate
optimization based on the execution characteristics of the
application. DBTs provide enormous power in the hands
of the users to analyze and optimize their applications at
runtime. DBTs are also used in other applications like
instrumentation (Pin [8] and DynamoRIO [2]), security
(Strata [9]), dynamic translation (Rosetta [1]), and design
space exploration (Daisy [4]).

One of the main problems with DBTs is their perfor-
mance overhead. Figure 1 shows the relative performance
of the SPEC2006 INT benchmarks when executed under
the control of Pin. For some benchmarks like perlbench,
the overhead of executing under Pin can be as high as
300%. One of the reasons for these high overheads is indi-
rect branch translation. DBTs translate the guest code in
units of basic blocks and traces and store them in the code
cache. A basic block is a unit of instructions bounded by
branch statements. A trace is a collection of basic blocks.
As long as there are no branch statements, the control re-
mains within the trace. When the application encounters
a branch statement, the control is transferred back to the
DBT. The DBT then translates the required instructions
and transfers the control back to the application. In the
case of direct branches, the context switch happens only
during the first time the branch instruction is executed.
When control is transferred to the DBT, it generates the
target trace and patches the direct branch with the tar-
get trace’s code cache address. In the case of indirect
branches, this branch target can vary across executions.
As a result, the branch target cannot be patched the way
it is patched in direct branches. This causes a significant
overhead in the DBT’s performance.

The goal of this paper is to analyze the performance
impact of indirect branches and propose an appropriate
solution to mitigate this overhead. We show that there
are performance trade-offs between indirect branch han-
dling techniques like chaining and branch target hashing.

Figure 1. Normalized performance of the SPEC2006 INT

Benchmark running under PIN. Performance is normalized

with respect to native performance.

Choosing the appropriate branch handling technique has a
significant impact on performance. We also show that the
indirect branch targets have a very high locality of about
73%. We propose an algorithm called the “Most Recently
Used Branch Target” algorithm which exploits this local-
ity by rearranging the indirect branch chain, such that the
most recently used trace is checked first.

2. Motivation

One of the main motivations of this paper is an observa-
tion made by Hazelwood et al. [5] where they found that
in some cases, restricting the code cache size actually im-
proves the performance significantly. Figure 2 shows the
performance of perlbench as we vary the code cache size.
As shown in the figure, the best case performance is not
obtained with an unbounded code cache. On the contrary,
for some cases, restricting the code cache size actually in-
creases the performance. Our analysis of this performance
increase showed that the increase had nothing to do with
the code cache size. Bounding the code cache increased
the number of code cache flushes which also removed stale
indirect branch information. And, this happened to be the
cause of the performance increase. The other main in-
sight in this paper is the high locality available in indirect
branches. We show that there is a 70% probability that the
target of an indirect branch during its current execution is
the same as its target during the next execution.

3. Background

Pin is the dynamic binary translation system used in this
paper. Pin is a multi platform DBT, mainly used for in-
strumentation purposes. Pin is available on multiple archi-
tectures including IA32 (32-bit x86), IA32e (64-bit x86),
and Itanium. Pin is also available on multiple operating

Figure 2. Performance of perlbench as the code cache size

is varied.

systems including Windows, Linux, and MacOS. The fol-
lowing subsections describe the code cache management
and branch handling in Pin.

3.1 Runtime Translation and Code Caches in Pin

Pin translates the guest application in units of basic blocks
and traces and maintains the translated code in a software
code cache. Thereafter, execution happens only from the
code cache and the original guest application is never
executed directly. The code cache is bounded to 256 MB
for 64-bit Pin and is unbounded for 32-bit Pin. For 32-
bit Pin, the code cache management algorithm allocates
more memory as and when new traces are generated.
The drawback of this technique is that during the course
of the application’s execution, the code cache can get
clogged with invalid traces and the valid traces can become
scattered in the code cache. This defeats one of the
important advantages of using a DBT, which is better
instruction locality.

3.2 Branch Handling in Pin

Branch handling constitutes a significant portion of Pin’s
performance. A näıve way of translating branch instruc-
tions would be to transfer the control to the DBT when-
ever a branch statement is encountered. The DBT can
then check whether the target trace is available in the code
cache and generate it if the target trace is not present in
the code cache. But, this approach of context switching
between the application and the DBT whenever a branch
statement is executed results in a significant performance
drop. As a result, Pin uses techniques like trace linking
and indirect branch chaining for translating branch instruc-
tions. We describe these approaches in the following sub-
sections.

3.2.1 Direct Branch Translation

The first time a direct branch is executed, control is
transferred back to Pin. Pin generates the required target
trace and patches the branch instruction’s target address
with the target trace’s code cache address. As a result,
whenever the same branch instruction is executed again,
control can be transferred directly from one trace to the
other, without the intervention of Pin.

3.2.2 Indirect Branch Translation

In the case of indirect branches, the target address is
present in a register or in a memory location. As a re-
sult, the target of an indirect branch can vary between
different executions of the same branch instruction. Pin
uses a combination of two techniques to translate indirect
branches. First, each indirect branch instruction is asso-
ciated with an indirect branch chain. When the indirect
branch is first encountered, the control is transferred to
the Pin VMM which generates the target trace. Pin also
generates a compare and jump block and places it at the
head of the generated trace. This compare and jump block
compares the current indirect branch target with the target
for which the trace was generated. If they match, control
is transferred to the trace. If there is a mismatch, control
is transferred to the next compare and jump block in the
chain or to Pin. After the first target trace is generated,
Pin patches the indirect branch stub to transfer the control
directly transferred to the first compare and jump block in
the chain.

The default number of traces present in the indirect
branch chain is 16. When this chain length is exceeded,
Pin generates a separate hash table for the indirect branch.
This hash table is indexed using the branch target address
and its default size is 256. Collisions in the hash table
are resolved using chaining, i.e. each entry in the hash
table has a separate chain of traces attached to it. Figure
3 illustrates the indirect branch translation mechanism
used in Pin. Register r1 holds the indirect branch’s target
address. The control is transferred to the compare and
jump block of trace t1 where r1 is compared against t1.
If there is a match, control is transferred to c1, the code
cache address of trace t1. If there is a mismatch, then the
control is transferred to the next compare and jump block.
If there is no match in the indirect branch chain, then we
index into the hash table using the branch target address
and follow the chain associated with the indexed entry.

4. Experimental Setup

All experiments were conducted on 64-bit quad core dual
Xeon 3.2 GHz systems with 8 GB of RAM running CentOS
4.8. All the systems have 32KB L1 I-cache and 4 MB L2
cache. We have analyzed the performance of 64-bit Pin
2.7-31931 using the SPEC2006 INT benchmarks with the
reference inputs. We have also written our own pintools

Figure 3. Indirect branch chain and the associated hash

table. Register r1 holds the indirect branch’s target address.

t1, t2, and t3 are the trace’s target addresses and c1, c2, and

c3 are the corresponding code cache addresses.

to analyze indirect branches. Our pintool measures the
number of trace traversals in the indirect branch chain and
also the number of hash table accesses. We have modified
64-bit Pin 2.8-33543 to implement our MRU algorithm.
All experiments were repeated for three iterations and the
arithmetic mean of the three results have been reported.

5. Performance Impact of IB Translation

Our first step in analyzing indirect branches was to mea-
sure the performance impact of indirect branch transla-
tion. The direct approach would be to just measure the
time spent in indirect branch translation. But, the number
of instructions spent per indirect branch is very small. As
a result, the time spent in measuring the indirect branch
would be larger than the time spent in the indirect branch
itself. So, we chose not to follow this approach since it is
prone to high error margins.

Instead we analyze the number of instructions spent in
indirect branch translation for the SPEC2006 INT bench-
marks. We wrote our own pintool which instruments all
the indirect branches in the guest application. We also
added the appropriate code for simulating the overhead
of indirect branch chains and target hash tables. We mea-
sured the number of hash table accesses and the number of
traces traversed in the indirect branch chains. We also de-
termined the number of instructions in the compare and
jump block and also in the hash tables. Based on these
values, we calculated the number of instructions spent in
handling indirect branches and compared it with the total
number of dynamic instructions in the guest application.

Listing 1 and Listing 2 represent the instructions used
in the compare and jump block and in the hash table.
The compare and jump block requires three instructions
and the hash table requires eight instructions, five from
Listing 2 and three from Listing 1 since we have to check
whether the indexed entry matches the branch target.

Listing 1. Compare and jump block instructions
/ / move t h e t r a c e ’ s t a r g e t t o r13
mov r13 , 0 x3bbf30e887
/ / compare c u r r e n t t a r g e t w i th t r a c e ’ s t a r g e t
cmp r8 , r13
/ / i f n o t equa l , t h e n jump t o t h e n e x t
/ / compare and jump b l o c k
j n z 0 x2a97c6f440

Listing 2. Hash table instructions

/ / move t h e b r a nc h t a r g e t t o r a x
mov rax , r8
/ / s h i f t r a x
s h r rax , 0x4
/ / move hash t a b l e i n d e x t o r a x
movzx rax , a l
/ / move base t o r13
mov r13 , 0 x2a95677800
/ / jump t o base + i n d e x ∗ s i z e o f (i n t)
jmp qword p t r [r13 + r a x ∗8]

Figure 4. Instructions spent in resolving indirect branches

as a percentage of total dynamic instructions of the guest

application.

Figure 4 represents the number of instructions spent
in resolving indirect branches as a percentage of total dy-
namic instructions of the guest application. For perlbench,
the number of instructions spent on resolving indirect
branches is more than 50% of the total dynamic instruc-
tion count. This means that if the performance of perl-
bench compared to native execution is 300%, then 25% of
that overhead comes from resolving indirect branches.

Figure 5 and Figure 6 illustrate perlbench’s performance
and Pin’s memory consumption as the chain length is var-
ied. As we can see, as the chain length is reduced, the per-
formance increases. The problem with the indirect branch
chain of Pin is that it does not capture the notion of trace
hotness (where a hot trace gets a lot of hits). The chain

Figure 5. Performance of perlbench as we vary the chain

length. (Longer chains perform worse.)

Figure 6. Memory consumption of Pin (in MB) for perl-

bench as we vary the chain length.

is never re-arranged in order to reflect the hit rates of the
traces. The chain is built in FIFO order. As a result, if the
hot trace gets generated last, then Pin will have to traverse
multiple traces in the indirect branch chain before reaching
the hot trace and this degrades performance. Reducing the
chain length removes this unnecessary overhead. But, on
the other hand, reducing the chain length also means that
more indirect branches will have hash tables and hence an
increased memory consumption. If we set the chain length
to one, then all the indirect branches with more than one
branch target will have a separate hash table and this will
increase the memory consumption of Pin (as illustrated in
Figure 6).

Figure 7 shows the relative performance of Pin with
a chain length of 16 compared to chain length of one.
We can see that the chain length of one achieves a best

Figure 7. Relative performance of Pin with chain length of

16 compared to chain length of 1.

case speedup of 43.3% and an average speedup of about
7.7%. Except for two benchmarks, astar and mcf, all the
other benchmarks show a speedup with chain length of
one. The worst case slow down is only 2.7% compared
to the best case speedup of 43.3%. These results show
that there is a trade-off between traversing the indirect
branch chain versus accessing the hash table directly. This
trade-off can have a huge impact on performance and in
the case of Pin, accessing the hash table directly gives
a better performance than traversing the traces in the
indirect branch chain.

6. Indirect Branch Target Locality

Instead of having a static chain where traces are inserted
in FIFO order, we wanted to create a dynamic chain
where the traces are rearranged based on their hotness.
In order to do that, we analyzed the locality of indirect
branch targets. For a given indirect branch instruction, we
determined the percentage of branch targets that remain
the same for two consecutive executions of the same
branch instruction. If there is a high percentage of indirect
branches where the current target is the same as the next
target, then we can have a one-entry target cache per
indirect branch that records the current branch target.
The next time we execute this same indirect branch, we
can check this target cache first before entering into the
indirect branch chain.

Figure 8 illustrates the branch target locality in the
SPEC2006 INT benchmarks. The average indirect branch
locality in the SPEC benchmarks is 73.87%. This means
that whenever an indirect branch is executed in any of the
SPEC benchmarks, there is a 73.87% probability that the
current branch target will be the same as the next branch
target. This shows that the indirect branch targets have

Figure 8. Indirect branch target locality in the SPEC2006

INT benchmarks. Percentage of indirect branch targets

which are the same as the previous targets.

a very high locality. In the next section, we describe an
algorithm which exploits this branch target locality.

7. Most Recently Used (MRU) Target
Algorithm

For each indirect branch, the proposed algorithm allocates
two words in memory: one for storing the current branch
target and the other for storing the target’s code cache
address. Each time an indirect branch is executed, the
algorithm first checks the single entry target cache. If
there is a match, the control is transferred to the target
code cache address directly. If there is a mismatch, then
it is transferred to the indirect branch chain. The new
algorithm also adds instructions at the beginning of every
target trace to update the target cache. This algorithm
is able to exploit the locality available in indirect branch
targets.

Figure 9 illustrates the proposed MRU algorithm. At
program startup, Pin replaces all indirect branches with a
stub branching to itself. So, when an indirect branch is
encountered, the control is transferred to Pin, which then
allocates the memory required for the target cache and
initializes it to zero. Pin also generates the code for com-
paring the branch target to the entry of the target cache.
It then generates the compare and jump block. When the
target trace is generated, Pin also adds instructions to
update the target cache. The next time when the same in-
direct branch is executed, the control is transferred to the
target cache code. If there is no match, then we move on
to the first compare and jump block in the indirect branch
chain. If there is a match, then the control is transferred
to trace ‘t1’ which updates the target cache. This makes

Figure 9. Indirect branch chain with the target cache. TA

(Target Address) and CA (Code cache address) represent the

memory locations containing the previous branch target and

its corresponding code cache address.

Figure 10. Comparisons of branch target hit rates.

sure that we have a hit in the target cache if we branch to
the same target consecutively.

7.1 Simulation Results

We created a pintool to simulate the proposed MRU
algorithm and determined the hit rates using the proposed
algorithm. We compared this hit rate with the hit rate of
the FIFO algorithm where the traces are inserted in FIFO
order into the indirect branch chain.

Figure 10 illustrates the branch target hit rates in
the various algorithms. In the case of MRU, the average
hit rate in the target cache is about 73%. In the case
of FIFO, the average hit rate in the first trace of the
indirect branch chain is only 46.5%. Among the 12 SPEC
benchmarks, the FIFO algorithm is able to match the
hit rate of MRU only in astar and mcf. In all other
benchmarks, MRU outperforms the FIFO algorithm. This
shows that there is a huge potential for speedup using

MRU compared to FIFO algorithm. Though MRU offers
better hit rate, this doesn’t guarantee a corresponding
speedup. The final speedup depends upon several factors
such as the net total number of instructions executed,
cycles spent in memory stalls, etc. For example, in the
compare and jump block of the indirect branch chain, all
the addresses (target address and code cache address)
are represented as immediate values in the instruction.
But, in the case of the compare and jump block for
MRU, all these addresses are present in the memory. So,
one of the factors that might affect the speedup is the
trade-off between waiting for memory (in the case of
MRU) versus executing more instructions (in the case of
FIFO algorithm). This is the reason why an increase in
target hit rate need not necessarily mean a corresponding
increase in speedup. In order to verify how the increased
hit rate translates to increased performance, we developed
a preliminary implementation of our algorithm in Pin.

7.2 Implementation Results

We have implemented our algorithm in the 64-bit version
of Pin. Pin has a very well organized code base and pro-
vides a lot of APIs helpful for implementing new features.
Pin has a lot of callbacks that get called when there is
a context switch from the guest application to Pin. Pin
also has one such call back for handling indirect branches.
The first time the indirect branch is encountered, the
stub transfers the control to Pin which then transfers it
to the indirect branch callback. The indirect branch call-
back checks whether the chain length for the current in-
direct branch is less than the maximum chain length and
then generates the compare and jump block and the cor-
responding target trace. If the maximum chain length is
exceeded, the indirect branch callback generates the code
for the hash table. We modified the indirect branch call-
back to add a compare and jump block for the MRU cache
when the chain length is zero. Thereafter, the usual indi-
rect branch chain code gets executed. We also had to make
changes in a few other places for passing the target cache
address to the indirect branch callback.

Figure 11 and 12 illustrate the relative performance of
an implementation of MRU compared to FIFO. Figure 12
shows the relative performance for a chain length of 16 and
Figure 11 for a chain length of two. For the shorter chain
length, the performance of MRU is approximately the same
as the performance of FIFO. For the longer one, MRU
shows a best case speedup of 3.4%. But, on an average,
the performance of MRU is less compared to FIFO.

When we analyzed the performance of MRU, we noticed
that though MRU resulted in an increased hit rate, the to-
tal dynamic instruction count of MRU is higher compared
to FIFO. This is the reason for why MRU’s performance
did not improve significantly compared to FIFO. One of our
future works is to improve the implementation of MRU.

Figure 11. Relative Performance of MRU algorithm with

respect to FIFO with chain length of 2.

Figure 12. Relative Performance of MRU algorithm with

respect to FIFO with chain length of 16.

8. Related Works

A lot of work has been done in dynamic binary transla-
tion and its subfields like code cache management, regis-
ter allocation, indirect branch translation etc. One of the
recent extensive analyses of indirect branches is work done
by Hiser et al. [6]. They analyzed various indirect branch
translation algorithms and their performance impact in
Strata. Their work also mentions an approach similar to
MRU algorithm. But, in their work, instead of having a sep-
arate memory location for holding the target address and
code cache address, they directly patch the instructions
that perform the target cache comparison. This causes
the instruction cache to become incoherent and results in

a huge performance drop. Moreover, their work does not
discuss indirect branch target locality.

Smith and Nair [10] provide an overview of the various
indirect branch translation techniques used in Dynamic Bi-
nary Translators. Bruening et al. [3] analyzed the imple-
mentation of indirect branches in DynamoRIO. In terms
of hardware support, Kim et al. [7] analyzed the architec-
tural support required for indirect branch translation. One
of their proposals is a hardware lookup table for branch tar-
gets, which also exploits the locality available in indirect
branches.

9. Conclusion & Future Work

In this study, we analyzed the performance impact of indi-
rect branches, and demonstrated that the dynamic instruc-
tions spent in indirect branches can be as high as 50% of
the total dynamic instructions of the guest application.
We have shown that there are trade offs between indirect
branch handling techniques and choosing the appropriate
technique can have a huge impact on performance. We
have also shown that the indirect branches have a very
high locality of about 73%. We have proposed an algorithm
for exploiting this locality and have shown that for longer
indirect branch chains, the proposed algorithm achieves a
best case speedup of 3.4%. Our main future work is to im-
prove the implementation of MRU to reduce the dynamic
instruction count. We would also like to implement MRU
in other DBTs like DynamoRIO and Strata and determine
the performance impact in those DBTs.

References
[1] APPLE INC. 2009. Universal binary programming guidelines,
second edition. 57–66.

[2] BRUENING, D., DUESTERWALD, E., AND AMARASINGHE,

S. 2001. Design and implementation of a dynamic opti-
mization framework for windows. In 4th ACM Workshop
on Feedback-Directed and Dynamic Optimization (FDDO-
4). Austin, TX.

[3] BRUENING, D., GARNETT, T., AND AMARASINGHE, S.

2003. An infrastructure for adaptive dynamic optimization.
In CGO ’03: Proceedings of the International Symposium on
Code Generation and Optimization. IEEE Computer Society,
San Francisco, CA, USA, 265–275.

[4] EBCIOGLU, K. AND ALTMAN, E. R. 1997. DAISY: Dynamic
compilation for 100% architectural compatibility. In ISCA
’97: Proceedings of the 24th Annual International Sympo-
sium on Computer Architecture. Denver, Colorado, United
States, 26–37.

[5] HAZELWOOD, K., LUECK, G., AND COHN, R. 2009. Scal-
able support for multithreaded applications on dynamic bi-
nary instrumentation systems. In International Symposium
on Memory Management (ISMM). Dublin, Ireland, 20–29.

[6] HISER, J. D., WILLIAMS, D., MARS, J., CHILDERS, B. R.,
HU, W., AND DAVIDSON, J. W. 2007. Evaluating indirect
branch handling mechanisms in software dynamic translation

systems. In Intl. Symp. on Code Generation and Optimiza-
tion. San Jose, California, 61–73.

[7] KIM, H.-S. AND SMITH, J. E. 2003. Hardware support for
control transfers in code caches. In 36th annual IEEE/ACM
International Symposium on Microarchitecture. San Diego,
California, 253–264.

[8] LUK, C., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V., AND HAZELWOOD,

K. 2005. Pin: Building customized program analysis tools
with dynamic instrumentation. In PLDI ’05: Proceedings
of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. Chicago, IL, USA,
190–200.

[9] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B.,
DAVIDSON, J., AND SOFFA, M. 2003. Retargetable and re-
configurable software dynamic translation. In International
Symposium on Code Generation and Optimization. San Fran-
cisco, CA, 36–47.

[10] SMITH, J. AND NAIR, R. 2005. Virtual Machines: Versatile
Platforms for Systems and Processes. Morgan Kaufmann.

