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Abstract—Here we consider a state-constrained stochastic lin- optimal control sequence can be computed by solving a con-
ear quadratic control problem. This problem has linear dynamics  strained quadratic program, even when inequality conggai
and a quadratic cost, and states are required to safisfy a proba- o gtates and controls are present. In a stochastic setting,
bilistic constraint. In this paper, the joint probabilistic constraint - e
in the model is converted to a conservative deterministic one performance Can be improved by Ut'l'z!ng a closed loop
using multi-dimensional Chebyshev bound. A maximum volume controller. That is, knowledge of past disturbances can be
inscribed ellipsoid problem is solved to obtain this probability incorporated into the control actions taken at each timeger
bound. We then design an optimal affine controller for the Here we consider the design of closed loop controllers that

resulting problem. The convexity of the Chebyshev bound- \,inimize an LQR cost subject to a probability constraint on
constrained problem is proved and a practical algorithm is ,
the system'’s states.

developed. Two numerical examples show that the algorithm is ) . . .
very reliable even when the disturbances are big and the problem ~ The main purpose of this paper is to derive a tractable ap-
horizon grows to as long as 20 stages. It is also shown that theproximation of the state-constrained stochastic LQR mnubl
approach proposed in this paper can be used to reformulate some and develop an algorithm for computing an optimal affine
classical problems such as tracking problems. controller for this approximation. We summarize an aldorit
that is practical and can be implemented with conventional
optimization solvers. Moreover, the controllers produdsd
In this paper we consider a probability constrained digeretthis algorithm are guaranteed to be feasible with respect to
time stochastic linear-quadratic control problem withitidgel, the probability constraints in the state-constrained rsstic
zero mean and finite second moment disturbances. This prol@R problem.
lem is repeatedly solved in stochastic model predictivdrobn  The rest of the paper is organized as follows: In section Il,
scheme. Unconstrained discrete-time stochastic LQ ddm we formulate the state-constrained stochastic LQR model. |
been extensively studied over the last half-century, arid it section Ill, we propose an inner approximation of the proba-
well-known that there exists a closed form optimal solutiohilistic state constraints using a multi-dimensional Gretiev
which can be expressed in terms of the discrete-time algebrbound. In section 1V, we specify a convex program that can be
Riccati equations, provided the system is controllable arsdlved to compute an optimal causal, affine controller fer th
observable (see [1] and references therein). However, c@pproximated state-constrained stochastic LQR problem. W
strained problems present unique challenges that areajneralso summarize the algorithm framework for the approximate
not addressed by classical methods. problem. In section V, two numerical examples are shown
Recently, probability constrained linear quadratic cointrto demonstrate the reliability of the approach, by comgarin
has been a very active research area in the control communmity approach with the certainty equivalent model. Finally,
(e.g., see [3], [4], [2] and [5]), as it is a natural extens@n conclusions and a discussion of future work are given in
the constrained deterministic linear quadratic controbb@- section VI.
bility constrained optimization problems were first stublsy
Charnes, Cooper, and Symonds [6], Miller and Wagner [7] and IIl. PROBLEM FORMULATION
Prekopa [8]. Hard, robust constraints (see [9]) can be \dewe The probabilistic state constrained stochastic LQR maglel i
as probability constraints that must hold with probability formulated as:
Inter_estingly, sometimes a sma_lll r_e_laxati(_)n of this prdlttgb minimize: E| i}f:*ol (2T Qzy, + ul Ruy) + 25 Qnz ]
requirement can lead to a significant improvement in the
achievable objective function value. Currently there ave t
main-stream approaches dealing with probability constsai
probabilistic approximation (see [15], [11] and [10]) arairs
pling (see [12] and [13]). However, existing results priityar P (T +-+TIyen <b) 2 a
deal with scalar cases. To the authors’ knowledge, no paictiWe call this problem(P1). In this formulation, we assume the
methods exist for multi-dimensional probability consttai initial state vectorz, is known. N is the problem horizon,
In deterministic LQR problems, open-loop and closed loap, € R™ is the system state at time k; € R"™ the control
strategies are equivalent. So, in finite horizon problenms, applies at timek and w;, € R™ is the random disturbance

I. INTRODUCTION

subject to: zpy1 = Az + Bup +w, fork=0,...,N -1



applied to the system at tim&. The w; are stage-wise Using the notation above, we can rewrifel) as a more

independent with zero mean and covariance matiites)y compact form.

is a terminal cost matrix. The constraint is a probabilistic L T T T

constraint on the states over the entire problem horizon. minimize:  E[X" QX +UTRU] + 2 Qo )
In this paper, we aim to develop an algorithm for computing subject to: P (TX <b) > a

closed-loop controllers. Rather than solve this probleacty, ) ) ) )

imation. A controller that is feasible for this approxinwati 11, ---, T In the next section, we will replace the probabilis-
will be guaranteed to be feasible for the original probapili tic state constraint in (1) by a multi-dimensional Chebyshe
constraint. Our goal is to find a reliable and fast way to soljgequality.

this problem. First we rewrite the system dynamics in matrim

: . . A PPROXIMATION OF THE PROBABILISTIC CONSTRAINT
form. Since the system dynamics are linear, after some edgeb

we get: In this section we present a conservative approximation for
X =T + HU + GW the probabilistic constraint in (1), using the multi-dins@nal
Chebyshev inequality. Before we derive the main result isf th
where paper, we mention that there exist several approacheskietac

scalar chance constraints, namely Bernstein approximatio

and scenario approximation. The goal for this section is
X = L\ U= : , W= : to derive a method to approximate multidimensional chance
constraints, which serves as the foundation of our control
algorithm in the later sections. The following theorem pdes

The block matriced, H and G (note that for convenience & multi-dimensional Chebyshev inequality [14]:
the indices start with 0) are given by:

T uo Wo

TN UN-1 WN -1

Theorem 1. Let z be a random vector ilR¢ and S a subset

ho of R? defined by a collection of linear inequalities.Ff ¢ S¢,
fo h L g € R* andr € R are chosen so that
1 0
F= : , H= : y {zeR TPz +2¢"2z+7 <1}
o hx_1 hy_o ... ho is an inscribed ellipsoid of sef, then we have
g 1-E[TPz4+2¢"24+7r] <P(z€S)
0
i 9% Proof: Let f(z) = 2TPz + 2¢gz + r, then f(z) > 0
G= . _ for z € S and f(z) > 1 for any z € S§¢, whereS¢ is the
: ' complement ofS. Let Is:(.) be the indicator function o,
gN-1 gN-2 --- 9o then

> Ise
_ k+1 _ k o k f(Z) i (Z)
fr = A" hp = A*B, andg, = A".
/ / ' Therefore,

k=0,1,...,N - 1. E[f(2)] > ElIs:(2)] = P(z € §°)

Observse thatV has zero mean and its block covariancg,hich is the same as
matrix X is given by:

5 1-E[TP24+2¢z+7] < P(2€8)
0

Note that
LN-1 T T T
E[z' Pz +2qz+7r] = Tr(PE[22"]) +2¢" E[z] + r
Our next step is to reformulat@g®1) with this new notation. ) S
Let the diagonalV x N block matricesQ andR be defined The underlying probability distribution of does not affect the
nature of the bound. In other words, the bound is valid for any

as follows:
distribution, or an ambiguous distribution (see [10] and][1
Q R for example), as long as its first and second moment coincide
. with the given ones.
Q= ' , R= Theorem 1 gives a lower bound on the probability that
Q R z falls into S, or an upper bound on the probability that

QN falls outside. Now we consider how to use it to approximate



the probabilistic constraint. Observe that the constraimthe This issue can be addressed by adding box constraints to the
system states control and the disturbances.
TX <b

, —M<U<M,-M<W<M
can be rewritten as

where M is sufficiently large.
TH G] <b—TFx
Let IV. AFFINE CLOSEDLOOP CONTROLLER DESIGN
e
. — U . b=b—TFx, We consider the following closed-loop control law
w
1—1
and R wi =1+ »_ Kgjws, i=0,1,..,N—1
T=T[H G =0
The state constraint simply becomes where K(; ;) are constant gain matrices. This approach is
T:<D @) similar in spirit to [19]. Also, note that this control law is

an affine function of past disturbances instead of pastsstate
Now we can then substitute the probabilistic constrainhwit Given the structure of the&G, H, and K matrices in our

T T problem, it is always possible to recover the disturbances
Elz"Pz+2¢ z4+7r]<1—«

wo, ..., ws_1 from the states,...,z:. So, this control law
whereP, ¢ andr are the parameters for an inscribed ellipsoig@n be equivalently implemented as a state feedback control
of the convex set defined by (2). law.

Theorem 1 does not mention the way for selecting the This control consists of a constant component and a linear
inscribed ellipsoid. Of course there are many possible Waggmbination of the uncertainties. To be consistent, it igano
to choose the ellipsoid and as one can expect, the qualitycefnvenient to write them in the following form
the bound largely relies on the choice of the ellipsoid. It is _
not clear how to optimally choose one, since the ellipsoid U=U+EKW
that provides the sharpest bound will be dependent upon the
first and second moments of One reasonable choice iswhereK is the gain matrix given by
to use the maximum volume inscribed ellipsoid (see [14]). _ -

This ellipsoid can be easily computed using conventional 0
semidefinite programming (SDP) solvers. Kq,0) 0
Let S be the polyhedron defined by the linear inequalities: K — Koo Ko
{YA}ZSI;;, i=1,.,m.} 3)
The maximum volume inscribed ellipsoid 6fis given by | K(n—1,0) Kn_i,n—2) 0 ]
{Bu+d [[lul2 <1} As it can be seen, the gain matrk is strictly block lower

triangular due to the causality of the control law. We le&ve
to be a variable of the optimization problem.
To summarize, recall that our aim is to minimize

where B € S¢, andd € R? are obtained from the following
log-det program:

maximize: logdet B

o (4) EXTQX + U RU|,
subject to: ||BT; |2+ Tid <b;fori=1,...m
Using the affine mapping = Bu + d, we can obtain the Where
Igm:li?zn of the maximum volume inscribed ellipsoid in X :fxo +HU + (G + HK)W,
{z] 2T Pz+2¢"24+7 <1} U=U+KW,
where the transformation is given by z= )Z//{V ,
P=(BBT)™' g=—Pdandr =d' Pd (5)

Tr(PE[ZT2]) +2¢TE[z] + 7 <1 —a,

The approach to replace the probabilistic constraint has be

shown. One issue is that originallyz < b may be unbounded, and the optimization variables are the vedioand the strictly
so the maximum volume inscribed ellipsoid is not applicablélock lower triangular matriXK. Directly in terms of these



TABLE |

optimization variables we can write this problem (&2): THE ALGORITHM
T T T
T . F* QF F*QH To Step 1: ComputeF, H, G, £, Q andR.
minimize. 7 HTQF HTQH +R| |77 Step 2. ConstructT, b and the setS using (2).

Step 3:  Solve the maximum volume inscribed ellipsoid problem (4)
+Tr(KT (HTQH + R)KY. + 2KTHTQGY) and obtainB andd.
. . =T — T Step 4: Use the transformation (5) to gét, ¢ andr.
subject to: U Pl +2q1 U Step 5:  Solve (P2) for I andK.
+’I‘r(KTP11KZ + QKTPng)
Sl—a—T—’I‘I‘(PQQE)

V. NUMERICAL EXAMPLES

In this section we choose two state-constrained stochastic
[m} LQR problems with 2 states and 2 control inputs, showing

Here we have partitioned andq as

P Ppo
Pfg Py

= the reliability of the approach. We compare our approach
with the certainty equivalent approach only, which reptace
If the problem is solved then we obtained the optimahndom variables with their expected values. As we men-
control policy expressed as a constant term plus a linear tetioned before, there exist approximation methods for scala
associated with the disturbances. The prob(&®) turns out cases. For the Bernstein approximation method, there is no
to be a convex quadratic program with respectiioK). immediate result for multi-dimensional cases. We alsaittie
scenario approximation method, however, the number of the
introduced constraints that replace the probabilisticstraimnt
Proof: First we look at the objective. The objective iseasily grows to thousands and the solver time is too long to be
expressed as a sum of quadratic two terms, one exclusivgfactical. All the examples are implemented in Matlab, gsin
in terms of the variablel/ and the other exclusively in Yalmip [18] and SDPT3 [17].
terms of the variablek. Since Q@ and R are both positive ~ The system dynamics and disturbance parameters are given
semidefinite, the term it¥ is convex. The term i is convex by
if Tr(KT(HTQH + R)KY) is convex. Since any positive 7 [ 1.02 —0.1 ] B [ 05 0 ]

q2

Theorem 2. (P2) is a convex quadratic program.

semidefinite matrix can be expressed as a finite nonnegative 0.1 0.98 0.05 0.5
linear combination of matrices of the tyg#s3” ( [20]), we

have Q:[w O]’R:F 017%:[50 0]
Tr (KT(HTQH+R)KE) 0 10 0 5 0 50
t The initial system state and the uniform box state congtrain
=Tr (K" (H'QH + R)K Y _ 5:6,") are given by

15 20 %5 0 s 0 5 10
State 1 (1) state 1(x1)

which is a non-negative linear combination of convex fung- g .
0 0.81 —0.648
Now we prove the constraint is also convex. As with the 0| | —0.648 0.81
of the variablel/ and the other exclusively in terms of thethe following figures
Using the same analysis for the objective here, we conclude
constraint. [ 5 )
. (a) Chebyshev bound (b) Certainty equivalent
problem. We further proved that the this control law can be

. = 10 0]_ _[30
Ty = , <z <
= > (Kp)" (H'QH + R)(KS,) "l o= a0
i=1
tions of Kj3;. So this term is convex ifK and therefore the
objective, the left hand side of the constraint is express%e probability requirement is set to be).8. The trajectories
variableK. SinceP;; is positive semidefinite, the term I is
that Tr(K” P;; KX) is a non-negative linear combination of
We showed the approach to replace the probabilistic con-

computed by solving a convex program. For completeness, the Fig. 1. 2D trajectories for the 20-stage case

The disturbance vectors are multi-dimensional normal and
objective is convex.
as a sum of quadratic two terms, one exclusively in M our model and the certainty equivalent model are shown in
convex. The term ifK is convex if Tr(K” P;; KX) is convex.
convex functions. Hence, the constraint is a convex quiadrat
straint and designed a causal affine control law for the tiegul
algorithm that used to solv@1) is summarized in Table I.



state 2 ()

10 15 10
State 1 (x1) State 1 (x1)

(a) Chebyshev bound (b) Certainty equivalent

Fig. 3. 2D trajectories for the 10-stage tracking case

State 1(x1)
State 2 (x2)

o 5 10 15 20 (] 5 10 15 20
Stage stage

State 1 (x1)
State 2 (x2)

(c) Certainty equivalent: x1 (d) Certainty equivalent: x2

Fig. 2. state trajectories for the 20-stage case

6 4
Stage. Stage.

First we test our approach on problems with box state
constraints. Figure 1(a) contains the trajectories of thtes
constrained stochastic LQR problem with a horizon contani
20 periods solved using our approach. Figure 1(b) is those
solved using the certainty equivalent model. The simufatio
is repeated 50 times. As we can see, our model, which uses °* ° ‘s’ ° 7
Chebyshev bound successfully keeps the trajectories rwithi (c) Certainty equivalent: x1 (d) Certainty equivalent: x2
the red dotted boundary box, which represents the state
constraints. The trajectories of the certainty equivafethtout
of the boundaries quickly as the controller acts risky tasar

the origin, where the cost is minimized. Figure 2 gives thg,. 4nnr0ach performs robustly against the uncertainty and
trajectories in detail by showing them state-by-stateUf8g g5 'in the desired trajectory region (between the recedott
2(a) and Figure 2(b) are the state trajectories for our moqg|.yeqy while the certainty equivalent approach disrezéne

and Figure 2(c) and Figure 2(d) are those for the certainfit of violating the constraints and behaves very aggvessi
equivalent model.

We also test our approach on a 10-stage tracking problem. VI. CONCLUSION AND FUTURE WORK
The trajectory we are trying to track is given by

State 1 (x1)

Fig. 4. State trajectories for the 10-stage tracking case

In this paper, we proposed an approach to approximate
5sin(0.2k) probabilistic constraints using the multi-dimensionaleGy+
Yk = shev bound and the maximum volume inscribed ellipsoid.
5 cos(0.2k) ; . :
We also designed an optimal causal affine controller for
The feasible trajectory region is defined by manipulating tithe approximate problem and proved the convexity of it. A

upper and lower bounds of the states practical algorithm is summarized to solve the problem Wwhic
can be developed using general quadratic program solvers.
Yp — 9 < xp SyYp + 9 This approach also can be used as a subroutine in a model

predictive control algorithm for state-constrained stmstit
LQR problems.
The results derived in this paper can also be applied to solve
([ 0 ] [ 012 0 D other problems coupled with joint probabilistic consttsirFor
Wi ~N R . . . .. T
0 0 012 example, a noisy input can be modeled using joint probaigilis
constraints, which can be replaced by a convex deterngnisti
The simulation results are shown below. one with our approximation approach. Also, the causal affine
Figure 3(a) shows the trajectories of the 10-stage trackiggntroller can be extended to nonlinear controller if one ca
problem using our approach and Figure 3(b) shows thoggoose qualified basis functions of the disturbances t@cepl
solved using the certainty equivalent model. Figure 4(a) afhe affine disturbance structure.
Figure 4(b) are the state trajectories for our model andreigu
4(c) and Figure 4(d) are those for the certainty equivalent REFERENCES
model. This example gives an alternative way to formulaée thyy} o gertsekas, Dynamic Programming and Optimal Control, \ol.
tracking problem other than using penalties. We can see that Athena Scientific, 2007.

The distribution of the i.i.d. disturbances is differentthis
example
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