Non-Tree Routing
Bernard A. McCoy and Gabriel Robins

Technical Report No. CS-93-16
April 12, 1993

Non-Tree Routing

Bernard A. McCoy and Gabriel Robins

Computer Science Department, University of Virginia, Charlottesville, VA 22903-2442

Abstract

An implicit premise of existing routing methods is that the routing topology must
correspond to a tree (i.e., it does not contain cycles). In this paper we abandon this basic
axiom and investigate the consequences of allowing routing topologies that correspond
to arbitrary graphs (i.e., where cycles are allowed). We show that adding extra wires
to an existing routing tree can often significantly improve signal propagation delay by
exploiting a tradeoff between wire capacitance and resistance, and we propose several new
routing algorithms based on this phenomenon. Using SPICE to determine the efficacy
of our methods, we obtain dramatic results: for example, the addition of a single new
wire to an existing minimum spanning tree (MST) routing reduces the average signal
propagation delay by up to 24%, while the average interconnection cost increases by only
11%, depending on net size. The delay performance of our methods is competitive with the
best existing routing tree constructions, while the average wirelength of our constructions
is significantly better. Our basic formulation extends to several important routing regimes,
including the Steiner case, critical-sink routing, and wire sizing.

1 Introduction

Recent advances in VLSI technology have steadily improved chip packing densities. As feature
sizes decrease, device switching speeds tend to increase; however, thinner wires have higher
resistance, causing signal propagation delay through the interconnect to increase [18]. Thus,
interconnection delay has had a greater impact on circuit speed, being responsible for up to 70%
of the clock cycle in the design of dense, high-performance circuits [20]. In light of this trend,
performance-driven physical layout has become central to the design of leading-edge digital
systems. Early work focused on performance-driven placement, with the usual objective being

the close placement of cells in timing-critical paths [9] [14] [15].

While timing-driven placement has a large effect on layout performance, the lack of optimal-
delay interconnection algorithms impedes designers in fully exploiting a high-quality placement.

Once a module placement has been fixed, good timing-driven interconnection algorithms are

key to enhancing the performance of the layout solution. For a given signal net, the typical
objective has been to minimize the maximum signal delay from the source pin to any sink
pin. Many approaches have appeared in the literature, e.g., Dunlop et al. [10] determine net
priorities based on static timing analysis, and process higher priority nets earlier, using fewer
feedthroughs; Jackson et al. [12] outline a hierarchical approach to timing-driven routing; and
Prastjutrakul and Kubitz [17] use A* heuristic search and the Elmore delay formula [11] in their
tree optimization; Cohoon and Randall [7] developed a critical net routing algorithm in order

to reduce interconnect delay.

Cong et al. have proposed finding minimum spanning trees with bounded source-sink path-
length [8] by simultaneously minimizing both tree cost and the tree radius; another cost-radius
tradeoff was achieved by Alpert et al. [1]. Boese et al. [5] have developed a “critical sink”
routing approach which significantly reduces delay to specified sinks, thereby exploiting the
critical-path information that is implicitly available during iterative timing-driven layout. Re-
cently, Boese et al. [4] have identified and exploited a high-quality, algorithmically tractable

model of interconnect delay, based on an upper bound [19] for Elmore delay.

An implicit premise of previous methods is that a routing topology must correspond to a
tree (i.e., an acyclic topology). In retrospect, this seems a natural assumption, since a tree
topology spans a net, thus achieving connectivity using a minimum number of edges. In this
paper, we question this seemingly basic axiom, and investigate the consequences of removing the
acyclic restriction. Thus, we formulate a routing problem where the interconnection topology

may correspond to an arbitrary graph.

At this point, the reader may question the wisdom of adding extra wires to an existing
routing tree: how can this possibly improve signal propagation delay? The answer lies in the
tradeoff between the capacitance and resistance in a circuit. Clearly, adding extra wires to a
routing tree increases the overall routing capacitance; however, the extra wires may significantly
lower certain source-sink resistance values. It is possible for this decrease in resistance to more
than compensate for the associated increase in capacitance, as can be seen in a simple example
(Figure 1). Similarly, Figure 2 gives an example of a random net where adding a single extra

edge to the minimum spanning tree creates a substantial delay improvement.

)

O Source ®) Source ®

N S AU

(a) (b)

Figure 1: An example of how adding an extra edge to the minimum spanning tree
on the left (a) can yield the routing topology with reduced interconnection delay
on the right (b); in this example, routing topology (a) has maximum source-sink
SPICE delay of 1.3 nanoseconds, while the topology on the right has a SPICE delay
of 1.0 nanoseconds, representing a 23% delay improvement (at a total wirelength
penalty of 9%). The interconnect parameters used are representative of a 0.8
CMOS process (see discussion below for details).

Since we are highly concerned with obtaining realistic results, we use the SPICE circuit
simulator [16] to determine the efficacy of our methods (in Section 2 we discuss in detail the
SPICE parameters used). Our results are both surprising and dramatic: for example, even
adding a single wire/edge to an existing minimum spanning tree routing reduces the average
signal propagation delay by up to 24%, while the average interconnection cost increases by only
11%, depending on net size. The delay performance of our method is competitive with the
best existing tree constructions [4], yet our average wirelength is superior as compared with
such previous methods. Our algorithms are efficient, and our basic approaches are amenable to
numerous extensions of the routing design problem, such as Steiner graph routing, critical sink

routing, and wire sizing.

The rest of our paper is organized as follows. Section 2 gives basic definitions and formalizes
the problem of constructing optimal-delay interconnection topologies. Section 2 also discusses

the delay models, including the SPICE parameters used in the simulations. In Section 3 we

Source

(a) (b)

Figure 2: An example of a random net of 10 pins where the minimum spanning
tree on the left (a) has a SPICE delay 5.4 nanoseconds; adding a single edge to the
topology as shown on the right (b) creates a routing graph with SPICE delay of 3.6
nanoseconds, a 33.3% delay improvement. The total wirelength was increased by
only 21.5% as compared to the MST cost.

present several basic heuristics that capture the intuitions behind choosing the extra wires to
be added to a routing tree in order to optimize delay. In Section 4, we provide experimental
results on the performance of our heuristics, and compare them with previous work. Section 5

concludes with extensions and directions for future research.

2 Problem Formulation

A signal net N = {ng,ni,...,n;} is a fixed set of pins in the Manhattan plane to be connected
by a routing graph G = (N, E), where E C N x N. Pin ng € N is a source (i.e., where the
signal originates), and the remaining pins are sinks (i.e., where the signal propagates to). Each
edge e;; € F has an associated edge cost, d;;, equal to the Manhattan distance between its two
endpoints n; and n;; the cost of GG is the sum of its edge costs. We use t(n;) to denote the
signal propagation delay from the source to pin n;. Our goal is to construct a routing which

spans the net and which minimizes the maximum source-sink delay:

Optimal Routing Graph (ORG) Problem: Given a signal net N = {ng,n1,...,n;} with
source ng, construct a routing graph G = (N, E), E C N x N, such that #{(G) = mfalx t(n;) is

minimized.

Note that the ORG problem generalizes the Optimal Routing Tree (ORT) problem of [4],
which corresponds to the special case where (G 1s a tree; this special case is studied extensively
in [4] [5]. The case where certain sinks in the ORG are identified as critical is discussed in

Section 5.1 below.

The specific routing graph G that solves the ORG problem will depend on the model used to
estimate the delay ¢(G). Tdeally, we would like to compute and optimize delay according to the
complete physical attributes of the circuit. To this end, we use the circuit simulator SPICE [16],
which is generally regarded as the best available tool for obtaining a precise, complete measure
of interconnect delay. These are representative of a typical 0.8 CMOS process. Our SPICE
delay model uses constant resistance and capacitance values per unit length of interconnect
(i-e., both resistance and capacitance are proportional to wirelength). The root of the tree is
driven by a resistor connected to the source pin. In addition, sink loading capacitances are used
at all the pins to model loads driven by the interconnect. The SPICE parameters that we used

in our simulations are given in Table 1.

Parameter Value
driver resistance 100 Q
wire resistance 0.03 Q/um
wire capacitance 0.352 fF/um
wire inductance 492 fH/pm
sink loading capacitance 15.3 fF
layout area 10?2 mm?

Table 1: Parameter values for the CMOS interconnect technology used in our SPICE
model.

Unfortunately, SPICE delay is too computationally prohibitive to evaluate during the rout-
ing phase of layout, and we are thus forced to seek other alternatives. Another delay model is
the Elmore delay formula [11], which was shown in [4] to have both high accuracy and fidelity

in comparison with SPICE. The Elmore delay is defined as follows. Given routing tree T(N)

rooted at ng, let e; denote the edge from pin n; to its parent. The resistance and capacitance
of edge e; are denoted by 7., and e.,, respectively. Let T; denote the subtree of T rooted at
n;, and let ¢; denote the sink capacitance of n;. We use C; to denote the tree capacitance of
T;, namely the sum of sink and edge capacitances in 7;. Using this notation, the Elmore delay
along edge ¢; is equal to r¢,(c.,/2+ C;). Let rq denote the output driver resistance at the net’s

source. Then the Elmore delay ¢ pp(n;) from source ng to sink n; is given by:

tep(ni) =raCp, + S re(ee, /24 Cy). (1)
e;j€path(no,ni)

We can extend the tgp function to entire trees by defining tgp(T(N)) = rglfalx tep(ng). If
re, and c.; are proportional to the length of e;, the delay tgp (n;) is quadratic in the length of
the ng-n; path. Because of its relatively simple form, Elmore delay can be calculated in O(k)
time, as noted by Rubinstein et al. [19]. Unfortunately, the Elmore delay model outlined above
applies only to tree topologies, and in order to extend this formula to non-tree topologies,
additional transformations are required [6]. We use the Elmore delay model in some of our

heuristics to approximately solve the ORG problem.

3 Low Delay Routing Graph Heuristics

The ORG problem may be solved heuristically by starting with some reasonable tree topology
such as the minimum spanning tree, and searching for some new edge to add, so that the delay
in the resulting routing graph will be minimized. We add this edge into the routing graph, and
iterate this process (i.e., we look for yet another good edge to add). We terminate when no
further delay improvement is possible. An execution example of this method, called the Low
Delay Routing Graph (LDRG) algorithm, is shown in Figure 3, while the LDRG algorithm is

formalized in Figure 4.

If we use SPICE inside the LDRG method to determine circuit delay, such a method will be
computationally prohibitive. Instead, we would like to efficiently determine which wires should

be added in order to reduce delay by the greatest amount. We now propose several effective

Source Source

O
Source ‘

(©)

Figure 3: An execution of the LDRG algorithm on a random net of 10 pins. The
MST shown at the top left (a) has SPICE delay of 4.4 nanoseconds, while the
SLDRG tree at the top right (b) has SPICE delay of 4.1 nanoseconds; thus delay
was improved by 7% (at a wirelength penalty of 25%). In the next iteration (c) a
second new edge was added, bringing the overall delay reduction to 3.9 nanoseconds,
or 11.4% reduction (at an overall wirelength penalty of 40%).

heuristics to for approximating solutions to the ORG problem. In Section 4 we compare the
performance of these heuristics with the less efficient SPICE-based LDRG method discussed
above. We propose three distinct additional heuristics; each heuristic starts with the MST
topology, and then modifies it by connecting the source pin ng to some other pin in the topology,
according to some fixed rule. These three heuristics (one corresponding to each fixed connection

rule) are described as follows:

Low Delay Routing Graph (LDRG) Algorithm
Input: signal net N with source ng € N

Output: low-delay routing graph G = (N, F)

1. G = (N, F) where F are the edges of the MST over N

2. While 3 ¢;; € N x N such that ¢((N, EU{e;;})) < t(G)
3. DOGI(N,EU{SZ']'})

4. Output resulting routing topology ¢

Figure 4: The Low Delay Routing Graph heuristic: a greedy approximation of
optimal routing graphs.

e H1: Connect ng to the pin with the longest SPICE delay;
e H2: Connect ng to the pin with the longest Elmore delay;

e H3: Connect ng to the pin with the largest value of (pathlength x Elmore) / length-of-

new-edge.

The main edge selection step in heuristic H1 may be iterated until no further delay improvement
is possible (the variants involving the Elmore delay formula can not be iterated, since Elmore
delay is only defined for trees, not for arbitrary graphs). In practice, we observed that on average
only two iterations occur before no further improvement is possible. The time complexity of
H1 is dominated by a single call to spice; however, the time complexity of both H2 and H3 is
linear if the MST is provided (otherwise, the time required by H2 and H3 is dominated by the
MST computation); this sharply contrasts the much higher time complexities of comparable

methods.

When vias (i.e., Steiner points) are allowed, the ORG problem can be generalized to allow
Steiner points as junctures in the routing, in order to afford further opportunity for delay and

wirelength optimization. The Steiner formulation of the ORG problem is as follows:

Steiner Optimal Routing Graph (SORG) Problem: Given asignal net N = {ng, n1, ..., np}
with source ng, find a set S of Steiner points and construct a routing graph G = (N U S, F),
EC(NUS) x (NULS), such that t(G) = mfalx t(n;) is minimized.

Experimental results related to this formulation are discussed in Section 4. An execution

example for a Steiner version of the LDRG algorithm (SLDRG) is shown in Figure 5, while

the formal statement of this algorithm is given in Figure 6. To find the Steiner tree over the
net (Step 1 of the SLDRG algorithm of Figure 6), an efficient implementation of the Tterated

1-Steiner algorithm of Kahng and Robins may be used [2] [3] [13].

Source Source

(a) (b)

Figure 5: An execution of SLDRG algorithm (the Steiner version of the LDRG
algorithm) on a random net of 10 pins. The Steiner tree shown on the left (a) has
SPICE delay of 2.8 nanoseconds (Steiner points are depicted by the small squares),
while the SLDRG routing on the right (b) has SPICE delay of 1.9 nanoseconds,

corresponding to 32% improvement (the wirelength increase was 25%).

Steiner Low Delay Routing Graph (SLDRG) Algorithm
Input: signal net N with source ng € N
Output: low-delay routing Steiner graph G = (N, E), EC N x N
1. Compute a Steiner tree G = (N, E) over N = NU S,
where S are Steiner points,
and £ C N x N is the set of Steiner tree edges
2. While 3 ¢;; € N x N such that t((N, EU {e;;})) < t(G)
3. Do G =(N,EU{e;})
4. Output resulting routing topology ¢

Figure 6: The Steiner Low Delay Routing Graph heuristic: a greedy approximation
of optimal routing graphs when Steiner points may be introduced.

4 Experimental Results

We have implemented the LDRG algorithm, the SLDRG algorithm, as well as the three heuris-
tics H1, H2 and H3 using C in the UNTX/Sun environment. We have run trials on sets of 50 nets

for each of several net sizes; pin locations were randomly chosen from a uniform distribution

| LDRG Algorithm Statistics |

net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost
LDRG 5 094 1.22 52 0.88 1.44
Tteration | 10 0.84 1.23 90 0.82 1.25

One 20 0.81 1.16 100 0.81 1.16
30 0.76 1.11 100 0.76 1.11

net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

LDRG 5 NA NA NA NA NA
Tteration | 1 0.98 1.04 10 0.79 1.40
Two 20 0.91 1.13 42 0.78 1.30
30 0.83 1.53 68 0.75 1.23

Table 2: Average delay and cost values of the routing graph produced by the LDRG
algorithm; all values are normalized to the corresponding MST values. The “All
Cases” column reports the average values over all 50 instances, including the ones
where the LDRG algorithm was not able to improve on the MST delay. The “Per-
cent Winners” column reports the percentage of the cases where the LDRG algo-
rithm was able to improve on the MST delay. The “Winners Only” column reports
the average values only for those instances where the LDRG algorithm was able to
improve on the MST delay.

in a square layout region. Our inputs correspond to the same CMOS interconnect technology

discussed 1n Section 2.

Table 2 and Table 3 give the performance of the LDRG and SLDRG Algorithms with respect
to all samples (“all cases”), as well as with respect to only those cases which the added edge will
yield a routing graph with a better delay than that of the MST (“winners only”). For example,
nets of 10 pins have 16% less delay of the MST on average, beating MST 90% of the time. Of
those 90% that win, the LDRG routing graphs have on average 18% less delay, as compared
to the MST. In Table 2 we see that for 30 pins the LDRG Algorithm always wins over MST,
yielding an average delay improvement of 24% over MST, with wirelength penalty of only 11%
over MST. For the SLDRG algorithm (Table 3) we observe a 23% delay improvement and 10%

wirelength penalty over MST.

Tables 4 and 5 provide statistics for the H1, H2, and H3 heuristics discussed in Section 3.
These heuristics attempt to minimize (or even remove altogether) the computationally expensive

calls to SPICE. Heuristic H1 makes only one call to SPICE (as opposed to LDRG which makes

10

| SLDRG Algorithm Statistics |

net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

5 0.99 1.02 4 0.94 1.59
1 0.91 1.20 66 0.87 1.30
20 0.79 1.17 94 0.77 1.18

30 0.77 1.10 100 0.77 1.10

Table 3: Average delay and cost values of the routing graph produced by the SLDRG
algorithm; all values are normalized to the corresponding Steiner tree values. The
“All Cases” column reports the average values over all 50 instances, including the
ones where the SLDRG algorithm was not able to improve on the MST delay. The
“Percent Winners” column reports the percentage of the cases where the SLDRG
algorithm was able to improve on the MST delay. The “Winners Only” column
reports the average values only for those instances where the SLDRG algorithm
was able to improve on the MST delay.

| H1 Heuristic Statistics |

net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

H1 5 098 1.10 20 0.90 1.49
Iteration | 10 0.93 1.17 48 0.84 1.35
One 20 088 1.16 68 0.82 1.24
30 0.83 1.17 82 0.80 1.17

net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

H1 5 NA NA NA NA NA
Tteration | 1 0.98 1.03 10 0.81 1.34
Two 20 0.99 1.02 6 0.87 1.26
30 0.95 1.04 24 0.80 1.18

Table 4: Average delay and cost values of the routing graph produced by the H1
algorithm; all values are normalized to the corresponding MST values. The “All
Cases” column reports the average values over all 50 instances, including the ones
where the H1 heuristic was not able to improve on the MST delay. The “Percent
Winners” column reports the percentage of the cases where the H1 heuristic was
able to improve on the MST delay. The “Winners Only” column reports the average
values only for those instances where the H1 heuristic was able to improve on the
MST delay.

a quadratic number of calls to SPICE). We see from Table 4 that H1 is the heuristic with
performance closest to that of the LDRG algorithm. For nets of size 20, H1 affords (in the first

iterative stage) a 12% delay improvement over MST, with only a 17% wirelength penalty.

11

H2 Heuristic Statistics
net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

5 1.14 1.64 18 0.89 1.48
10 0.99 142 47 0.82 1.34
20 091 1.29 68 0.83 1.24
30 0.84 1.23 80 0.79 1.21

H3 Heuristic Statistics
net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

5 1.10 1.59 0 NA NA
10 093 1.33 64 0.84 1.29
20 0.85 1.20 92 0.83 1.19
30 0.77 1.13 90 0.76 1.13

Table 5: Average delay and cost values of the routing graph produced by the H2
and H3 heuristics; all values are normalized to the corresponding MST values. The
“All Cases” column reports the average values over all 50 instances, including the
ones where the heuristics were not able to improve on the MST delay. The “Percent
Winners” column reports the percentage of the cases where the heuristics were able
to improve on the MST delay. The “Winners Only” column reports the average
values only for those instances where the heuristics were able to improve on the

MST delay.

Even if we limit ourselves to heuristic solutions that do not call SPICE at all (e.g., H2 and
H3), significant delay reductions can still be realized. We observe from Table 5 that for 20
pins (over all cases), heuristic H3 offers a 15% delay improvement over MST. Furthermore, H3

improves upon the MST often than does H1 (for nets of 10, 20 and 30 pins).

We also investigated how LDRG routings fare against trees with best known delay charac-
teristics, namely Elmore Routing Trees (ERTs), which were recently found to be near-optimal
by Boese et al. [4]. Table 6 provides the relative performance of the ERT to the MST. Using
Table 5 we can compare heuristics H2 and H3 to ERT. The data indicates that H3 beats ERT
with respect to wirelength (for 20 pin nets H3 has 20% wirelength penalty over MST, where
ERT’s 26%).

We also ran the LDRG algorithm using an ERT as the starting point (rather than the
MST). Table 7 provides data for such an ERT-based LDRG variant. For nets of size 20 over all

12

Elmore Routing Tree Statistics
net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

5 0.94 1.22 54 0.92 1.14
10 0.85 1.27 78 0.84 1.19
20 0.80 1.26 92 0.79 1.22
30 0.71 1.21 97 0.71 1.21

Table 6: Average delay and cost values of the routing tree produced by the ERT
algorithm; all values are normalized to the corresponding MST values. The “All
Cases” column reports the average values over all 50 instances, including the ones
where the ERT algorithm was not able to improve on the MST delay. The “Percent
Winners” column reports the percentage of the cases where the ERT algorithm was
able to improve on the MST delay. The “Winners Only” column reports the average
values only for those instances where the ERT algorithm was able to improve on

the MST delay.

| ERT-Based LDRG Algorithm Statistics |

net All Cases Percent | Winners Only
size | Delay | Cost | Winners | Delay | Cost

5 0.99 1.38 8 0.92 1.31
10 0.99 1.22 22 0.96 1.21
20 0.98 1.13 44 0.96 1.12
30 0.97 1.12 56 0.96 1.12

Table 7: Average delay and cost values of the routing graph produced by the LDRG
algorithm where an ERT is used as an initial tree instead of an MST; all values are
normalized to the corresponding ERT values. The “All Cases” column reports the
average values over all 50 instances, including the ones where the LDRG algorithm
was not able to improve on the ERT delay. The “Percent Winners” column reports
the percentage of the cases where the LDRG algorithm was able to improve on the
ERT delay. The “Winners Only” column reports the average values only for those
instances where the LDRG algorithm was able to improve on the ERT delay. These
results indicate that even the highly delay-optimized ERT can be improved upon
by the LDRG method.

cases, the ERT-based LDRG algorithm affords an average of 2% improvement over ERT delay.
When considering only the cases when ERT-based LDRG wins over ERT, we can realize routing
graphs with as much as 4% improvement over ERTs on average. This implies that there exist
non-tree routings which can beat the optimal tree routing (since is was shown by Boese et al.

[4] that the average delay of ERTs is only 2% away from optimal).

13

5 Conclusions and Future Directions

In this paper we have explored the consequences of abandoning an implicit restriction common
to previous routing formulations, namely the insistence on a strictly acyclic (tree) routing
topology. Instead, we reformulated the routing problem as one of constructing a routing graph
with low delay. We have shown that adding extra wires can often improve signal propagation
delay by exploiting the tradeoff between the capacitance and resistance in a circuit. While
adding extra wires to a routing tree increases the overall routing capacitance, such extra wires
can cause the resistance between the source and some pins to be dramatically reduced, thus

enabling a routing with superior delay characteristics.

In order to obtain realistic results, we used SPICE to determine the efficacy of our methods.
Our results are very encouraging: the addition of a single new wire/edge to an existing minimum
spanning tree routing can improve the average signal propagation delay by up to 24%, while
the average interconnection cost increases by only 11%, depending on net size. The delay
performance of our method is competitive with the best existing tree constructions [4], yet
our average wirelength is significantly better. Our methods are highly efficient, and extend to
various routing regimes. Future work entails addressing several natural related formulations,
including Steiner graph routing, a critical sink variant, and a wire-sized version of the ORG

problem, as discussed below.

5.1 Critical Sink Routing

The ORG problem minimizes individual net delay but ignores the interdependence of nets in
the overall circuit. In other words, the ORG problem concentrates on net-dependent objectives,
rather than path-dependent objectives based on pre-defined critical paths. Following the formu-
lation of [5], a path-dependent variant of the ORG problem can be defined as follows. For each
sink n; in N we can associate a criticality «;, reflecting the timing information obtained during
the performance-driven placement phase. Our goal is to construct a routing graph G = (N, E)

which minimizes the weighted sum of the sink delays:

The Critical-Sink Optimal Routing graph (CSORG) Problem: Given a signal net

14

N = {ng,n1, ..., n;} with source ng and possibly varying sink criticalities a; > 0,7 = 1,... k,

construct a routing graph G' = (N, E') such that Zle a; - t(n;) is minimized.

The CSORG problem formulation is quite general. For example, it captures traditional perfor-
mance criteria for routing trees: (i) we can minimize average delay to all sinks by using all «; =
some positive constant; and (ii) another variation can be used to solve the simple, but practical
case where exactly one critical sink neog has been identified, i.e., «cg = 1 and all other «; = 0.

The CSORG problem for the special case where G is a tree is studied in [4].

5.2 Wire Sizing

Having two separate parallel wires of width w running between two pins is equivalent to having a
single wire of width 2w. Some of the wires added by our algorithms may therefore be “merged”
with adjacent wires to yield wider wires. Our ORG problem may thus be further generalized

to model wire widths as follows:

Wire-Sized Optimal Routing Graph (WSORG) Problem: Given a signal net N =
{no,n1,...,ng} with source ng, construct a weighted routing graph G = (N, E), E C N x N,

with edge width function w : F'— R, such that ¢{(G) = mfalx t(n;) is minimized.

In this formulation the wire width function w determines the width of each edge in the routing
graph G, and the delay function #(G) also depends on the wire widths. In most practical
applications a discrete grid is used for layout, and thus the range of w may be restricted to
the integers. Intuitively, wider wires near the source pin would tend to reduce overall signal
propagation delay. Future work would investigate the WSORG problem, especially the case

where (7 1s a tree.

5.3 Combinations

Naturally, various extensions to the basic ORG problem may be combined, to yield general

multi-objective routing formulations, such as:

15

Hybrid Optimal Routing Graph (HOR.G) Problem: Given asignalnet N = {ng,n1, ..., np}
with source ng, and sink criticalities a; > 0, 7 = 1,...,k, find a set S of Steiner points and
construct a weighted routing graph G = (N U S, E), E C (N US) x (N US), with edge width

function w : £ — %, such that Zle a; - t(n;) is minimized.

Note that the HORG problem subsumes all the other formulations stated above. On the other
hand, such a general formulation as the HORG problem will be correspondingly more difficult

to address effectively.

6 Acknowledgments

We wish to thank Mary Lou Jurgens for her help with proofreading. Many thanks go to Kevin
McLaughlin, and Professors Andy Schwab, Hugh Landes, and Michael Shur of the University

of Virginia Electrical Engineering Department for their help with SPICE.

References

[1] C. J. AvpErT, T. C. Hu, J. H. HUuANG, AND A. B. KAHNG, A Direct Combination of
the Prim and Digkstra Constructions for Improved Performance-Driven Global Routing, in
Proc. TEEE Intl. Symp. on Circuits and Systems (to appear), Chicago, TL, May 1993.

[2] T. BARRERA, J. GRIFFITH, , G. ROBINS, AND T. ZHANG, Narrowing the Gap: Near-
Optimal Steiner Trees in Polynomial Time, in Proc. TEEE Intl. ASTIC Conf. (to appear),
Rochester, NY, September 1993.

[3] T. BARRERA, J. GRIFFITH, S. A. McKEE, G. ROBINS, AND T. ZHANG, Toward a Steiner

Engine: Enhanced Serial and Parallel Implementations of the Iterated 1-Steiner Algorithm,
in Great Lakes Symposium on VLSI, Kalamazoo, MI, March 1993, pp. 90-94.

[4] K. D. BoEkse, A. B. Kauna, B. A. McCoy, aND G. RoBINS, Towards Optimal Routing
Trees, in to appear in ACM/SIGDA Physical Design Workshop, Lake Arrowhead, CA,
April 1993.

[5] K. D. BoEese, A. B. Kauna, AND G. RoOBINS, High-Performance Routing Trees With
Identified Critical Sinks, in Proc. ACM/TEEE Design Automation Conf. (to appear), Dal-
las, June 1993.

[6] P. K. CuaN aAND K. Karprus, Compuling Signal Delay in General RC Networks by
Tree/Link Partitioning, IEEE Trans. on Computer-Aided Design, 9 (1990), pp. 898-902.

16

[7]

(8]

[9]

[10]

[11]

[12]

[19]

[20]

J. CoHooN AND J. RANDALL, Critical Net Routing, in Proc. IEEE Intl. Conf. on Computer
Design, Cambridge, MA| October 1991, pp. 174-177.

J. Cona, A. B. KauNG, G. RoBINS, M. SARRAFZADEH, AND C. K. WoNG, Provably
Good Performance-Driven Global Routing, IEEE Trans. on Computer-Aided Design, 11
(1992), pp. 739-752.

W. E. DoNnaTH, R. J. NorMaN, B. K. Agrawar, S. E. BerLo, S. Y. Han, J. M.
KURTZBERG, P. Lowy, AND R. I. MCMILLAN, Timing Driven Placement Using Complete
Path Delays, in Proc. ACM/IEEE Design Automation Conf., 1990, pp. 84-89.

A. E. Dunror, V. D. Agrawar, D. DrurscH, M. F. JukL, P. KoOZAK, AND
M. WigsEL, Chip Layout Optimization Using Critical Path Weighting, in Proc.
ACM/IEEE Design Automation Conf., 1984, pp. 133-136.

W. C. ELMORE, The Transient Response of Damped Linear Networks with Particular
Regard to Wide-Band Amplifiers, J. Appl. Phys., 19 (1948), pp. 55-63.

M. A. B. Jackson, E. S. KuH, AND M. MAREK-SADOWSKA, Timing-Driven Routing
for Building Block Layout, in Proc. IEEE Intl. Symp. on Circuits and Systems, 1987,
pp- 518-519.

A. B. KauNG AND G. RoOBINS, A New Class of Iterative Steiner Tree Heuristics With
Good Performance, TEEE Trans. on Computer-Aided Design, 11 (1992), pp. 893-902.

I. Lin anp D. H. C. Du, Performance-Driven Constructive Placement, in Proc.
ACM/IEEE Design Automation Conf., 1990, pp. 103-106.

M. MAREK-SADOWSKA AND S. P. LIN, Timing Driven Placement, in Proc. IEEE Intl.
Conf. on Computer-Aided Design, Santa Clara, CA, November 1989, pp. 94-97.

L. NAGEL, SPICE2: A Computer Program to Simulate Semiconductor Circuits, May 1975.

S. PRASITIUTRAKUL AND W. J. KuBiTZ, A Timing-Driven Global Router for Custom
Chip Design, in Proc. IEEE Intl. Conf. on Computer-Aided Design, Santa Clara, CA,
November 1990, pp. 48-51.

B. T. PrREAS AND M. J. LORENZETTI, Physical Design Automation of VLSI Systems,
Benjamin/Cummings, Menlo Park, CA, 1988.

J. RUBINSTEIN, P. PENFIELD, AND M. A. HoOrROWITZ, Signal Delay in RC Tree Networks,
TEEE Trans. on Computer-Aided Design, 2 (1983), pp. 202-211.

S. SUTANTHAVIBUL AND E. SHRAGOWITZ, An Adaptive Timing-Driven Layout for High
Speed VLSI, in Proc. ACM/TEEE Design Automation Conf., 1990, pp. 90-95.

17

