Ada Binding Reference Manual -

SAFENET Lightweight Application Services

Bert J. Dempseyohn C. Fenton, Jedy R. Michel,
Alexander S.Vdterman and Alfred Baver

Computer Networks Laboratory
University of Mrginia

1. Introduction

This manual describes the Ada binding to the SAFENET Lightweight Application

Services. The binding consists of several Ada package specifications which contain data

types and subprograms that provide the lightweight service primitives described in chapter

four of reference [1]. This manual describes the services provided by each Ada package in

terms of the data types and subprograms defined therein. Portions of this report were

prepared while one of the authors {Jbfichel) was in residence at the Software

Engineering Institute in July 1992.

2. Application Program I nterface Semantics

The binding consists of the following Ada packages.

LW_ADDRESS_MANAGEMENT
LW_COMMUNICATIONS_SUPPOR
LW_CONNECTION_MANAGEMENT
LW_DATA_TRANSFER
LW_ERROR_MANAGEMENT
LW_PROTOCOL_MANAGEMENT
LW_TRANSACTION_SERICES

The following subsections describe the abstractions provided by the data types

declared in each package and the binding primitives provided by the subprograms. For each

primitive its semantics, including the exceptions it may raise, and the data structures it uses

are discussed.

2.1. LW_ADDRESS MANAGEMENT

The primitivesin this package provide directory servicesto an application program.
They alow an application to bind logical names to physical addresses, remove address
bindings, look up address bindings, and discover the number of address bindingsthat exist.
The Ada binding does not specify whether address bindings are local to an application
program or distributed among several application programs that also use the SLA suite.
However, in the current implementation of the Ada binding, address bindings are local to

an application program.1

with LW COVMUNI CATI ONS_SUPPOCRT;

package LW ADDRESS MANAGEMENT is
package LWCS renanes LW COVMUNI CATI ONS_SUPPORT;

type ADDRESS ID is private;

An ADDRESS | D denotes a specific and existing logical-name-to-physical-
address binding. It may be used to refer to an address binding in a call to another address
management primitive, or it may be used to succinctly specify the network and transport

address of a communication endpoint.

t ype PHYSI CAL_ADDRESS i s new LWCS. BYTE_BUFFER,
pragma PACK (PHYSI CAL_ADDRESS) ;

The PHYSI CAL_ADDRESS type may contain the FDDI MAC or 1SO network
address (NSAP) of agiven host computer or may contain the address of a transport service
access point (TSAP) within agiven host. Thistype is defined simply in terms of bytes, so
that no address format is inherent in the definition. However, the length of the physical
address must conform to that of the address type it containsif the physical addressisto be
valid. In accordance with chapter 5 of reference[2], aMAC address must be six byteslong
(section 5.2.6), a network address must be 20 bytes long (section 5.2.4), and a transport
address must be four bytes long (section 5.2.3.3).

1. Future plans exist to provide an implementation in which distributed address binding is supported.

procedur e Bl ND_ADDRESS

(NAME cin LWCS. LOG CAL_NAME;
NETWORK cin PHYSI CAL_ADDRESS;
TRANSPORT cin PHYSI CAL_ADDRESS;
1D : out ADDRESS |ID);

The Bl ND_ADDRESS primitive binds an unbound logical name, NAME, to the
ordered pair (NETWORK, TRANSPORT) of physical addresses. It provides an address
identifier 1D which can be used to identify the address binding in other
LW ADDRESS MANAGEMENT primitives or to provide an address of a communication
endpoint. It is permissible to have more than one logical name bound to one ordered pair
of physical addresses. It isnot permissible, however, to bind onelogical name to more than
one (NETWORK, TRANSPORT) address pair. That is, if NAVE is already bound, this call
raises the exception LOE CAL_NAVE_ALREADY BOUND ERROR. If the network or
transport address is not a valid address, the call raises the exception
| NVALI D_NETWORK_ADDRESS ERROR or | NVALI D_TRANSPORT _ADDRESS
ERROR, respectively. In the case of an exception, the value of | D is undefined.

procedur e UNBI ND_ADDRESS
(NAME in LWCS. LOd CAL_NAME) ;

procedur e UNBI ND_ADDRESS
(ID ©in ADDRESS_| D) ;

The UNBI ND_ADDRESS primitive removes address bindings. It is overloaded to
remove bindings specified by either logical name, NAME, or addressidentifier, | D. If NAVE
is not bound to an address, or the binding referred to by | D no longer exists, the primitive
raises the exception NONEXI STENT _BI NDI NG_ERROR.

procedur e LOOKUP

(NAME cin LWCS. LOG CAL_NAME;
NETWORK : out PHYSI CAL_ADDRESS;
TRANSPORT : out PHYSI| CAL_ADDRESS;
1D : out ADDRESS |ID);

procedur e LOOKUP

(1D cin ADDRESS_| D;

NETWORK : out PHYSI CAL_ADDRESS;
TRANSPORT : out PHYSI| CAL_ADDRESS;
NAVE : out LWCS. LOGd CAL_NAME) ;

The LOOKUP primitive returns bindings. It is overloaded to search for bindings
given either alogical name NAME, or an addressidentifier | D. In either case, the NETWORK
and TRANSPORT parameters are set to the corresponding addresses of the address binding.
When the search is based on a logical name, the call provides the address identifier | D
associated with the binding. Conversely, when the search is based on the address identifier
| D the call provides the logical name NAME. If NAME is not bound to an address, or the
binding referred to by | D no longer exists, the primitive raises the exception
NONEXI STENT_BI NDI NG_ERRCR. If the network or transport address is not a valid
address, the call raises the exception | NVALI D_NETWORK _ADDRESS ERROR or
| NVALI D_TRANSPORT_ADDRESS ERRCR, respectively. In the case of an exception,

the values of the out parameters are undefined.

functi on NUVBER OF ADDRESSES BOUND
return NATURAL;

end LW ADDRESS MANAGEMENT;

The NUMBER_OF _ADDRESSES BOUND primitive returns the number of address
bindings that presently exist.

Note that all address bindings are made by the application program after its

execution. Bindings do not persist after termination of the application program.

2.2.LW_COMMUNICATIONS SUPPORT

The primitives and data types declared in this package provide fundamental data

structures and operations on activities. Activities are discussed bel ow.

with SYSTEM,;
package LW_COMMUNICATIONS_SUPPORT is

LOGICAL_NAME_LENGTH : constant := 255;
subtype LOGICAL_NAME is STRING (1 .. LOGICAL_NAME_LENGTH);

A LOGICAL_NAMEs a fixed-length character string which provides a logical
name for the physical address of a communication endpoint. This physical address is the

pair of network and transport addresses of the communication endpoint.

type UNSIGNED_BYTE is range O .. 255;
for UNSIGNED_BYTE'SIZE use 8;

type BYTE_BUFFER is array (INTEGER range <>) of UNSIGNED_BYTE;
pragma PACK (BYTE_BUFFER);

MAX_INITIAL_DATA_BUFFER_SIZE : constant := 65535 - 76;

MAX_DATA_BUFFER_SIZE : constant := 65535;

subtype DATA_BUFFER_SIZE is INTEGER range 1 .. MAX_DATA_BUFFER_SIZE;
type DATA_BUFFER is array (DATA_BUFFER_SIZE range <>) of UNSIGNED_BYTE;
pragma PACK (DATA_BUFFER);

INITIAL_DATA_BUFFER_OVERHEAD : constant := 76;

MAX_INITIAL_DATA_ BUFFER_SIZE : constant := MAX_DATA_BUFFER_SIZE -
INITIAL_DATA_BUFFER_OVERHEAD;

subtype INITIAL_DATA BUFFER_SIZE is INTEGER range
1.. MAX_INITIAL_DATA BUFFER_SIZE;

type INITIAL_DATA_BUFFER is array (INITIAL_DATA_BUFFER_SIZE range <>) of
UNSIGNED_BYTE;

pragma PACK (INITIAL_DATA_BUFFER);

The DATA_BUFFERmay be used to hold data in primitives which do not require
an address. In contrast, the INITIAL_DATA BUFFER may be used to hold data in
primitives in which the addresses of the sending or receiving endpoints are provided. This
type of data buffer has adightly smaller maximum length than DATA_BUFFERIue to the
addressing overhead, INITIAL_DATA BUFFER_OVERHEADassociated with theinitial
data.

type MESSAGE_PRIORITY is range O .. 255;
for MESSAGE_PRIORITY'SIZE use 32;

The MESSAGE_PRIORITYindicates the priority of the data sent by a sending
primitive. Higher numerical values indicate higher priorifjie semantics are such that

data of higher priority is processed by lower layer protocols before data of lower priority

subtype ACTIVITY_INDEX is NATURAL;
type ACTIVITY_MODE is (ASYNCHRONOUS, SYNCHRONOUS);
type ACTIVITY_STATE is (ERROR, IN_PROGRESS, NONEXISTENT, SUCCESS);

type ACTIVITY_BLOCK is
record
BYTES_RECEIVED : NATURAL;
END_OF_MESSAGE : BOOLEAN;
MODE : ACTIVITY_MODE;
PRIORITY : MESSAGE_PRIORITY;
end record;

type ACTIVITY_BLOCK_POINTER is private;

The above types are all associated with the idea of an “activity”. An activity
represents the execution of a binding primitive ACTIVITY _INDEX is a handle on an
activity which is being performed asynchronou8ych indices are returned by primitives
which are executed asynchronously and may be used to refer to the prsnaitigettion
in calls to certain primitives described belaweACTIVITY_ _MODEallows the execution
of a primitive to be specified as asynchronous or synchronous. An activity may be in any
of the states defined by the tyRETIVITY_STATE. See Appendix A for a description of
the activity state model. AACTIVITY_BLOCK_POINTER provides a reference to an
activity block so that the components of the block may be accessed when an asynchronous

activity completes.

The ACTI VI TY_BLOCK indicates scheduling parameters for an activitge
meanings of its components are as follows. When MBBE component is set to
ASYNCHRONQUS, the calling Ada taskdoes not block waiting for the communication
primitive’s request to finish. Instead the subprogram call may complete before the activity
completes. The only way an application may determine if an activity has completed is via
a call to theGET_ACTI VI TY_STATE orWAI T_ON_ACTI VI TY primitives declared in
this package. When thdODE component is set tBYNCHRONCOUS, the task blocks for an
unbounded amount of time until the communication primisiagtivity complete?s Note
that an activity may complete either successfully or in ePomitives which accept

neither an activity block nor an activity block pointer are performed synchronously

The values of theBYTES RECEI VED, END_OF MESSACGE and PRI ORI TY
components of the activity block havefdient meanings depending on whether they are
used in primitives which send data or receive it. For sending primitives the meanings are as

follows.

In a sending primitive the END OF MESSAGE, PRIORITY, and
BYTES_RECEI VED components have the following semantics. EN®_OF NMESSAGE
component applies in the following way to the connection-oriented primitives
SEND MESSACE andGET_MESSACE, declared in the packagi&V DATA TRANSFER.

When sefTRUE, END_OF MESSACE serves to mark a message boundary at the end of the
byte stream of the message sent to the destination endpoint. When such a message arrives
at the destination endpoint, the receiving primitive completes its execution, immediately
returning the data it has received up to the message boundary even ifehgileeh in the
receiving primitive is not yet full. IEND_OF MESSAGE is setFALSE, the sending
primitive does not mark a message boundary at the end of the message sent to the

destination endpoint. When such a message arrives at the destination endpoint, the

1. Unless stated otherwise, semantics that apply to an Ada task also apply to the maingrogram’
thread of control. For brevityhe discussion is in terms of tasks.
2. A provision for bounding blocking is provided in Appendix A of reference [3].

receiving primitive will not deliver the data sent in the sending primitive until either the
receiver’s data buffer isfull, or the connection closes. For sending unitdata and transaction

primitives, the END_OF_MESSAGE component has a no semantic effect.

The PRI ORI TY component setsthe priority of the message sent in aprimitive. The

BYTES_RECEI VED component has no effect upon the semantics of sending primitives.

For receiving primitives, the meanings of the activity block components
BYTES RECEI VED, END_OF MESSACGE and PRI ORI TY are asfollows. It iscrucial to
note that for asynchronous calls to receive primitives, the components of an activity block
are set asynchronously when the activity completes. For this reason the caller supplies a
pointer to an activity block in the call, rather than the activity block itself. Because the
activity block components are set asynchronously, there are several conditions that must be
met; otherwise, the meanings of the values of these components are undefined. These
conditions apply to both synchronous and asynchronous calls. The conditions are:

» The activity block referenced by the pointer given in the call to a receiving
primitive must not have been given as an actual parameter to any sending
primitive which could possibly execute during the execution of the receiving
primitive.

» The activity block referenced by the pointer given in the call to a receiving
primitive must not be referenced by the pointer given to any other receiving
primitive which could possibly execute during the execution of the receiving
primitive.

» The full execution of the primitive to which the activity block is bound must
have completed successfully. For synchronous calls thisis only the case if no
exception is raised at the point of the call. For asynchronous calls this is only
the case when either a call to the function GET_ACTI VI TY_STATE for the
activity index provided by the receiving primitive’'s call yields the result

SUCCESS, or acall to the procedure WAI T_ON_ACTI VI TY does not raise an
exception.

When the above conditions are met, the BYTES_RECEI VED component holds the
number of bytes placed in the data buffer given to the receiving primitive. The PRI ORI TY
component indicates the priority of the message which caused the data to be delivered to
the application. The message which caused delivery did so because either it (1) was a

unitdata message, a transaction request or a transaction response, or (2) its arrival caused
the receiver’s data buffer tofill, or (3) it had a message boundary marked at its end. For the
GET_MESSAGE primitive, the END_OF _MESSAGE component is set FALSE if amessage
boundary caused the delivery of datato the application, and FAL SE otherwise. In receiving
unitdata and transaction primitives, the END_OF MESSAGE component is set TRUE if the
receive buffer was large enough to contain the entire received message, and FALSE

otherwise.

function GET_ACTI VI TY_BLOCK_PO NTER
(BLOCK S in ACTI VI TY_BLOCK)
return ACTI VI TY_BLOCK PO NTER;

The GET_ACTI VI TY_BLOCK PO NTER primitive takes an activity block,
BLOCK, as its single argument and returns a pointer to the block. This primitive must be
used to provide areference to an activity block for primitives which may receive data. As
mentioned above, these primitives need the address of the activity block so that, in the case
of asynchronous calls, they may asynchronously change components of the activity block

when the activity completes.

functi on GET_ACTI VI TY_STATE
(ID in ACTI VI TY_| NDEX)
return ACTI VI TY_STATE,

The GET_ACTI VI TY_STATE primitive returns the state of the activity referred to
by the identifier, | D. One may query the state of a pending activity an unlimited number of
times to discover when it completes. However, once this call returns an activity state
indicating success, the activity will be unbound from its primitive and shall become
NONEXI STENT. If the call returnsthe result ERROR, the activity shall not be unbound from
its primitive until a call to the GET_ERROR primitive is made. In the case of a call to
GET_ACTI VI TY_STATE with an activity index which is not bound to a primitive,
GET_ACTI VI TY_STATE returns the result NONEXI STENT. Note that synchronous

activities always return an activity index of zero, and this activity index is never bound to

10

any primitive. Hence a query of the state of a synchronous primitive call shall always give

the result NONEXI STENT.

procedure WAI T_ON_ACTIVITY
(1D cin ACTI VI TY_I NDEX) ;

end LW COVWUNI CATI ONS_SUPPORT;

TheWAI T_ON_ACTI VI TY primitive blocks its calling task until the execution of
the activity referred to by theidentifier, I D, completes, placing the activity in the UNKNOMN
state. If the activity completesin error, the primitive rai ses the exception corresponding to
the error encountered. If | Dis not bound to an activity, the primitive raises the exception

ACTI VI TY_UNKNOWN_ERROR.

2.3. LW_CONNECTION_MANAGEMENT

The primitivesin this package provide support for applicationsto create and destroy

connections, modify their options, and check their state.

Wi th LW ADDRESS MANAGEMENT;
wi th LW COVMUNI CATI ONS_SUPPORT;
Wi th LW PROTOCOL_MANAGEMENT;
with SYSTEM

package LW CONNECTI ON_MANAGEMENT i s
package LWAM renanes LW ADDRESS MANAGEMENT;
package LWCS renanes LW COVMUNI CATI ONS_SUPPORT;
package LWPM r enanes LW PROTOCOL_MANAGEMENT;

type CONNECTION_ID is private;

The CONNECTI ON_I Dis a handle on a connection. A valid CONNECTI ON_| D
may only be obtained from an OPEN_CONNECTI ON,
OPEN_CONNECTI ON_W TH_DATA, ACCEPT_CONNECTION or ACCEPT_
CONNECTI ON_W TH_DATA primitive.

11

type CONNECTI ON_STATE i s (ACCEPT REQUEST SENT, GRACEFUL_CLOSE_SENT,
NONEXI STENT, OPEN, OPEN REQUEST SENT, TIMED OUT);

The CONNECTI ON_STATE type represents the state of a particular connection.
The connection state model is described in Appendix B.

type TERM NATE_MODE is (GRACEFUL, | MVEDI ATE);

The TERM NATE_MODE type alows one to specify graceful or immediate

semantics for the close of a connection.

procedur e OPEN_CONNECTI ON

(DESTI NATI ON cin LWAM ADDRESS | D;
SOURCE in LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS sin ACTI VI TY_BLOCK;
PARAVETERS i LWPM CONNECTI ON_PARAMETERS;
OPTI ONS in LWPM MESSAGE_COPTI ONS;
CONNECTI ON : out CONNECTI ON_I D
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The OPEN_CONNECTI ON primitive initiates a connection to the remote endpoint
referred to by the address identifier, DESTI NATI ON, from the endpoint on the local host
referred to by the address identifier, SOURCE. The ACTI VI TY_PARAMETERS block
provides the additional semantics for sending primitives described in section 2.2. The
PARANMETERS parameter provides connection parameters as described in section 2.6. The
OPTI ONS parameter provides message options as described in section 2.6. The primitive
provides a unique connection identifier, CONNECTI ON, which provides a way to refer to
the connection in other binding primitives. The primitive also provides an activity index,
| NDEX. If either DESTI NATI ONor SOURCE areinvalid, the primitive raisesthe exception
| NVALI D_ADDRESS | D_ERROR. If either the SOURCE or DESTI NATI ON addresses
are already in use, or the SOURCE addressis not multicast and refers to an endpoint which
is not on the loca host, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR. If the underlying communications protocol isunableto
dlocate resources for the new connection, the primitive raises the exception

UNABLE_TO ALLOCATE_PROTOCOL_RESOURCES_ERROR. If the DESTI NATI ON

12

endpoint fails to accept the connection before an implementation-defined timeout expires,
the primitive raises the exception COVMUNI CATI ON_ ATTEMPT_TI MED_OUT_ERROR

In the case of an exception, the out parameters are undefined.

procedur e OPEN_CONNECTI ON_W TH_DATA

(DESTI NATI ON i LWAM ADDRESS | D
SOURCE cin LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS cin ACTI VI TY_BLOCK;
DATA cin SYSTEM ADDRESS;
LENGTH i LWCS. | NI TI AL_DATA_BUFFER_SI ZE;
PARAVETERS i LWPM CONNECTI ON_PARAMETERS;
OPTI ONS i LWPM MESSAGE_COPTI ONS;
CONNECTI ON : out CONNECTI ON_I D
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The OPEN_CONNECTI ON_W TH_DATA primitive inherits all the behavior of the
OPEN_CONNECTI ON primitive and aso includes the ability to transmit an initia data
buffer as part of the connection setup procedure. The DATA parameter provides the base
address of the contiguous data buffer to betransferred, and the LENGTH parameter specifies
the length, in bytes, of the buffer. If any part of the data buffer is not at a valid memory
address, the primitive raises the exception | NVALI D_PARAMETERS ERROR. In the case

of an exception, the out parameters are undefined.

procedure ACCEPT_CONNECTI ON

(RECEI VER Cin LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS Cin ACTI VI TY_BLOCK_PO NTER;
PARAVETERS Cin LWPM CONNECTI ON_PARAVETERS;
OPTI ONS Cin LWPM MESSAGE_OPTI ONS;
CONNECTI ON : out CONNECTI ON | D;
| NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The ACCEPT_CONNECTI ON primitive awaits a connection to the local address
referred to by the address identifier, RECEI VER. The ACTI VI TY_PARAMETERS block
provides the additional semantics for receiving primitives described in section 2.2. The
PARANMETERS parameter provides connection parameters as described in section 2.6. The
OPTI ONS parameter provides message options as described in section 2.6. The primitive
provides a unique connection identifier, CONNECTI ON, which provides a way to refer to

the connection in other binding primitives. The primitive also provides an activity index,

13

| NDEX. If RECEIVER is not vaid, the primitive raises the exception
| NVALI D_ADDRESS | D_ERROR. If the RECEI VER address is already in use or is not
multicast and refers to a remote host, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR. If the underlying communications protocol isunableto
allocate resources for the new connection, the primitive raises the exception
UNABLE_TO ALLOCATE_PROTOCOL_RESOURCES ERROR In the case of an

exception, the out parameters are undefined.

procedur e ACCEPT_CONNECTI ON_ W TH_DATA

(RECEI VER cin LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS cin ACTI VI TY_BLOCK_PO NTER;
DATA sin SYSTEM ADDRESS;
BUFFER_SI ZE i LWCS. DATA BUFFER_SI ZE;
PARAVETERS i LWPM CONNECTI ON_PARAMETERS;
OPTI ONS cin LWPM MESSAGE_COPTI ONS;
CONNECTI ON : out CONNECTI ON_I D
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The ACCEPT_CONNECTI ON_W TH_DATA primitive inherits all the behavior of
the ACCEPT_CONNECTI ON primitive and also includes the ability to receive data as part
of the connection setup procedure. The DATA parameter provides the base address of the
contiguous data buffer which isto hold received data, and the BUFFER_SI ZE parameter
specifies the size, in bytes, of the buffer. If any part of the data buffer is not at a valid
memory address and is used to recelve data, the primitive raises the exception
| NVALI D_PARAMETERS_ERROR. In the case of an exception, the out parameters are
undefined.

procedure ALLOW PENDI NG JO NS
(CONNECTION : in CONNECTION_ID);

The ALLOW PENDI NG JO NS primitive accepts all pending opens which
attempt to join the in-progress multicast connection indicated by the connection identifier,
CONNECTI ON. If CONNECTI ONdoes not refer to aknown connection, the primitive raises
the exception CONNECTI ON_UNKNOWN_ERROR . If the connection is either not multicast
or is in the GRACEFUL_ CLOSE SENT state, the primitive raises the exception

14

| NVALI D_OPERATI ON_ERROR. If the connection is in the TI MED_OUT state, the
primitive raises the exception CONNECTI ON_TI MED_OUT_ERROR.

procedure CLOSE_CONNECTI ON

(CONNECTI ON in CONNECTI ON_I D
MODE i TERM NATE_MCDE;
ACTI VI TY_PARAMETERS i ACTI VI TY_BLOCK;
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The CLOSE_CONNECTI ON primitive closes the connection identified by
CONNECTI ON. The connection may be closed in one of two modes specified by the MODE
parameter. If MODE is GRACEFUL, the connection is not closed until all outstanding sends
on the connection are complete. If MODE is | MVEDI ATE, the connection is closed
immediately without regard to any outstanding sends on the connection. The
ACTI VI TY_PARAMETERS block provides the additional semantics for sending
primitives described in section 2.2. The primitive also provides an activity index, | NDEX.
If CONNECTION is not known to exist, the primitive raises the exception
CONNECTI ON_UNKNOWN_ERROR. If the connection is in the
GRACEFUL_CLOSE_SENT state and MODE is GRACEFUL, the primitive raises the
exception | NVALI D_OPERATI ON_ERRCR If the connectionisinthe Tl MED_OUT state
and MODE is CGRACEFUL, the primitive raises the exception
CONNECTI ON_TI MED_QOUT_ERROR. In the case of an exception, the out parameter is
undefined.

procedure CLOSE_CONNECTI ON_W TH_DATA

(CONNECTI ON Tin CONNECT! ONLI D
ACTI VI TY_PARAMETERS i ACTI VI TY_BLOCK;
DATA in SYSTEM ADDRESS;
LENGTH cin LWCS. DATA_BUFFER_SI ZE;
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The CLOSE_CONNECTI ON_W TH_DATA primitive inherits all the behavior of
the CLOSE_CONNECTI ON primitive with MODE set to GRACEFUL and aso includes the
ability to transmit data as part of the connection shutdown procedure. The DATA parameter

provides the base address of the contiguous data buffer to be transferred, and the LENGTH

15

parameter specifies the length, in bytes, of the buffer. If any part of the data buffer isnot at
a vaid memory address, the primitive raises the exception
| NVALI D_PARAMETERS ERRCR If the connection is in the
GRACEFUL__CLOSE_SENT state or is amulticast receiving endpoint, the primitive raises
the exception | NVALI D_OPERATI ON_ERROR. If the connection isin the TI MED_OUT
state, the primitive raises the exception CONNECTI ON_TI MED_OUT_ERROR. In the case

of an exception, the out parameter is undefined.

procedure CLOSE_ALL_CONNECTI ONS

(MODE Cin TERM NATE_MODE;
ACTI VI TY_PARAMVETERS S in ACTI VI TY_BLOCK;
| NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The CLOSE_ALL_CONNECTI ONS primitive closes all existing connections of the
application program. The MODE, ACTI VI TY_PARANMETERS, and | NDEX parameters
have the same meaning as in the CLOSE_CONNECTI ON primitive. It is not an error to

close all connections when none exist.

procedur e UPDATE_CONNECTI ON_OPTI ONS
(CONNECTI ON 1 in CONNECTI ON_I D
OPTI ONS cin LWPM MESSAGE_OPTI ONS) ;

The UPDATE_CONNECTI ON_OPTI ONS primitive changes the message options
which apply to each subsequent message sent on the connection identified by
CONNECTI ON. The OPTI ONS parameter provides the message options described in
section 2.6. If CONNECTI ON does not exist, the primitive raises the exception
CONNECTI ON_UNKNOWN_ERROR. If the connection is in the
GRACEFUL_CLOSE_SENT state, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR. If the connection is in the TI MED_OUT state, the
primitive raises the exception CONNECTI ON_TI MED_OUT _ERROR

functi on GET_CONNECTI ON_STATE
(CONNECTI ON in CONNECTI ON_I D)
return CONNECTI ON_STATE;

16

The GET_CONNECTI ON_STATE primitive returns the state of the connection
specified by CONNECTI ON. If CONNECTI ONis not known to exist, the primitive returns
the state NONEXI STENT and does not raise an exception.

procedure GET_REMOTE_ENDPO NT

(CONNECTI ON i CONNECT! ONLI D
NETWORK : out LWAM PHYSI CAL_ADDRESS;
TRANSPORT : out LWAM PHYS| CAL_ADDRESS) ;

end LW CONNECTI ON_MANAGEMENT;

The GET_REMOTE_ENDPO NT primitive returns the network and transport
addresses, NETWORK and TRANSPORT, respectively, of the remote endpoint of the
connection, CONNECT| ON. If CONNECTI ONisnot known to exist, the primitive raisesthe
exception CONNECTI ON_UNKNOWN_ERRCR. If CONNECTION is in the
ACCEPT_REQUEST _SENT dstate, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR.

24. LW_DATA_TRANSFER

The primitivesin this package provide support for applications to send messagesto
one another. Messages may be sent or received along the byte stream of a connection or as

a complete unit between specified endpoints.

Wi th LW ADDRESS MANAGEMENT;

wi th LW COVMUNI CATI ONS_SUPPORT;
Wi th LW CONNECTI ON_MANAGENMENT;
Wi th LW PROTOCOL_MANAGEMENT;
with SYSTEM

package LW DATA TRANSFER i s
package LWAM renanmes LW ADDRESS MANAGEMENT;
package LWCS renanes LW COVMMUNI CATI ONS_SUPPORT;
package LWCM renanes LW CONNECTI ON_MANAGEMENT;
package LWPM r enanes LW PROTOCOL_MANAGEMENT;

17

procedure SEND MESSAGE

(CONNECTI ON in LWCM CONNECTI ON_I D
ACTI VI TY_PARAMETERS i ACTI VI TY_BLOCK;
DATA i SYSTEM ADDRESS;
LENGTH cin LWCS. DATA_BUFFER _SI ZE;
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The SEND_MESSAGE primitive sends a message over the connection specified by
CONNECTI ON. The ACTI VI TY_PARANMETERS block provides the additional semantics
for sending primitives described in section 2.2. The DATA parameter provides the base
address of the contiguous data buffer to betransferred, and the LENGTH parameter specifies
the length, in bytes, of the buffer. The primitive also provides an activity index, | NDEX.
If any part of the data buffer is not at a valid memory address, the primitive raises the
exception | NVALI D_PARAMETERS _ERROR. If CONNECTI ON does not exist, the
primitive raises the exception CONNECTI ON_UNKNOWN_ERRCR. If the connection isin
the GRACEFUL_CLOSE_SENT state or is a multicast receiving endpoint, the primitive
raises the exception | NVALI D_PARAMETERS ERROR. If the connection is in the
TI MED_QOUT state, the primitive raises the exception
CONNECTI ON_TI MED_QOUT_ERROR. In the case of an exception, the out parameter is
undefined.

procedure CGET_MESSAGE

(CONNECTI ON in LWCM CONNECTI ONLI D;
ACTI VI TY_PARAMETERS Tin ACTI VI TY_BLOCK_PO NTER;
DATA i SYSTEM ADDRESS;
BUFFER_SI ZE in LWCS. DATA_BUFFER_SI ZE;
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The GET_MESSAGE primitive receives amessage over the connection specified by
CONNECTI ON. The ACTI VI TY_PARAMETERS block provides the additional semantics
for receiving primitives described in section 2.2. The DATA parameter provides the base
address of the contiguous data buffer which is to hold received data, and the
BUFFER _SI ZE parameter specifies the size, in bytes, of the buffer. The primitive also
provides an activity index, | NDEX. If any part of the data buffer is not at a valid memory

address and is used to receive data, the primitive raises the exception

18

| NVALI D_PARAMETERS ERROR. If CONNECTI ON does not exist, the primitive raises
the exception CONNECTI ON_UNKNOAN _ERROR. If the connection is in the
GRACEFUL_CLOSE_SENT state or is a multicast sending endpoint, the primitive raises
the exception | NVALI D_OPERATI ON_ERROR. If the connection isin the TI MED _OUT
state, the primitive raises the exception CONNECTI ON_TI MED_OUT_ERROR. In the case

of an exception, the out parameter is undefined.

procedur e SEND_UNI TDATA

(DESTI NATI ON i LWAM ADDRESS | D
SOURCE cin LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS cin ACTI VI TY_BLOCK;
DATA in SYSTEM ADDRESS;
LENGTH sin LWCS. | NI TI AL_DATA_BUFFER_SI ZE;
OPTI ONS i LWPM UNI TDATA_OPTI ONS;
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The SEND_UNI TDATA primitive reliably sends a complete message to the remote
endpoint referred to by the address identifier, DESTI NATI ON, from the endpoint on the
local host referred to by the address identifier, SOURCE. The ACTI VI TY_PARAMETERS
block providesthe additional semanticsfor sending primitives described in section 2.2. The
DATA parameter provides the base address of the contiguous data buffer to be transferred,
and the LENGTH parameter specifies the length, in bytes, of the buffer. The OPTI ONS
parameter provides unitdata options as described in section 2.6. The primitive also provides
an activity index, | NDEX. If either DESTI NATI ON or SOURCE are invalid, the primitive
raises the exception | NVALI D_ADDRESS | D ERRCR. If either the SOURCE or
DESTI NATI ON addresses are already in use, or the SOURCE address is not multicast and
refers to an endpoint which is not on the local host, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR. If the underlying communications protocol is unable to
allocate resources for the unitdata message, the primitive raises the exception
UNABLE_TO ALLOCATE_PROTOCOL_RESOURCES ERROR. If the DESTI NATI ON
endpoint fails to accept the connection before a implementation-defined timeout expires,
the primitive raises the exception COVMUNI CATI ON_ATTEMPT_TI MED _OUT_ERROR

If any part of the data buffer is not at a valid memory address, the primitive raises the

19

exception | NVALI D_PARAMETERS ERROR. If the connection is in the
GRACEFUL_CLOSE_SENT state, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR. If the connection is in the TI MED_OUT state, the
primitive raises the exception CONNECTI ON_TI MED OUT_ERROR. In the case of an

exception, the out parameter is undefined.

procedure GET_UN TDATA

(RECEI VER i LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS i ACTI VI TY_BLOCK_PO NTER;
DATA i SYSTEM ADDRESS;
BUFFER_SI ZE cin LWCS. | NI TI AL_DATA BUFFER _SI ZE;
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

end LW DATA TRANSFER;

The GET_UNI TDATA primitive receives a complete message sent to the local
address referred to by the addressidentifier, RECEI VER. The ACTI VI TY_PARAMETERS
block provides the additional semantics for receiving primitives described in section 2.2.
The DATA parameter provides the base address of the contiguous data buffer which is to
hold received data, and the BUFFER _SI ZE parameter specifies the size, in bytes, of the
buffer. The primitive also provides an activity index, | NDEX. If RECElI VER isnot valid,
the primitive raises the exception | NVALI D_ADDRESS | D _ERROR . If the RECEI VER
addressisaready in use or is not multicast and refers to aremote host, the primitive raises
the exception | NVALI D_OPERATI ON_ERRCR. If the underlying communications
protocol is unable to allocate resources necessary to receive the message, the primitive
raises the exception UNABLE_TO ALLOCATE PROTOCOL_RESOURCES ERROR. If
any part of the data buffer isnot at a valid memory address and is used to receive data, the
primitive raises the exception | NVALI D_PARAMETERS ERROR. In the case of an

exception, the out parameter is undefined.

20

2.5.LW_ERROR_MANAGEMENT

The primitive in this package provides definitions of all errors and exceptions and
provides support for an application to discover the error associated with an asynchronous

primitive.

wi th LW COMMUNI CATI ONS_SUPPCRT;

package LW ERROR_MANAGEMENT i s
package LWCS renanmes LW COVMUNI CATI ONS_SUPPORT;

type LWERROR i s (ACTI VI TY_UNKNOWN, COVMUNI CATI ON ATTEMPT_TI MED_OUT,
CONNECTI ON_TI MED_OUT, CONNECTI ON_UNKNOWN, | NVALI D_ADDRESS | D,
I NVALI D_LOG CAL_NAME, | NVALI D_MAC ADDRESS, | NVALI D_NETWORK ADDRESS,
| NVALI D_OPERATI ON, | NVALI D_PARAMETERS, | NVALI D TRANSPORT ADDRESS,
LOG CAL_NAME_ALREADY BOUND, LW PROTOCOL_NOT | NI TI ALI ZED, NONE,
NONEXI STENT_BI NDI NG, TRANSACTI ON_UNKNOWW,
UNABLE_TO ALLOCATE_PROTOCOL_RESOURCES,
UNABLE_TO | NI TI ALI ZE_LW PROTOCOL,
UNABLE_TO TERM NATE_LW PROTOCOL) ;

ACTI VI TY_UNKNOWN_ERROR, COVMUNI CATI ON_ATTEMPT_TI MED_OUT_ERRCR,
CONNECTI ON_TI MED_QOUT_ERRCR, CONNECT! ON_UNKNOWN_ERROR,
I NVALI D_ADDRESS_| D_ERROR, | NVALI D_LOG CAL_NAME_ERROR,
I NVALI D_MAC_ADDRESS_ERROR, | NVALI D_NETWORK_ADDRESS_ERROR,
I NVALI D_OPERATI ON_ERRCR, | NVALI D_PARAMETERS_ERROR,
| NVALI D_TRANSPORT_ADDRESS ERROR, LOG CAL_NAME_ALREADY_BOUND_ERROR,
LW PROTOCOL_NOT_I NI TI ALI ZED_ERROR, NONEXI STENT_BI NDI NG_ERRCR,
TRANSACTI ON_UNKNOWN_ERRCR,
UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERRCR,
UNABLE_TO_I NI TI ALI ZE_LW PROTOCCL_ERROR,
UNABLE_TO _TERM NATE_LW PROTOCOL_ERROR : exception;

The LW_ERROR type includes codes for al errors which may be returned by the
GET_ERROR primitive below. Each error corresponds to an exception. These exceptions

may be raised by one or more binding primitivesin the event of an error.

functi on GET_ERROR
(ID in LWCS. ACTI VI TY_I NDEX)
return LW ERROR,

end LW ERROR_MANAGEMENT;

The CGET_ERRCR primitive returns the error, if any, associated with the
asynchronous primitive referred to by the activity index, | D. If an error has occurred during

the execution of the primitive after itscall completed, it isreturned and the activity referred

21

to byl Dbecomes nonexistent. If there is no error associated with the prisgxecution,
the primitive returndNONE and| D remains bound. If D is not bound to an activityhis
call raises the exceptiohCTI VI TY_UNKNOAWN_ERROR

2.6. LW_PROTOCOL_MANAGEMENT

The primitives and data types declared in this package provide support for
applications to initialize the underlying transport protocol, Xaid expose or modify
protocol parameters and defaults. The primitives are unique relative to those of other
packages due to the fact that they are system activities. Hence, their scope is that of the host
computer on which the application runs, not just that of the application program in which

they are performed.

wi th LW ADDRESS_MANAGEMENT;

package LW PROTOCOL_MANAGEMENT i s
package LWAM renanmes LW ADDRESS MANAGEMENT;

type ERROR CONTROL_MODE is (AGGRESSI VE, NONE, NORMAL):

The ERROR_CONTROL_ MODE type indicates the form of error control used by
XTP. AGGRESSI VE corresponds to setting the XHASTNAK option,NONE corresponds
to setting theNCERR option, andNORMAL corresponds to having tHeASTNAK and
NCERR options not set.

type FLOW CONTROL_MODE is (DI SABLED, ENABLED, RESERVATI ON_MODE);

TheFLOW CONTRCL_ MODE type indicates the form of flow control used by XTP
DI SABLED corresponds to setting the XN&FL ONoption;ENABLED corresponds to not
settingNOFLOW andRESERVATI ON_MODE corresponds to setting tRES option.

type ADDRESS | N TIALI ZE MODE i s (ESTABLI SH _ADDRESS,
READ PREDETERM NED_ADDRESS) ;

The ADDRESS | NI TI ALI ZE_MODE type is used to specify dynamic or static
host address assignment inkid Tl ALI ZE LW PROTOCOL primitive discussed belaw

22

subt ype HOUR_DURATI ON i s DURATION range 0.0 .. 3600.0;

HOUR_DURATI ONis used to limit the value of WAI T_TI MEQUT to one hour.

The CONNECTI ON_PARAMETERS, MESSAGE_OPTI ONS, and UNI TDATA
OPTI ONS types are used in various primitives to allow an application accessto parameters
of the underlying transport service provider, the Xpress Transfer Protocol. Many of the
parameters map directly to X TP protocol parameters listed in Figure 2-6 of reference [4].
Others map indirectly to protocol options found in the XTP header. For complete
descriptions of the semantics of these protocol parameters and options, see references [4]
and [5]. The correspondence of the Ada binding protocol parameters to XTP parameters

and options is given by the table below.

Ada Binding Parameter XTP Parameter/Option Units
ALLOW JO NS none none
BURST burst bytes
NO_CHECKSUM NOCHECK none
CONNECTI ON_TI ME CTIMEOUT seconds
ERROR_CONTROL FASTNAK, NCERR none
FLOW CONTROL NOFLOW RES none
| NACTI VI TY_TI MEQUT CTIMER seconds
LI FETI ME ttl seconds
MBUCKETS Number of buckets buckets
MULTI CAST MULTI none
RATE rate bytes/second
WAl T_TI MEOUT WTIMER seconds

Table 4.1 Correspondence of Ada Binding and X TP Parameters/Options

23

Note that the ALLOW JO NS parameter does not map to any XTP parameter or
option; rather, it indicates that multicast receivers may join an in-progress multicast

conversation on a given multicast connection at any time.

type CONNECTI ON_PARAVETERS i s

record
BURST . PCSI Tl VE;
ERROR_CONTROL : ERROR_CONTROL_TYPE;
FLOW CONTROL . FLOW CONTROL_TYPE;
MBUCKETS . PCSI Tl VE;
MULTI CAST : BOOLEAN;
RATE . PCSI Tl VE;

end record;

The CONNECTI ON_PARANETERS type indicates parameters which apply to a
connection over itsentire lifetime. Such parameters may not be altered after the connection
has been established.

type MESSAGE OPTIONS is

record
ALLON JO NS : BOOLEAN;
NO_CHECKSUM : BOOLEAN;
CONNECTI ON_TI ME . DURATI ON;
I NACTI VI TY_TI MEQUT . DURATI ON;
LI FETI ME . DURATI ON;
WAl T_TI MEQUT ;. DURATI ON;

end record;

The MESSAGE_OPTI ONS type indicates options which apply to messages sent
between communication endpoints. These options may be altered during the lifetime of a

connection.

24

type UNI TDATA OPTIONS is

record
BURST . PCSI Tl VE;
NO_CHECKSUM . BOOLEAN,
CONNECTI ON_TI ME . DURATI ON;
ERROR_CONTROL : ERROR_CONTROL_TYPE;
FLOW CONTROL : FLOW CONTROL_TYPE;
I NACTI VI TY_TI MEQUT . DURATI ON;
LI FETI ME . DURATI ON;
MBUCKETS . PCSI Tl VE;
MULTI CAST . BOOLEAN,
RATE . PCSI Tl VE;
WAI T_TI MEOUT . DURATI ON;

end record;

The UNI TDATA OPTI ONS type indicates options which apply to a unitdata

transfer.

procedure I N Tl ALI ZE_LW PROTOCOL

(MAC © in out LWAM PHYSI CAL_ADDRESS;
NETWORK © in out LWAM PHYSI CAL_ADDRESS;
MODE S in ADDRESS_| NI TI ALl ZE_MODE;
CONNECTI ON_DEFAULTS : out CONNECTI ON_PARANETERS;
MESSAGE_DEFAULTS : out NMESSAGE_CPTI ONS;

UNI TDATA_DEFAULTS : out UNI TDATA_CPTI ONS) ;

The | NI TI ALI ZE_LW PROTOCOL primitive places the underlying transport
service provider in itsinitial state, supplies it with the address of its host computer, and
provides the application with the default protocol parameters. The meaning of the MAC and
NETWORK parameters depends upon the value of ADDRESS | NI Tl ALI ZE_MODE. If this
modeis set to ESTABLI SH_ADDRESS, then the MAC and NETWORK parameters are used
to set the media access control and network addresses which will identify the host. On the
other hand, if the vaue of ADDRESS IN TlIALIZE MODE is seat to
READ PREDETERM NED_ ADDRESS, the MAC and network addresses of the host are set
to predetermined values and these values are returned in the MAC and NETWORK
parameters. The CONNECTI ON_DEFAULTS, VESSAGE _DEFAULTS, and
UNI TDATA DEFAULTS parameters are set to the default values configured into the
transport protocol implementation. These defaults are returned by the service provider so

that applications may use the settings recommended for use with the underlying protocol.

25

If the protocol has already been initialized, this call servesto re-initializeit. If MACisnot a
valid MAC address, the call raises the exception | NVALI D_MAC _ADDRESS ERROR. If
NETWORK is not a valid network address, the call raises the exception
| NVALI D_NETWORK ADDRESS ERRCR. If the protocol fails to initialize itself within
an implementation-defined time interval, the primitive raises the exception
UNABLE_TO I NI TI ALI ZE_LW PROTOCOL_ERRCR. In the case of an exception, the
values of the out parameters are undefined. If an attempt to use the protocol is made before
the protocol has been initialized, the primitive making the attempt shall raise the exception,
LW PROTOCOL_NOT | NI TI ALI ZED_ERROR.

procedure TERM NATE LW PROTOCOL;

The TERM NATE LW PROTOCCL primitive places the underlying transport
service provider in an inactive state. In such a state the protocol shall not perform any
services until it isre-initialized. If the protocol is already terminated, the call has no effect
and returns immediately. If the protocol fails to terminate itself within an implementation-
defined time interval the primitive raises the exception
UNABLE_TO TERM NATE_LW PROTOCOL_ERROR.

procedur e UPDATE_PROTOCOL_PARAMETERS

(CONNECTI ON_DEFAULTS Tin CONNECT! ON_PARAMETERS;
VESSAGE_DEFAULTS i MVESSAGE_OPTI ONS;
UNI TDATA_DEFAULTS in UNI TDATA_OPTI ONS) ;

The UPDATE_PROTOCCOL_PARAMETERS primitive provides the underlying
transport service with new default protocol parameters. The CONNECTI ON_DEFAULTS,
MESSAGE DEFAULTS, and UNI TDATA DEFAULTS parameters indicate the new
default protocol parameter and option values that the implementation shall provide to

inquiring applications. These defaults do not persist past re-initialization of the protocol.

26

procedur e RETURN PROTOCOL_PARAMETERS

(MAC : out LWAM PHYSI CAL_ADDRESS;
NETWORK : out LWAM PHYSI CAL_ADDRESS;
CONNECTI ON_DEFAULTS : out CONNECTI ON_PARANETERS;
MESSAGE_DEFAULTS : out NMESSAGE_CPTI ONS;

UNI TDATA_DEFAULTS : out UNI TDATA_CPTI ONS)

end LW PROTOCOL_MANAGEMENT;

The RETURN _PROTOCOL_PARAMETERS primitive exposes the addresses
identifying the host computer and current defaults for protocol parameters and options to
be used with the underlying transport service. The MAC and NETWORK parameters are set
to the current media access control and network addresses that identify the host. The
CONNECTI ON_DEFAULTS, MESSAGE DEFAULTS, and UNI TDATA DEFAULTS
parameters are set to the default protocol parameter and option val ues recommended for use
with the underlying transport protocol, XTP. If MAC is not a valid MAC address, the call
raises the exception | NVALI D_MAC ADDRESS ERROR. If NETWORK is not a valid
network address, the call raises the exception | NVALI D_NETWORK ADDRESS ERROR

In the case of an exception, the out parameters are undefined.

2.7. LW_TRANSACTION_SERVICES

The primitives in this package provide support for applications to initiate, accept,

and respond to transactions.

27

Wi th LW ADDRESS MANAGEMENT;

Wi th LW COVMUNI CATI ONS_SUPPORT;
with LW DATA TRANSFER

Wi th LW PROTOCOL_MANAGEMENT;

Wi th SYSTEM

package LW TRANSACTI ON_SERVI CES i s

package LWAM renanes LW ADDRESS MANAGEMENT;
package LWCS renanmes LW COVMUNI CATI ONS_SUPPORT;
package LWDT renames LW DATA TRANSFER

package LWPM r enanes LW PROTOCOL_MANAGEMENT;

type TRANSACTION ID is private;

A TRANSACTI ON_| Disahandle on atransaction. A valid TRANSACTI ON | D

may only result from a successfully accepted transaction request and may only be used in

sending a transaction response.

procedur e TRANSACTI ON_REQUEST

(DESTI NATI ON in
SOURCE in
ACTI VI TY_PARAMETERS in
REQUEST_DATA cin
REQUEST _LENGTH in
RESPONSE_DATA in
BUFFER_SI ZE in
OPTI ONS in
| NDEX :

out

LWAM ADDRESS _| D;
LWAM ADDRESS _| D;

ACTI VI TY_BLOCK;

SYSTEM ADDRESS;

LWCS. | NI TI AL_DATA_BUFFER_SI ZE;
SYSTEM ADDRESS;

LWCS. DATA_BUFFER Sl ZE;

LWPM UNI TDATA_OPTI ONS;

LWCS. ACTI VI TY_I NDEX) ;

The TRANSACTI ON_REQUEST primitive initiates a transaction with the remote

endpoint referred to by the address identifier, DESTI NATI ON, from the endpoint on the
local host referred to by the address identifier, SOURCE. The local endpoint transfers a

reguest to the remote endpoint which later sendsits response back to thelocal endpoint. The
ACTI VI TY_PARAMETERS block provides the dual semantics for both sending and

receiving primitives described in section 2.2. The dual semantics are supported as follows.

The ASYNCHRONCUS, PRI ORI TY and END_OF MESSAGE parameters apply to the

request. However, the BYTES RECEI VED parameter applies to the response. The

REQUEST _DATA parameter provides the base address of the contiguous data buffer to be

transferred to the remote endpoint, and the REQUEST_LENGTH parameter specifies the

length, in bytes, of the buffer. The RESPONSE DATA parameter provides the base address

28

of the contiguous data buffer which is to hold response data received from the remote
endpoint, and the BUFFER _SI ZE parameter specifies the size, in bytes, of the buffer.The
OPTI ONS parameter provides unitdata options as described in section 2.6. The primitive
also provides an activity index, | NDEX. If either DESTI NATI ONor SOURCE arenot valid,
the primitive raises the exception | NVALI D_ADDRESS | D_ERROR. If ether the
SOURCE or DESTI NATI ON addresses are already in use, or the SOURCE addressrefersto
an endpoint which is not on the local host, the primitive raises the exception
| NVALI D_OPERATI ON_ERROR. If the underlying communications protocol isunableto
allocate resources for the transaction, the primitive raises the exception
UNABLE_TO ALLOCATE_PROTOCCOL_RESOURCES ERROR. If the DESTI NATI ON
endpoint fails to accept the transaction request before a implementation-defined timeout
expires, the primitive raises the exception
COMVUNI CATI ON_ATTEMPT_TI MED_OUT_ERROR. If any part of the data bufferslie
outside the address space of the program and are used to hold transported data, the primitive
raises the exception | NVALI D_PARAMETERS _ERROR. In the case of an exception, the

out parameter and the response data are undefined.

procedur e ACCEPT_TRANSACTI ON_REQUEST

(RECEI VER cin LWAM ADDRESS | D;
ACTI VI TY_PARAMETERS cin ACTI VI TY_BLOCK_PO NTER;
REQUEST_DATA in SYSTEM ADDRESS;
BUFFER_SI ZE i LWCS. | NI TI AL_DATA_BUFFER_SI ZE;
TRANSACTI ON : out TRANSACTI ON_I D
I NDEX : out LWCS. ACTI VI TY_I NDEX) ;

The ACCEPT_TRANSACTI ON primitive awaits a transaction request made to the
local address referred to by the address identifier, RECEI VER. The
ACTI VI TY_PARAMETERS block provides the additional semantics for receiving
primitives described in section 2.2. The primitive provides a unique transaction identifier,
TRANSACTI ON, which provides a way to refer to the connection in the
SEND_TRANSACTI ON_RESPONSE primitive described below. The REQUEST _DATA

parameter provides the base address of the contiguous data buffer which is to hold the

29

request data, and the BUFFER _SI ZE parameter specifies the size, in bytes, of the buffer.
The primitive also provides an activity index, | NDEX. If RECElI VERIisnot avalid address
identifier, the primitive raises the exception | NVALI D_ADDRESS | D_ERROR. If the
RECEI VER address is already in use or specifies a remote host, the primitive raises the
exception | NVALI D_OPERATI ON_ERROR. If the underlying communications protocol
is unable to allocate resources for the new connection, the primitive raises the exception
UNABLE_TO ALLOCATE PROTOCOL_RESOURCES ERROR. If any part of the data
buffer isnot at avalid memory address and is used to receive data, the primitive raises the
exception | NVALI D_PARAMETERS ERROR. In the case of an exception, the out

parameters are undefined.

procedur e SEND_TRANSACTI ON_RESPONSE

(TRANSACTI ON S in TRANSACTI ON_I D;
ACTI VI TY_PARAMVETERS S in ACTI VI TY_BLOCK;
RESPONSE_DATA S in SYSTEM ADDRESS;
RESPONSE_LENGTH S in LWCS. DATA_BUFFER Sl ZE;
| NDEX : out LWCS. ACTI VI TY_I NDEX) ;

end LW TRANSACTI ON_SERVI CES;

The SEND_TRANSACTI ON_RESPONSE primitive sends a response message to
the endpoint which initiated the transaction identified by TRANSACTI ON. The
ACTI VI TY_PARAMETERS block provides the additional semantics for sending
primitives described in section 2.2. The RESPONSE_DATA parameter provides the base
address of the contiguous data buffer to be transferred as the transaction response, and the
RESPONSE L ENGTH parameter specifies the length, in bytes, of the buffer. The primitive
also provides an activity index, | NDEX. If any part of the data buffer is not at a valid
memory address, the primitive raises the exception | NVALI D_PARAMETERS ERROR. If
TRANSACTI ON is not known to exist, the primitive raises the exception
TRANSACTI ON_UNKNOWN_ERROR. In the case of an exception, the out parameter is
undefined.

References

[1]
[2]

[3]

[4]

[5]

30

MIL_HDBK-818-1: SAFENET Network Development Guidanthited
States Department of Defense, Septemtgd?2.

MIL_STD-2204: Survivable Adaptable Fiber Optic Embedded Network
(SAFENET) United States Department of Defense, SeptemSe2.

Dempsey Bert J., Fenton, John C., Michel, fie§ R., Waterman,
Alexander S., “SAFENET SLA - Ada Binding,” University oirginia, July
1992.

Xpress Tansfer Potocol Definition: Revision 3,8rotocol Engines, Inc.,
Santa Barbara, California, January 1992.

Strayer W. Timothy, DempseyBert J., and \&aver Alfred C.,XTP: The
Xpress Tansfer Potocol Addison- Vsley Reading, Massachusetts, 1992.

31

Appendix A: Activity State Model

The following diagram indicates the states which an activity may be in and the

eventswhich cause an activity to change state. Theinitial state of an activity is Nonexistent.

Nonexistent

e

An asynchronous primitive call returns without an exception. The execution
of the primitive is now referred to as an activity.

The activity encounters an error.

The activity completes successfully.

A call to GET_ACTI VI TY_STATE is made for the activity.

A cal to GET_ERRORor WAl T_ON_ACTI VI TY is made for the activity.
DorE.

A cal toWAI T_ON_ACTI VI TY is made for the activity.

A cal to GET_ACTI VI TY_STATE or GET_ERROR is made for the
activity.

I @mmoOow

32

Appendix B: Connection State Model

The following diagram indicates the states which a connection may be in and the

events which cause a connection to change state. The initial state of a connection is

Nonexistent.

I GTMmMmoQOw>

Nonexistent

An opening primitive is awaiting a connection accept, but it has not yet arrived.

An accepting primitive is awaiting a connection request, but one has not yet arrived.
The connection request for this connection has been accepted.

A connection request has arrived for this connection.

A graceful close was issued for this connection.

An immediate close was issued for this connection.

The inactivity timer for this connection expired.

The graceful close issued for this connection has completed or F.

A GET_CONNECTI ON_STATE primitive was issued for this connection.

lorF

A SEND_MESSAGE, GET_MESSAGE, UPDATE_MESSAGE_OPTI ONS, ALLOW PENDI NG _
JO NS, or GET_CONNECTI ON_STATE primitive was issued for this connection.

The connection request was not accepted within an implementation-defined time interval.

33

The CLOSE_ALL_CONNECTI ONS primitive is equivdent to a
CLOSE_CONNECTI ON primitive applied to each open connection. For readability it isnot
referred to in the diagram. Note that there is no state transition on a cal to the
SEND_MESSAGE, GET_MESSAGE, ALLOW PENDI NG_JO NS or
UPDATE_MESSAGE_OPTI ONS primitives or a graceful close for connections in states
other than OPEN, OPEN_REQUEST _SENT, and ACCEPT _REQUEST _SENT. If such acall
is made, an exception is raised. If the state is NONEXI STENT, the exception is
CONNECTI ON_UNKNOWN_ERROR. If the state is GRACEFUL_CLOSE_SENT, the
exceptionis| NVALI D_OPERATI ON_ERROR. If the stateis TI MED_OUT, the exception
is CONNECTI ON_TI MED_OUT_ERROR. The GET_REMOTE_ENDPOI NT primitive has

no effect upon the connection state model.

