
Ada Binding Reference Manual -
SAFENET Lightweight Application Services

Bert J. Dempsey, John C. Fenton, Jeffrey R. Michel,
Alexander S.Waterman and Alfred Weaver

Computer Networks Laboratory
University of Virginia

1. Introduction

This manual describes the Ada binding to the SAFENET Lightweight Application

Services. The binding consists of several Ada package specifications which contain data

types and subprograms that provide the lightweight service primitives described in chapter

four of reference [1]. This manual describes the services provided by each Ada package in

terms of the data types and subprograms defined therein. Portions of this report were

prepared while one of the authors (Jeff Michel) was in residence at the Software

Engineering Institute in July 1992.

2. Application Program Interface Semantics

The binding consists of the following Ada packages.

• LW_ADDRESS_MANAGEMENT

• LW_COMMUNICATIONS_SUPPORT

• LW_CONNECTION_MANAGEMENT

• LW_DATA_TRANSFER

• LW_ERROR_MANAGEMENT

• LW_PROTOCOL_MANAGEMENT

• LW_TRANSACTION_SERVICES

The following subsections describe the abstractions provided by the data types

declared in each package and the binding primitives provided by the subprograms. For each

primitive its semantics, including the exceptions it may raise, and the data structures it uses

are discussed.

2

2.1. LW_ADDRESS_MANAGEMENT

The primitives in this package provide directory services to an application program.

They allow an application to bind logical names to physical addresses, remove address

bindings, look up address bindings, and discover the number of address bindings that exist.

The Ada binding does not specify whether address bindings are local to an application

program or distributed among several application programs that also use the SLA suite.

However, in the current implementation of the Ada binding, address bindings are local to

an application program.1

with LW_COMMUNICATIONS_SUPPORT;

package LW_ADDRESS_MANAGEMENT is
package LWCS renames LW_COMMUNICATIONS_SUPPORT;

type ADDRESS_ID is private;

An ADDRESS_ID denotes a specific and existing logical-name-to-physical-

address binding. It may be used to refer to an address binding in a call to another address

management primitive, or it may be used to succinctly specify the network and transport

address of a communication endpoint.

type PHYSICAL_ADDRESS is new LWCS.BYTE_BUFFER;
pragma PACK (PHYSICAL_ADDRESS);

The PHYSICAL_ADDRESS type may contain the FDDI MAC or ISO network

address (NSAP) of a given host computer or may contain the address of a transport service

access point (TSAP) within a given host. This type is defined simply in terms of bytes, so

that no address format is inherent in the definition. However, the length of the physical

address must conform to that of the address type it contains if the physical address is to be

valid. In accordance with chapter 5 of reference [2], a MAC address must be six bytes long

(section 5.2.6), a network address must be 20 bytes long (section 5.2.4), and a transport

address must be four bytes long (section 5.2.3.3).

1. Future plans exist to provide an implementation in which distributed address binding is supported.

3

procedure BIND_ADDRESS
(NAME : in LWCS.LOGICAL_NAME;
NETWORK : in PHYSICAL_ADDRESS;
TRANSPORT : in PHYSICAL_ADDRESS;
ID : out ADDRESS_ID);

The BIND_ADDRESS primitive binds an unbound logical name, NAME, to the

ordered pair (NETWORK, TRANSPORT) of physical addresses. It provides an address

identifier ID which can be used to identify the address binding in other

LW_ADDRESS_MANAGEMENT primitives or to provide an address of a communication

endpoint. It is permissible to have more than one logical name bound to one ordered pair

of physical addresses. It is not permissible, however, to bind one logical name to more than

one (NETWORK, TRANSPORT) address pair. That is, if NAME is already bound, this call

raises the exception LOGICAL_NAME_ALREADY_BOUND_ERROR. If the network or

transport address is not a valid address, the call raises the exception

INVALID_NETWORK_ADDRESS_ERROR or INVALID_TRANSPORT_ADDRESS_

ERROR, respectively. In the case of an exception, the value of ID is undefined.

procedure UNBIND_ADDRESS
(NAME : in LWCS.LOGICAL_NAME);

procedure UNBIND_ADDRESS
(ID : in ADDRESS_ID);

The UNBIND_ADDRESS primitive removes address bindings. It is overloaded to

remove bindings specified by either logical name, NAME, or address identifier, ID. If NAME

is not bound to an address, or the binding referred to by ID no longer exists, the primitive

raises the exception NONEXISTENT_BINDING_ERROR.

4

procedure LOOKUP
(NAME : in LWCS.LOGICAL_NAME;
NETWORK : out PHYSICAL_ADDRESS;
TRANSPORT : out PHYSICAL_ADDRESS;
ID : out ADDRESS_ID);

procedure LOOKUP
(ID : in ADDRESS_ID;
NETWORK : out PHYSICAL_ADDRESS;
TRANSPORT : out PHYSICAL_ADDRESS;
NAME : out LWCS.LOGICAL_NAME);

The LOOKUP primitive returns bindings. It is overloaded to search for bindings

given either a logical name NAME, or an address identifier ID. In either case, the NETWORK

and TRANSPORT parameters are set to the corresponding addresses of the address binding.

When the search is based on a logical name, the call provides the address identifier ID

associated with the binding. Conversely, when the search is based on the address identifier

ID the call provides the logical name NAME. If NAME is not bound to an address, or the

binding referred to by ID no longer exists, the primitive raises the exception

NONEXISTENT_BINDING_ERROR. If the network or transport address is not a valid

address, the call raises the exception INVALID_NETWORK_ADDRESS_ERROR or

INVALID_TRANSPORT_ADDRESS_ERROR, respectively. In the case of an exception,

the values of the out parameters are undefined.

function NUMBER_OF_ADDRESSES_BOUND
return NATURAL;

end LW_ADDRESS_MANAGEMENT;

The NUMBER_OF_ADDRESSES_BOUND primitive returns the number of address

bindings that presently exist.

Note that all address bindings are made by the application program after its

execution. Bindings do not persist after termination of the application program.

5

2.2. LW_COMMUNICATIONS_SUPPORT

The primitives and data types declared in this package provide fundamental data

structures and operations on activities. Activities are discussed below.

with SYSTEM;

package LW_COMMUNICATIONS_SUPPORT is

LOGICAL_NAME_LENGTH : constant := 255;
subtype LOGICAL_NAME is STRING (1 .. LOGICAL_NAME_LENGTH);

A LOGICAL_NAME is a fixed-length character string which provides a logical

name for the physical address of a communication endpoint. This physical address is the

pair of network and transport addresses of the communication endpoint.

type UNSIGNED_BYTE is range 0 .. 255;
for UNSIGNED_BYTE’SIZE use 8;

type BYTE_BUFFER is array (INTEGER range <>) of UNSIGNED_BYTE;
pragma PACK (BYTE_BUFFER);

MAX_INITIAL_DATA_BUFFER_SIZE : constant := 65535 - 76;

MAX_DATA_BUFFER_SIZE : constant := 65535;
subtype DATA_BUFFER_SIZE is INTEGER range 1 .. MAX_DATA_BUFFER_SIZE;
type DATA_BUFFER is array (DATA_BUFFER_SIZE range <>) of UNSIGNED_BYTE;
pragma PACK (DATA_BUFFER);

INITIAL_DATA_BUFFER_OVERHEAD : constant := 76;
MAX_INITIAL_DATA_BUFFER_SIZE : constant := MAX_DATA_BUFFER_SIZE -

INITIAL_DATA_BUFFER_OVERHEAD;
subtype INITIAL_DATA_BUFFER_SIZE is INTEGER range

1 .. MAX_INITIAL_DATA_BUFFER_SIZE;
type INITIAL_DATA_BUFFER is array (INITIAL_DATA_BUFFER_SIZE range <>) of

UNSIGNED_BYTE;
pragma PACK (INITIAL_DATA_BUFFER);

The DATA_BUFFER may be used to hold data in primitives which do not require

an address. In contrast, the INITIAL_DATA_BUFFER may be used to hold data in

primitives in which the addresses of the sending or receiving endpoints are provided. This

type of data buffer has a slightly smaller maximum length than DATA_BUFFER due to the

addressing overhead, INITIAL_DATA_BUFFER_OVERHEAD, associated with the initial

data.

6

type MESSAGE_PRIORITY is range 0 .. 255;
for MESSAGE_PRIORITY’SIZE use 32;

The MESSAGE_PRIORITY indicates the priority of the data sent by a sending

primitive. Higher numerical values indicate higher priority. The semantics are such that

data of higher priority is processed by lower layer protocols before data of lower priority.

subtype ACTIVITY_INDEX is NATURAL;

type ACTIVITY_MODE is (ASYNCHRONOUS, SYNCHRONOUS);

type ACTIVITY_STATE is (ERROR, IN_PROGRESS, NONEXISTENT, SUCCESS);

type ACTIVITY_BLOCK is
record

BYTES_RECEIVED : NATURAL;
END_OF_MESSAGE : BOOLEAN;
MODE : ACTIVITY_MODE;
PRIORITY : MESSAGE_PRIORITY;

end record;

type ACTIVITY_BLOCK_POINTER is private;

The above types are all associated with the idea of an “activity”. An activity

represents the execution of a binding primitive. AnACTIVITY_INDEX is a handle on an

activity which is being performed asynchronously. Such indices are returned by primitives

which are executed asynchronously and may be used to refer to the primitive’s execution

in calls to certain primitives described below. TheACTIVITY_MODE allows the execution

of a primitive to be specified as asynchronous or synchronous. An activity may be in any

of the states defined by the typeACTIVITY_STATE . See Appendix A for a description of

the activity state model. AnACTIVITY_BLOCK_POINTER provides a reference to an

activity block so that the components of the block may be accessed when an asynchronous

activity completes.

7

The ACTIVITY_BLOCK indicates scheduling parameters for an activity. The

meanings of its components are as follows. When theMODE component is set to

ASYNCHRONOUS, the calling Ada task1 does not block waiting for the communication

primitive’s request to finish. Instead the subprogram call may complete before the activity

completes. The only way an application may determine if an activity has completed is via

a call to theGET_ACTIVITY_STATE orWAIT_ON_ACTIVITY primitives declared in

this package. When theMODE component is set toSYNCHRONOUS, the task blocks for an

unbounded amount of time until the communication primitive’s activity completes2. Note

that an activity may complete either successfully or in error. Primitives which accept

neither an activity block nor an activity block pointer are performed synchronously.

The values of theBYTES_RECEIVED, END_OF_MESSAGE and PRIORITY

components of the activity block have different meanings depending on whether they are

used in primitives which send data or receive it. For sending primitives the meanings are as

follows.

In a sending primitive the END_OF_MESSAGE, PRIORITY, and

BYTES_RECEIVED components have the following semantics. TheEND_OF_MESSAGE

component applies in the following way to the connection-oriented primitives

SEND_MESSAGE andGET_MESSAGE, declared in the packageLW_DATA_TRANSFER.

When setTRUE, END_OF_MESSAGE serves to mark a message boundary at the end of the

byte stream of the message sent to the destination endpoint. When such a message arrives

at the destination endpoint, the receiving primitive completes its execution, immediately

returning the data it has received up to the message boundary even if the buffer given in the

receiving primitive is not yet full. IfEND_OF_MESSAGE is setFALSE, the sending

primitive does not mark a message boundary at the end of the message sent to the

destination endpoint. When such a message arrives at the destination endpoint, the

1. Unless stated otherwise, semantics that apply to an Ada task also apply to the main program’s
thread of control. For brevity, the discussion is in terms of tasks.
2. A provision for bounding blocking is provided in Appendix A of reference [3].

8

receiving primitive will not deliver the data sent in the sending primitive until either the

receiver’s data buffer is full, or the connection closes. For sending unitdata and transaction

primitives, the END_OF_MESSAGE component has a no semantic effect.

The PRIORITY component sets the priority of the message sent in a primitive. The

BYTES_RECEIVED component has no effect upon the semantics of sending primitives.

For receiving primitives, the meanings of the activity block components

BYTES_RECEIVED, END_OF_MESSAGE and PRIORITY are as follows. It is crucial to

note that for asynchronous calls to receive primitives, the components of an activity block

are set asynchronously when the activity completes. For this reason the caller supplies a

pointer to an activity block in the call, rather than the activity block itself. Because the

activity block components are set asynchronously, there are several conditions that must be

met; otherwise, the meanings of the values of these components are undefined. These

conditions apply to both synchronous and asynchronous calls. The conditions are:

• The activity block referenced by the pointer given in the call to a receiving
primitive must not have been given as an actual parameter to any sending
primitive which could possibly execute during the execution of the receiving
primitive.

• The activity block referenced by the pointer given in the call to a receiving
primitive must not be referenced by the pointer given to any other receiving
primitive which could possibly execute during the execution of the receiving
primitive.

• The full execution of the primitive to which the activity block is bound must
have completed successfully. For synchronous calls this is only the case if no
exception is raised at the point of the call. For asynchronous calls this is only
the case when either a call to the function GET_ACTIVITY_STATE for the
activity index provided by the receiving primitive’s call yields the result
SUCCESS, or a call to the procedure WAIT_ON_ACTIVITY does not raise an
exception.

When the above conditions are met, the BYTES_RECEIVED component holds the

number of bytes placed in the data buffer given to the receiving primitive. The PRIORITY

component indicates the priority of the message which caused the data to be delivered to

the application. The message which caused delivery did so because either it (1) was a

9

unitdata message, a transaction request or a transaction response, or (2) its arrival caused

the receiver’s data buffer to fill, or (3) it had a message boundary marked at its end. For the

GET_MESSAGE primitive, the END_OF_MESSAGE component is set FALSE if a message

boundary caused the delivery of data to the application, and FALSE otherwise. In receiving

unitdata and transaction primitives, the END_OF_MESSAGE component is set TRUE if the

receive buffer was large enough to contain the entire received message, and FALSE

otherwise.

function GET_ACTIVITY_BLOCK_POINTER
(BLOCK : in ACTIVITY_BLOCK)
return ACTIVITY_BLOCK_POINTER;

The GET_ACTIVITY_BLOCK_POINTER primitive takes an activity block,

BLOCK, as its single argument and returns a pointer to the block. This primitive must be

used to provide a reference to an activity block for primitives which may receive data. As

mentioned above, these primitives need the address of the activity block so that, in the case

of asynchronous calls, they may asynchronously change components of the activity block

when the activity completes.

function GET_ACTIVITY_STATE
(ID : in ACTIVITY_INDEX)
return ACTIVITY_STATE;

The GET_ACTIVITY_STATE primitive returns the state of the activity referred to

by the identifier, ID. One may query the state of a pending activity an unlimited number of

times to discover when it completes. However, once this call returns an activity state

indicating success, the activity will be unbound from its primitive and shall become

NONEXISTENT. If the call returns the result ERROR, the activity shall not be unbound from

its primitive until a call to the GET_ERROR primitive is made. In the case of a call to

GET_ACTIVITY_STATE with an activity index which is not bound to a primitive,

GET_ACTIVITY_STATE returns the result NONEXISTENT. Note that synchronous

activities always return an activity index of zero, and this activity index is never bound to

10

any primitive. Hence a query of the state of a synchronous primitive call shall always give

the result NONEXISTENT.

procedure WAIT_ON_ACTIVITY
(ID : in ACTIVITY_INDEX);

end LW_COMMUNICATIONS_SUPPORT;

The WAIT_ON_ACTIVITY primitive blocks its calling task until the execution of

the activity referred to by the identifier, ID, completes, placing the activity in the UNKNOWN

state. If the activity completes in error, the primitive raises the exception corresponding to

the error encountered. If ID is not bound to an activity, the primitive raises the exception

ACTIVITY_UNKNOWN_ERROR.

2.3. LW_CONNECTION_MANAGEMENT

The primitives in this package provide support for applications to create and destroy

connections, modify their options, and check their state.

with LW_ADDRESS_MANAGEMENT;
with LW_COMMUNICATIONS_SUPPORT;
with LW_PROTOCOL_MANAGEMENT;
with SYSTEM;

package LW_CONNECTION_MANAGEMENT is
package LWAM renames LW_ADDRESS_MANAGEMENT;
package LWCS renames LW_COMMUNICATIONS_SUPPORT;
package LWPM renames LW_PROTOCOL_MANAGEMENT;

type CONNECTION_ID is private;

The CONNECTION_ID is a handle on a connection. A valid CONNECTION_ID

may only be obtained from an OPEN_CONNECTION,

OPEN_CONNECTION_WITH_DATA, ACCEPT_CONNECTION or ACCEPT_

CONNECTION_WITH_DATA primitive.

11

type CONNECTION_STATE is (ACCEPT_REQUEST_SENT, GRACEFUL_CLOSE_SENT,
NONEXISTENT, OPEN, OPEN_REQUEST_SENT, TIMED_OUT);

The CONNECTION_STATE type represents the state of a particular connection.

The connection state model is described in Appendix B.

type TERMINATE_MODE is (GRACEFUL, IMMEDIATE);

The TERMINATE_MODE type allows one to specify graceful or immediate

semantics for the close of a connection.

procedure OPEN_CONNECTION
(DESTINATION : in LWAM.ADDRESS_ID;
SOURCE : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
PARAMETERS : in LWPM.CONNECTION_PARAMETERS;
OPTIONS : in LWPM.MESSAGE_OPTIONS;
CONNECTION : out CONNECTION_ID;
INDEX : out LWCS.ACTIVITY_INDEX);

The OPEN_CONNECTION primitive initiates a connection to the remote endpoint

referred to by the address identifier, DESTINATION, from the endpoint on the local host

referred to by the address identifier, SOURCE. The ACTIVITY_PARAMETERS block

provides the additional semantics for sending primitives described in section 2.2. The

PARAMETERS parameter provides connection parameters as described in section 2.6. The

OPTIONS parameter provides message options as described in section 2.6. The primitive

provides a unique connection identifier, CONNECTION, which provides a way to refer to

the connection in other binding primitives. The primitive also provides an activity index,

INDEX. If either DESTINATION or SOURCE are invalid, the primitive raises the exception

INVALID_ADDRESS_ID_ERROR. If either the SOURCE or DESTINATION addresses

are already in use, or the SOURCE address is not multicast and refers to an endpoint which

is not on the local host, the primitive raises the exception

INVALID_OPERATION_ERROR. If the underlying communications protocol is unable to

allocate resources for the new connection, the primitive raises the exception

UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR. If the DESTINATION

12

endpoint fails to accept the connection before an implementation-defined timeout expires,

the primitive raises the exception COMMUNICATION_ATTEMPT_TIMED_OUT_ERROR.

In the case of an exception, the out parameters are undefined.

procedure OPEN_CONNECTION_WITH_DATA
(DESTINATION : in LWAM.ADDRESS_ID;
SOURCE : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
DATA : in SYSTEM.ADDRESS;
LENGTH : in LWCS.INITIAL_DATA_BUFFER_SIZE;
PARAMETERS : in LWPM.CONNECTION_PARAMETERS;
OPTIONS : in LWPM.MESSAGE_OPTIONS;
CONNECTION : out CONNECTION_ID;
INDEX : out LWCS.ACTIVITY_INDEX);

The OPEN_CONNECTION_WITH_DATA primitive inherits all the behavior of the

OPEN_CONNECTION primitive and also includes the ability to transmit an initial data

buffer as part of the connection setup procedure. The DATA parameter provides the base

address of the contiguous data buffer to be transferred, and the LENGTH parameter specifies

the length, in bytes, of the buffer. If any part of the data buffer is not at a valid memory

address, the primitive raises the exception INVALID_PARAMETERS_ERROR. In the case

of an exception, the out parameters are undefined.

procedure ACCEPT_CONNECTION
(RECEIVER : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK_POINTER;
PARAMETERS : in LWPM.CONNECTION_PARAMETERS;
OPTIONS : in LWPM.MESSAGE_OPTIONS;
CONNECTION : out CONNECTION_ID;
INDEX : out LWCS.ACTIVITY_INDEX);

The ACCEPT_CONNECTION primitive awaits a connection to the local address

referred to by the address identifier, RECEIVER. The ACTIVITY_PARAMETERS block

provides the additional semantics for receiving primitives described in section 2.2. The

PARAMETERS parameter provides connection parameters as described in section 2.6. The

OPTIONS parameter provides message options as described in section 2.6. The primitive

provides a unique connection identifier, CONNECTION, which provides a way to refer to

the connection in other binding primitives. The primitive also provides an activity index,

13

INDEX. If RECEIVER is not valid, the primitive raises the exception

INVALID_ADDRESS_ID_ERROR. If the RECEIVER address is already in use or is not

multicast and refers to a remote host, the primitive raises the exception

INVALID_OPERATION_ERROR. If the underlying communications protocol is unable to

allocate resources for the new connection, the primitive raises the exception

UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR. In the case of an

exception, the out parameters are undefined.

procedure ACCEPT_CONNECTION_WITH_DATA
(RECEIVER : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK_POINTER;
DATA : in SYSTEM.ADDRESS;
BUFFER_SIZE : in LWCS.DATA_BUFFER_SIZE;
PARAMETERS : in LWPM.CONNECTION_PARAMETERS;
OPTIONS : in LWPM.MESSAGE_OPTIONS;
CONNECTION : out CONNECTION_ID;
INDEX : out LWCS.ACTIVITY_INDEX);

The ACCEPT_CONNECTION_WITH_DATA primitive inherits all the behavior of

the ACCEPT_CONNECTION primitive and also includes the ability to receive data as part

of the connection setup procedure. The DATA parameter provides the base address of the

contiguous data buffer which is to hold received data, and the BUFFER_SIZE parameter

specifies the size, in bytes, of the buffer. If any part of the data buffer is not at a valid

memory address and is used to receive data, the primitive raises the exception

INVALID_PARAMETERS_ERROR. In the case of an exception, the out parameters are

undefined.

procedure ALLOW_PENDING_JOINS
(CONNECTION : in CONNECTION_ID);

The ALLOW_PENDING_JOINS primitive accepts all pending opens which

attempt to join the in-progress multicast connection indicated by the connection identifier,

CONNECTION. If CONNECTION does not refer to a known connection, the primitive raises

the exception CONNECTION_UNKNOWN_ERROR. If the connection is either not multicast

or is in the GRACEFUL_CLOSE_SENT state, the primitive raises the exception

14

INVALID_OPERATION_ERROR. If the connection is in the TIMED_OUT state, the

primitive raises the exception CONNECTION_TIMED_OUT_ERROR.

procedure CLOSE_CONNECTION
(CONNECTION : in CONNECTION_ID;
MODE : in TERMINATE_MODE;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
INDEX : out LWCS.ACTIVITY_INDEX);

The CLOSE_CONNECTION primitive closes the connection identified by

CONNECTION. The connection may be closed in one of two modes specified by the MODE

parameter. If MODE is GRACEFUL, the connection is not closed until all outstanding sends

on the connection are complete. If MODE is IMMEDIATE, the connection is closed

immediately without regard to any outstanding sends on the connection. The

ACTIVITY_PARAMETERS block provides the additional semantics for sending

primitives described in section 2.2. The primitive also provides an activity index, INDEX.

If CONNECTION is not known to exist, the primitive raises the exception

CONNECTION_UNKNOWN_ERROR. If the connection is in the

GRACEFUL_CLOSE_SENT state and MODE is GRACEFUL, the primitive raises the

exception INVALID_OPERATION_ERROR. If the connection is in the TIMED_OUT state

and MODE is GRACEFUL, the primitive raises the exception

CONNECTION_TIMED_OUT_ERROR. In the case of an exception, the out parameter is

undefined.

procedure CLOSE_CONNECTION_WITH_DATA
(CONNECTION : in CONNECTION_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
DATA : in SYSTEM.ADDRESS;
LENGTH : in LWCS.DATA_BUFFER_SIZE;
INDEX : out LWCS.ACTIVITY_INDEX);

The CLOSE_CONNECTION_WITH_DATA primitive inherits all the behavior of

the CLOSE_CONNECTION primitive with MODE set to GRACEFUL and also includes the

ability to transmit data as part of the connection shutdown procedure. The DATA parameter

provides the base address of the contiguous data buffer to be transferred, and the LENGTH

15

parameter specifies the length, in bytes, of the buffer. If any part of the data buffer is not at

a valid memory address, the primitive raises the exception

INVALID_PARAMETERS_ERROR. If the connection is in the

GRACEFUL_CLOSE_SENT state or is a multicast receiving endpoint, the primitive raises

the exception INVALID_OPERATION_ERROR. If the connection is in the TIMED_OUT

state, the primitive raises the exception CONNECTION_TIMED_OUT_ERROR. In the case

of an exception, the out parameter is undefined.

procedure CLOSE_ALL_CONNECTIONS
(MODE : in TERMINATE_MODE;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
INDEX : out LWCS.ACTIVITY_INDEX);

The CLOSE_ALL_CONNECTIONS primitive closes all existing connections of the

application program. The MODE, ACTIVITY_PARAMETERS, and INDEX parameters

have the same meaning as in the CLOSE_CONNECTION primitive. It is not an error to

close all connections when none exist.

procedure UPDATE_CONNECTION_OPTIONS
(CONNECTION : in CONNECTION_ID;
OPTIONS : in LWPM.MESSAGE_OPTIONS);

The UPDATE_CONNECTION_OPTIONS primitive changes the message options

which apply to each subsequent message sent on the connection identified by

CONNECTION. The OPTIONS parameter provides the message options described in

section 2.6. If CONNECTION does not exist, the primitive raises the exception

CONNECTION_UNKNOWN_ERROR. If the connection is in the

GRACEFUL_CLOSE_SENT state, the primitive raises the exception

INVALID_OPERATION_ERROR. If the connection is in the TIMED_OUT state, the

primitive raises the exception CONNECTION_TIMED_OUT_ERROR.

function GET_CONNECTION_STATE
(CONNECTION : in CONNECTION_ID)
return CONNECTION_STATE;

16

The GET_CONNECTION_STATE primitive returns the state of the connection

specified by CONNECTION. If CONNECTION is not known to exist, the primitive returns

the state NONEXISTENT and does not raise an exception.

procedure GET_REMOTE_ENDPOINT
(CONNECTION : in CONNECTION_ID;
NETWORK : out LWAM.PHYSICAL_ADDRESS;
TRANSPORT : out LWAM.PHYSICAL_ADDRESS);

end LW_CONNECTION_MANAGEMENT;

The GET_REMOTE_ENDPOINT primitive returns the network and transport

addresses, NETWORK and TRANSPORT, respectively, of the remote endpoint of the

connection, CONNECTION. If CONNECTION is not known to exist, the primitive raises the

exception CONNECTION_UNKNOWN_ERROR. If CONNECTION is in the

ACCEPT_REQUEST_SENT state, the primitive raises the exception

INVALID_OPERATION_ERROR.

2.4. LW_DATA_TRANSFER

The primitives in this package provide support for applications to send messages to

one another. Messages may be sent or received along the byte stream of a connection or as

a complete unit between specified endpoints.

with LW_ADDRESS_MANAGEMENT;
with LW_COMMUNICATIONS_SUPPORT;
with LW_CONNECTION_MANAGEMENT;
with LW_PROTOCOL_MANAGEMENT;
with SYSTEM;

package LW_DATA_TRANSFER is
package LWAM renames LW_ADDRESS_MANAGEMENT;
package LWCS renames LW_COMMUNICATIONS_SUPPORT;
package LWCM renames LW_CONNECTION_MANAGEMENT;
package LWPM renames LW_PROTOCOL_MANAGEMENT;

17

procedure SEND_MESSAGE
(CONNECTION : in LWCM.CONNECTION_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
DATA : in SYSTEM.ADDRESS;
LENGTH : in LWCS.DATA_BUFFER_SIZE;
INDEX : out LWCS.ACTIVITY_INDEX);

The SEND_MESSAGE primitive sends a message over the connection specified by

CONNECTION. The ACTIVITY_PARAMETERS block provides the additional semantics

for sending primitives described in section 2.2. The DATA parameter provides the base

address of the contiguous data buffer to be transferred, and the LENGTH parameter specifies

the length, in bytes, of the buffer. The primitive also provides an activity index, INDEX.

If any part of the data buffer is not at a valid memory address, the primitive raises the

exception INVALID_PARAMETERS_ERROR. If CONNECTION does not exist, the

primitive raises the exception CONNECTION_UNKNOWN_ERROR. If the connection is in

the GRACEFUL_CLOSE_SENT state or is a multicast receiving endpoint, the primitive

raises the exception INVALID_PARAMETERS_ERROR. If the connection is in the

TIMED_OUT state, the primitive raises the exception

CONNECTION_TIMED_OUT_ERROR. In the case of an exception, the out parameter is

undefined.

procedure GET_MESSAGE
(CONNECTION : in LWCM.CONNECTION_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK_POINTER;
DATA : in SYSTEM.ADDRESS;
BUFFER_SIZE : in LWCS.DATA_BUFFER_SIZE;
INDEX : out LWCS.ACTIVITY_INDEX);

The GET_MESSAGE primitive receives a message over the connection specified by

CONNECTION. The ACTIVITY_PARAMETERS block provides the additional semantics

for receiving primitives described in section 2.2. The DATA parameter provides the base

address of the contiguous data buffer which is to hold received data, and the

BUFFER_SIZE parameter specifies the size, in bytes, of the buffer. The primitive also

provides an activity index, INDEX. If any part of the data buffer is not at a valid memory

address and is used to receive data, the primitive raises the exception

18

INVALID_PARAMETERS_ERROR. If CONNECTION does not exist, the primitive raises

the exception CONNECTION_UNKNOWN_ERROR. If the connection is in the

GRACEFUL_CLOSE_SENT state or is a multicast sending endpoint, the primitive raises

the exception INVALID_OPERATION_ERROR. If the connection is in the TIMED_OUT

state, the primitive raises the exception CONNECTION_TIMED_OUT_ERROR. In the case

of an exception, the out parameter is undefined.

procedure SEND_UNITDATA
(DESTINATION : in LWAM.ADDRESS_ID;
SOURCE : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
DATA : in SYSTEM.ADDRESS;
LENGTH : in LWCS.INITIAL_DATA_BUFFER_SIZE;
OPTIONS : in LWPM.UNITDATA_OPTIONS;
INDEX : out LWCS.ACTIVITY_INDEX);

The SEND_UNITDATA primitive reliably sends a complete message to the remote

endpoint referred to by the address identifier, DESTINATION, from the endpoint on the

local host referred to by the address identifier, SOURCE. The ACTIVITY_PARAMETERS

block provides the additional semantics for sending primitives described in section 2.2. The

DATA parameter provides the base address of the contiguous data buffer to be transferred,

and the LENGTH parameter specifies the length, in bytes, of the buffer. The OPTIONS

parameter provides unitdata options as described in section 2.6. The primitive also provides

an activity index, INDEX. If either DESTINATION or SOURCE are invalid, the primitive

raises the exception INVALID_ADDRESS_ID_ERROR. If either the SOURCE or

DESTINATION addresses are already in use, or the SOURCE address is not multicast and

refers to an endpoint which is not on the local host, the primitive raises the exception

INVALID_OPERATION_ERROR. If the underlying communications protocol is unable to

allocate resources for the unitdata message, the primitive raises the exception

UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR. If the DESTINATION

endpoint fails to accept the connection before a implementation-defined timeout expires,

the primitive raises the exception COMMUNICATION_ATTEMPT_TIMED_OUT_ERROR.

If any part of the data buffer is not at a valid memory address, the primitive raises the

19

exception INVALID_PARAMETERS_ERROR. If the connection is in the

GRACEFUL_CLOSE_SENT state, the primitive raises the exception

INVALID_OPERATION_ERROR. If the connection is in the TIMED_OUT state, the

primitive raises the exception CONNECTION_TIMED_OUT_ERROR. In the case of an

exception, the out parameter is undefined.

procedure GET_UNITDATA
(RECEIVER : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK_POINTER;
DATA : in SYSTEM.ADDRESS;
BUFFER_SIZE : in LWCS.INITIAL_DATA_BUFFER_SIZE;
INDEX : out LWCS.ACTIVITY_INDEX);

end LW_DATA_TRANSFER;

The GET_UNITDATA primitive receives a complete message sent to the local

address referred to by the address identifier, RECEIVER. The ACTIVITY_PARAMETERS

block provides the additional semantics for receiving primitives described in section 2.2.

The DATA parameter provides the base address of the contiguous data buffer which is to

hold received data, and the BUFFER_SIZE parameter specifies the size, in bytes, of the

buffer. The primitive also provides an activity index, INDEX. If RECEIVER is not valid,

the primitive raises the exception INVALID_ADDRESS_ID_ERROR. If the RECEIVER

address is already in use or is not multicast and refers to a remote host, the primitive raises

the exception INVALID_OPERATION_ERROR. If the underlying communications

protocol is unable to allocate resources necessary to receive the message, the primitive

raises the exception UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR. If

any part of the data buffer is not at a valid memory address and is used to receive data, the

primitive raises the exception INVALID_PARAMETERS_ERROR. In the case of an

exception, the out parameter is undefined.

20

2.5. LW_ERROR_MANAGEMENT

The primitive in this package provides definitions of all errors and exceptions and

provides support for an application to discover the error associated with an asynchronous

primitive.

with LW_COMMUNICATIONS_SUPPORT;

package LW_ERROR_MANAGEMENT is
package LWCS renames LW_COMMUNICATIONS_SUPPORT;

type LW_ERROR is (ACTIVITY_UNKNOWN, COMMUNICATION_ATTEMPT_TIMED_OUT,
CONNECTION_TIMED_OUT, CONNECTION_UNKNOWN, INVALID_ADDRESS_ID,
INVALID_LOGICAL_NAME, INVALID_MAC_ADDRESS, INVALID_NETWORK_ADDRESS,
INVALID_OPERATION, INVALID_PARAMETERS, INVALID_TRANSPORT_ADDRESS,
LOGICAL_NAME_ALREADY_BOUND, LW_PROTOCOL_NOT_INITIALIZED, NONE,
NONEXISTENT_BINDING, TRANSACTION_UNKNOWN,
UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES,
UNABLE_TO_INITIALIZE_LW_PROTOCOL,
UNABLE_TO_TERMINATE_LW_PROTOCOL);

ACTIVITY_UNKNOWN_ERROR, COMMUNICATION_ATTEMPT_TIMED_OUT_ERROR,
CONNECTION_TIMED_OUT_ERROR, CONNECTION_UNKNOWN_ERROR,
INVALID_ADDRESS_ID_ERROR, INVALID_LOGICAL_NAME_ERROR,
INVALID_MAC_ADDRESS_ERROR, INVALID_NETWORK_ADDRESS_ERROR,
INVALID_OPERATION_ERROR, INVALID_PARAMETERS_ERROR,
INVALID_TRANSPORT_ADDRESS_ERROR, LOGICAL_NAME_ALREADY_BOUND_ERROR,
LW_PROTOCOL_NOT_INITIALIZED_ERROR, NONEXISTENT_BINDING_ERROR,
TRANSACTION_UNKNOWN_ERROR,
UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR,
UNABLE_TO_INITIALIZE_LW_PROTOCOL_ERROR,
UNABLE_TO_TERMINATE_LW_PROTOCOL_ERROR : exception;

The LW_ERROR type includes codes for all errors which may be returned by the

GET_ERROR primitive below. Each error corresponds to an exception. These exceptions

may be raised by one or more binding primitives in the event of an error.

function GET_ERROR
(ID : in LWCS.ACTIVITY_INDEX)
return LW_ERROR;

end LW_ERROR_MANAGEMENT;

The GET_ERROR primitive returns the error, if any, associated with the

asynchronous primitive referred to by the activity index, ID. If an error has occurred during

the execution of the primitive after its call completed, it is returned and the activity referred

21

to byID becomes nonexistent. If there is no error associated with the primitive’s execution,

the primitive returnsNONE andID remains bound. IfID is not bound to an activity, this

call raises the exceptionACTIVITY_UNKNOWN_ERROR.

2.6. LW_PROTOCOL_MANAGEMENT

The primitives and data types declared in this package provide support for

applications to initialize the underlying transport protocol, XTP, and expose or modify

protocol parameters and defaults. The primitives are unique relative to those of other

packages due to the fact that they are system activities. Hence, their scope is that of the host

computer on which the application runs, not just that of the application program in which

they are performed.

with LW_ADDRESS_MANAGEMENT;

package LW_PROTOCOL_MANAGEMENT is
package LWAM renames LW_ADDRESS_MANAGEMENT;

type ERROR_CONTROL_MODE is (AGGRESSIVE, NONE, NORMAL);

The ERROR_CONTROL_MODE type indicates the form of error control used by

XTP. AGGRESSIVE corresponds to setting the XTPFASTNAK option,NONE corresponds

to setting theNOERR option, andNORMAL corresponds to having theFASTNAK and

NOERR options not set.

type FLOW_CONTROL_MODE is (DISABLED, ENABLED, RESERVATION_MODE);

TheFLOW_CONTROL_MODE type indicates the form of flow control used by XTP.

DISABLED corresponds to setting the XTPNOFLOW option;ENABLED corresponds to not

settingNOFLOW, andRESERVATION_MODE corresponds to setting theRES option.

type ADDRESS_INITIALIZE_MODE is (ESTABLISH_ADDRESS,
READ_PREDETERMINED_ADDRESS);

The ADDRESS_INITIALIZE_MODE type is used to specify dynamic or static

host address assignment in theINITIALIZE_LW_PROTOCOL primitive discussed below.

22

subtype HOUR_DURATION is DURATION range 0.0 .. 3600.0;

HOUR_DURATION is used to limit the value of WAIT_TIMEOUT to one hour.

The CONNECTION_PARAMETERS, MESSAGE_OPTIONS, and UNITDATA_

OPTIONS types are used in various primitives to allow an application access to parameters

of the underlying transport service provider, the Xpress Transfer Protocol. Many of the

parameters map directly to XTP protocol parameters listed in Figure 2-6 of reference [4].

Others map indirectly to protocol options found in the XTP header. For complete

descriptions of the semantics of these protocol parameters and options, see references [4]

and [5]. The correspondence of the Ada binding protocol parameters to XTP parameters

and options is given by the table below.

Table 4.1 Correspondence of Ada Binding and XTP Parameters/Options

Ada Binding Parameter XTP Parameter/Option Units

ALLOW_JOINS none none

BURST burst bytes

NO_CHECKSUM NOCHECK none

CONNECTION_TIME CTIMEOUT seconds

ERROR_CONTROL FASTNAK, NOERR none

FLOW_CONTROL NOFLOW, RES none

INACTIVITY_TIMEOUT CTIMER seconds

LIFETIME ttl seconds

MBUCKETS Number of buckets buckets

MULTICAST MULTI none

RATE rate bytes/second

WAIT_TIMEOUT WTIMER seconds

23

Note that the ALLOW_JOINS parameter does not map to any XTP parameter or

option; rather, it indicates that multicast receivers may join an in-progress multicast

conversation on a given multicast connection at any time.

type CONNECTION_PARAMETERS is
record
BURST : POSITIVE;
ERROR_CONTROL : ERROR_CONTROL_TYPE;
FLOW_CONTROL : FLOW_CONTROL_TYPE;
MBUCKETS : POSITIVE;
MULTICAST : BOOLEAN;
RATE : POSITIVE;

end record;

 The CONNECTION_PARAMETERS type indicates parameters which apply to a

connection over its entire lifetime. Such parameters may not be altered after the connection

has been established.

type MESSAGE_OPTIONS is
record
ALLOW_JOINS : BOOLEAN;
NO_CHECKSUM : BOOLEAN;
CONNECTION_TIME : DURATION;
INACTIVITY_TIMEOUT : DURATION;
LIFETIME : DURATION;
WAIT_TIMEOUT : DURATION;

end record;

The MESSAGE_OPTIONS type indicates options which apply to messages sent

between communication endpoints. These options may be altered during the lifetime of a

connection.

24

type UNITDATA_OPTIONS is
record
BURST : POSITIVE;
NO_CHECKSUM : BOOLEAN;
CONNECTION_TIME : DURATION;
ERROR_CONTROL : ERROR_CONTROL_TYPE;
FLOW_CONTROL : FLOW_CONTROL_TYPE;
INACTIVITY_TIMEOUT : DURATION;
LIFETIME : DURATION;
MBUCKETS : POSITIVE;
MULTICAST : BOOLEAN;
RATE : POSITIVE;
WAIT_TIMEOUT : DURATION;

end record;

The UNITDATA_OPTIONS type indicates options which apply to a unitdata

transfer.

procedure INITIALIZE_LW_PROTOCOL
(MAC : in out LWAM.PHYSICAL_ADDRESS;
NETWORK : in out LWAM.PHYSICAL_ADDRESS;
MODE : in ADDRESS_INITIALIZE_MODE;
CONNECTION_DEFAULTS : out CONNECTION_PARAMETERS;
MESSAGE_DEFAULTS : out MESSAGE_OPTIONS;
UNITDATA_DEFAULTS : out UNITDATA_OPTIONS);

The INITIALIZE_LW_PROTOCOL primitive places the underlying transport

service provider in its initial state, supplies it with the address of its host computer, and

provides the application with the default protocol parameters. The meaning of the MAC and

NETWORK parameters depends upon the value of ADDRESS_INITIALIZE_MODE. If this

mode is set to ESTABLISH_ADDRESS, then the MAC and NETWORK parameters are used

to set the media access control and network addresses which will identify the host. On the

other hand, if the value of ADDRESS_INITIALIZE_MODE is set to

READ_PREDETERMINED_ADDRESS, the MAC and network addresses of the host are set

to predetermined values and these values are returned in the MAC and NETWORK

parameters. The CONNECTION_DEFAULTS, MESSAGE_DEFAULTS, and

UNITDATA_DEFAULTS parameters are set to the default values configured into the

transport protocol implementation. These defaults are returned by the service provider so

that applications may use the settings recommended for use with the underlying protocol.

25

If the protocol has already been initialized, this call serves to re-initialize it. If MAC is not a

valid MAC address, the call raises the exception INVALID_MAC_ADDRESS_ERROR. If

NETWORK is not a valid network address, the call raises the exception

INVALID_NETWORK_ADDRESS_ERROR. If the protocol fails to initialize itself within

an implementation-defined time interval, the primitive raises the exception

UNABLE_TO_INITIALIZE_LW_PROTOCOL_ERROR. In the case of an exception, the

values of the out parameters are undefined. If an attempt to use the protocol is made before

the protocol has been initialized, the primitive making the attempt shall raise the exception,

LW_PROTOCOL_NOT_INITIALIZED_ERROR.

procedure TERMINATE_LW_PROTOCOL;

The TERMINATE_LW_PROTOCOL primitive places the underlying transport

service provider in an inactive state. In such a state the protocol shall not perform any

services until it is re-initialized. If the protocol is already terminated, the call has no effect

and returns immediately. If the protocol fails to terminate itself within an implementation-

defined time interval the primitive raises the exception

UNABLE_TO_TERMINATE_LW_PROTOCOL_ERROR.

procedure UPDATE_PROTOCOL_PARAMETERS
(CONNECTION_DEFAULTS : in CONNECTION_PARAMETERS;
MESSAGE_DEFAULTS : in MESSAGE_OPTIONS;
UNITDATA_DEFAULTS : in UNITDATA_OPTIONS);

The UPDATE_PROTOCOL_PARAMETERS primitive provides the underlying

transport service with new default protocol parameters. The CONNECTION_DEFAULTS,

MESSAGE_DEFAULTS, and UNITDATA_DEFAULTS parameters indicate the new

default protocol parameter and option values that the implementation shall provide to

inquiring applications. These defaults do not persist past re-initialization of the protocol.

26

procedure RETURN_PROTOCOL_PARAMETERS
(MAC : out LWAM.PHYSICAL_ADDRESS;
NETWORK : out LWAM.PHYSICAL_ADDRESS;
CONNECTION_DEFAULTS : out CONNECTION_PARAMETERS;
MESSAGE_DEFAULTS : out MESSAGE_OPTIONS;
UNITDATA_DEFAULTS : out UNITDATA_OPTIONS);

end LW_PROTOCOL_MANAGEMENT;

The RETURN_PROTOCOL_PARAMETERS primitive exposes the addresses

identifying the host computer and current defaults for protocol parameters and options to

be used with the underlying transport service. The MAC and NETWORK parameters are set

to the current media access control and network addresses that identify the host. The

CONNECTION_DEFAULTS, MESSAGE_DEFAULTS, and UNITDATA_DEFAULTS

parameters are set to the default protocol parameter and option values recommended for use

with the underlying transport protocol, XTP. If MAC is not a valid MAC address, the call

raises the exception INVALID_MAC_ADDRESS_ERROR. If NETWORK is not a valid

network address, the call raises the exception INVALID_NETWORK_ADDRESS_ERROR.

In the case of an exception, the out parameters are undefined.

2.7. LW_TRANSACTION_SERVICES

The primitives in this package provide support for applications to initiate, accept,

and respond to transactions.

27

with LW_ADDRESS_MANAGEMENT;
with LW_COMMUNICATIONS_SUPPORT;
with LW_DATA_TRANSFER;
with LW_PROTOCOL_MANAGEMENT;
with SYSTEM;

package LW_TRANSACTION_SERVICES is
package LWAM renames LW_ADDRESS_MANAGEMENT;
package LWCS renames LW_COMMUNICATIONS_SUPPORT;
package LWDT renames LW_DATA_TRANSFER;
package LWPM renames LW_PROTOCOL_MANAGEMENT;

type TRANSACTION_ID is private;

A TRANSACTION_ID is a handle on a transaction. A valid TRANSACTION_ID

may only result from a successfully accepted transaction request and may only be used in

sending a transaction response.

procedure TRANSACTION_REQUEST
(DESTINATION : in LWAM.ADDRESS_ID;
SOURCE : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
REQUEST_DATA : in SYSTEM.ADDRESS;
REQUEST_LENGTH : in LWCS.INITIAL_DATA_BUFFER_SIZE;
RESPONSE_DATA : in SYSTEM.ADDRESS;
BUFFER_SIZE : in LWCS.DATA_BUFFER_SIZE;
OPTIONS : in LWPM.UNITDATA_OPTIONS;
INDEX : out LWCS.ACTIVITY_INDEX);

The TRANSACTION_REQUEST primitive initiates a transaction with the remote

endpoint referred to by the address identifier, DESTINATION, from the endpoint on the

local host referred to by the address identifier, SOURCE. The local endpoint transfers a

request to the remote endpoint which later sends its response back to the local endpoint. The

ACTIVITY_PARAMETERS block provides the dual semantics for both sending and

receiving primitives described in section 2.2. The dual semantics are supported as follows.

The ASYNCHRONOUS, PRIORITY and END_OF_MESSAGE parameters apply to the

request. However, the BYTES_RECEIVED parameter applies to the response. The

REQUEST_DATA parameter provides the base address of the contiguous data buffer to be

transferred to the remote endpoint, and the REQUEST_LENGTH parameter specifies the

length, in bytes, of the buffer. The RESPONSE_DATA parameter provides the base address

28

of the contiguous data buffer which is to hold response data received from the remote

endpoint, and the BUFFER_SIZE parameter specifies the size, in bytes, of the buffer.The

OPTIONS parameter provides unitdata options as described in section 2.6. The primitive

also provides an activity index, INDEX. If either DESTINATION or SOURCE are not valid,

the primitive raises the exception INVALID_ADDRESS_ID_ERROR. If either the

SOURCE or DESTINATION addresses are already in use, or the SOURCE address refers to

an endpoint which is not on the local host, the primitive raises the exception

INVALID_OPERATION_ERROR. If the underlying communications protocol is unable to

allocate resources for the transaction, the primitive raises the exception

UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR. If the DESTINATION

endpoint fails to accept the transaction request before a implementation-defined timeout

expires, the primitive raises the exception

COMMUNICATION_ATTEMPT_TIMED_OUT_ERROR. If any part of the data buffers lie

outside the address space of the program and are used to hold transported data, the primitive

raises the exception INVALID_PARAMETERS_ERROR. In the case of an exception, the

out parameter and the response data are undefined.

procedure ACCEPT_TRANSACTION_REQUEST
(RECEIVER : in LWAM.ADDRESS_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK_POINTER;
REQUEST_DATA : in SYSTEM.ADDRESS;
BUFFER_SIZE : in LWCS.INITIAL_DATA_BUFFER_SIZE;
TRANSACTION : out TRANSACTION_ID;
INDEX : out LWCS.ACTIVITY_INDEX);

The ACCEPT_TRANSACTION primitive awaits a transaction request made to the

local address referred to by the address identifier, RECEIVER. The

ACTIVITY_PARAMETERS block provides the additional semantics for receiving

primitives described in section 2.2. The primitive provides a unique transaction identifier,

TRANSACTION, which provides a way to refer to the connection in the

SEND_TRANSACTION_RESPONSE primitive described below. The REQUEST_DATA

parameter provides the base address of the contiguous data buffer which is to hold the

29

request data, and the BUFFER_SIZE parameter specifies the size, in bytes, of the buffer.

The primitive also provides an activity index, INDEX. If RECEIVER is not a valid address

identifier, the primitive raises the exception INVALID_ADDRESS_ID_ERROR. If the

RECEIVER address is already in use or specifies a remote host, the primitive raises the

exception INVALID_OPERATION_ERROR. If the underlying communications protocol

is unable to allocate resources for the new connection, the primitive raises the exception

UNABLE_TO_ALLOCATE_PROTOCOL_RESOURCES_ERROR. If any part of the data

buffer is not at a valid memory address and is used to receive data, the primitive raises the

exception INVALID_PARAMETERS_ERROR. In the case of an exception, the out

parameters are undefined.

procedure SEND_TRANSACTION_RESPONSE
(TRANSACTION : in TRANSACTION_ID;
ACTIVITY_PARAMETERS : in ACTIVITY_BLOCK;
RESPONSE_DATA : in SYSTEM.ADDRESS;
RESPONSE_LENGTH : in LWCS.DATA_BUFFER_SIZE;
INDEX : out LWCS.ACTIVITY_INDEX);

end LW_TRANSACTION_SERVICES;

The SEND_TRANSACTION_RESPONSE primitive sends a response message to

the endpoint which initiated the transaction identified by TRANSACTION. The

ACTIVITY_PARAMETERS block provides the additional semantics for sending

primitives described in section 2.2. The RESPONSE_DATA parameter provides the base

address of the contiguous data buffer to be transferred as the transaction response, and the

RESPONSE_LENGTH parameter specifies the length, in bytes, of the buffer. The primitive

also provides an activity index, INDEX. If any part of the data buffer is not at a valid

memory address, the primitive raises the exception INVALID_PARAMETERS_ERROR. If

TRANSACTION is not known to exist, the primitive raises the exception

TRANSACTION_UNKNOWN_ERROR. In the case of an exception, the out parameter is

undefined.

30

References

[1] MIL_HDBK-818-1: SAFENET Network Development Guidance, United
States Department of Defense, September, 1992.

[2] MIL_STD-2204: Survivable Adaptable Fiber Optic Embedded Network
(SAFENET), United States Department of Defense, September, 1992.

[3] Dempsey, Bert J., Fenton, John C., Michel, Jeffrey R., Waterman,
Alexander S., “SAFENET SLA - Ada Binding,” University of Virginia, July
1992.

[4] Xpress Transfer Protocol Definition: Revision 3.6, Protocol Engines, Inc.,
Santa Barbara, California, January 1992.

[5] Strayer, W. Timothy, Dempsey, Bert J., and Weaver, Alfred C.,XTP: The
Xpress Transfer Protocol, Addison- Wesley, Reading, Massachusetts, 1992.

31

Appendix A: Activity State Model

The following diagram indicates the states which an activity may be in and the

events which cause an activity to change state. The initial state of an activity is Nonexistent.

Nonexistent
In

Progress

Error

Success

B

C

E

F

HF

A: An asynchronous primitive call returns without an exception. The execution
of the primitive is now referred to as an activity.

B: The activity encounters an error.

C: The activity completes successfully.

D: A call to GET_ACTIVITY_STATE is made for the activity.

E: A call to GET_ERROR or WAIT_ON_ACTIVITY is made for the activity.

F: D or E.

G: A call to WAIT_ON_ACTIVITY is made for the activity.

H: A call to GET_ACTIVITY_STATE or GET_ERROR is made for the
activity.

A

D

G

32

Appendix B: Connection State Model

The following diagram indicates the states which a connection may be in and the

events which cause a connection to change state. The initial state of a connection is

Nonexistent.

A: An opening primitive is awaiting a connection accept, but it has not yet arrived.

B: An accepting primitive is awaiting a connection request, but one has not yet arrived.

C: The connection request for this connection has been accepted.

D: A connection request has arrived for this connection.

E: A graceful close was issued for this connection.

F: An immediate close was issued for this connection.

G: The inactivity timer for this connection expired.

H: The graceful close issued for this connection has completed or F.

I: A GET_CONNECTION_STATE primitive was issued for this connection.

J: I or F.

K: A SEND_MESSAGE, GET_MESSAGE, UPDATE_MESSAGE_OPTIONS, ALLOW_PENDING_
JOINS, or GET_CONNECTION_STATE primitive was issued for this connection.

L: The connection request was not accepted within an implementation-defined time interval.

Nonexistent

Accept
Request

Sent

Open
Request

Sent

Open

Graceful
Close
Sent

Timed
Out

BA

C D

G

KK

J

J
K

H

E

L

FF

F

I

E
E

33

The CLOSE_ALL_CONNECTIONS primitive is equivalent to a

CLOSE_CONNECTION primitive applied to each open connection. For readability it is not

referred to in the diagram. Note that there is no state transition on a call to the

SEND_MESSAGE, GET_MESSAGE, ALLOW_PENDING_JOINS or

UPDATE_MESSAGE_OPTIONS primitives or a graceful close for connections in states

other than OPEN, OPEN_REQUEST_SENT, and ACCEPT_REQUEST_SENT. If such a call

is made, an exception is raised. If the state is NONEXISTENT, the exception is

CONNECTION_UNKNOWN_ERROR. If the state is GRACEFUL_CLOSE_SENT, the

exception is INVALID_OPERATION_ERROR. If the state is TIMED_OUT, the exception

is CONNECTION_TIMED_OUT_ERROR. The GET_REMOTE_ENDPOINT primitive has

no effect upon the connection state model.

