To disag%reg_ate or not to disaggregate,
that is not the question

Anand Natrajan and Anh Nguyen-Tuong

Technical Report No. CS-95-18
March 23, 1995

Contact: anand@virginia.edu
Web: ftp://ftp.cs.virginia.edu/pub/techreports/CS-95-18.ps.Z

Published: ELECSIM 95



Published in ELECSIM 95

To disaggregate or not to disaggregate, that is not the question

Anand Natrajan
Anh Nguyen-Tiong

{anand,nguyen}@virginia.edu
Dept. of Computer Science,
University of Virginia

Abstract AWSl Mto MbdSaf efforts. The common approach for
The dichotomy between aggregated and disaggregateldandling interactions between these two worlds has
states is a false one. Itis possible for an aggregated entity to beten to designate areas of the battlefield as “virtual
at many levels of aggregation by storing the relevant data %Iayboxes” in which all interactions are performed at
alllevels. In this papewve propose a schemd\l FY, wherein e entity level [Karr94]. When an aggregated entity
each unit either maintains state information at all aIIowed(AE) enters the playbox, it goes through a

levels of aggregation or furnishes it on demane. pkesent . . . .
problems with traditional approaches towards aggregatior%jlsaggrega’[Ion process whereby the AE is separated into

such as temporal inconsistenoghain disaggregation and |t_s constituent un!ts. These units are said to be
network flooding. W also deal with issues that we envisagediSaggregated entities (DEs). Upon leaving the playbox,

will beset the simulation world such as aggregation ofthese units may reaggregate.

dissimilar entities, dynamic aggregation and the perceiver ~The virtual playbox approach has several

problem. V¢ describe a framework with which these problemsshortcomings: (1) the playbox(es) must be chogen

could be solved or tackled bettée study the benefits and priori, (2) their boundaries are static in many cases,

disadvantages oftNI FY and propose new directions for which means that virtual entities may encounter the

research. Finallywe analyze the demands made by ourhgundary of the box sooner than is desirable, and (3) by

scheme on network, memory and CPU resources. definition, no aggregate-level simulations may occur

inside. However this approach is simple, since

1 Introduction aggregation and disaggregation decisions are reduced to

Distributed simulations can be broadly classified adetermlnlng when the boundary of the playbox is

ith te-] | simulati ructi Trossed.
either aggregate-level simulations (constructive) or A more generic scheme, where aggregation

entity-levgl sir_nulatigns (virtual). Simulated Obj.ECtS in decisions are made dynamicallg clearly preferable.
constructlvg sllmulatlops are sa!d.toetggregated SINCe - The playbox approach hides some issues, which will
they contaln. !nformatlon pertaining to a collectlon. or 1ain importance once alternative approaches are
group of entities. On the other hand, simulated object xamined: (1) temporal inconsistency2) chain

in a virtual simulation are basic entities in the sense thadisaggregation and (3) network floodinge \bropose a
they tend not to be broken down further schemelUNI FY, which solves 1 and 2, and alleviates 3.

There; are tWO. schools c.)f thought regarding The remainder of the paper igganized as follows:
constructive simulations. The first is_that aggregates tion 2 focuses on several issues in designing multi-

level simulations are valid and useful. The second is th%vel simulations. Section 3 describes our framework
the Vghdg of constryctl\t/)e scljmulatlous csrllpc;t tﬁe UNI FY, for designing multi-level simulations. Section 4
proved. . ur. papgr IS based  on t. e belier 1 aﬁiscusses other related work. Sections 5 and 6
constructive simulations are useful [Davis92], and Wherbemonstrate howNI EY tackles the issues discussed

properly designed, valid. helieve that consistency earlier and point out the advantages and disadvantages

models for aggregation and disaggregation, such as ﬂ?ﬁ our scheme. Section 7 addresses the coshbfY.
one in [Davis93] exist, and when they are found, OURp/e present our conclusions in Section 8

scheme will be a strong alternative to the way aggregate
simulations are currently done.

In recent years, there has been a push to linR Issues in multi-level simulations
constructive and virtual simulations, especially We highlight some of the issues faced by multi-
battlefield simulations. Examples of successful linkagegaye| simulations. The first three are traditional
include theBBS to SI MNET, EAGLE to SI MNET, and  yroplems in the sense that they have been well-



recognized by the communitfhe next three are non- 2.3  Network flooding

traditional issues, which we envisage will be faced by )

designers as the simulation world encompasses other N&twork resources may be strained by the acts of
applications, such as environment modeling, socio2d9regation and disaggregation, depending on the

economic modeling and control systems modeling. ~ Scheme used. For example, a proposal in [Robkin92]
required on the order of 10 seconds to complete the

2.1 Temporal inconsistency aggregation process. This was because of the
complexity of the algorithm in which each DE could

Temporal inconsistency [Davis93] occurs when arrequest to be reaggregated, and each could also refuse to
entity performs actions in an interval of time in ape reaggregated, thus stopping the entire process. This
simulation, which it could not have done in a real-life decentralized control means that the network can be
situation. This may happen, for example, during &flooded if every DE decides to reaggregate at the same
disaggregation-aggregation-disaggregation  sequencgme.
The information stored at an aggregated level is not Regardless of the disaggregation scheme used,
suficient to provide temporal consistency at thethere exist cases where it is bettet to disaggregate.
disaggregated level. In other words, in the firstwe do not know of any scheme that handles the
transition, i.e., disaggregated to aggregated, somllowing case [Smith94] well. Consider an airborne
information pertaining to the DEs may be lost, thus thg@econnaissance over a section of the battlefield. The
second transition may result in a disaggregated state thaficraft is interested only in the positions of the
is inconsistent with the first disaggregated state. individual entities and does noffeft them in any way

A set of DEs may reaggregate after the current se{lost schemes to date would require a disaggregation
of interactions that caused it to remain disaggregated agquence as the aircraft flies over an AEcation,
completed. While reaggregating, certain informationbecause the positions of individual entities are not kept
for example, the actual positions of the DEs, might beyt the aggregated level. Furthermore, once the aircraft is
lost. After reaggregation, it may so happen that within &ut of range, the DEs would reaggregate. This scenario

short time, a disaggregation has to béaed. On s more catastrophic if the aircraft returns shortly after
disaggregating again, a standard algorithm or doctringvery reaggregation!

[France93] [Clark94] would be applied to position the
entities. This might cause unrealistic discontinuities in2.4  Aggregation of dissimilar entities

entity states, such as “jumps” in position. ) , .
There exist scenarios where it would make sense to

2.2 Chain disaggregation aggregate entities that might not normally be
aggregated. In climate-modeling, dust and wegror

In a two-level simulation, interactions between AEsmay be modeled independently but when dealing with

should naturally occur at an aggregated level and thosgrge bodies of ajrone may choose to aggregate these.

between DEs at a disaggregated level. Howaweny  The view that AEs are collections of like DEs has come

options arise when AEs interact with DEs. A naivepredominantly out of battlefield simulations. As the field

approach is to disaggregate an AE whenever it comeiversifies, this view may prove restrictive. Aggregation

into sensor proximity of a DE. This, howeyveould  of dissimilar entities makes the configuration problem
cause chain disaggregation, wherein many AEs arf{orr92] more acute.

forced to disaggregate in a short period of time

[Smith94]. Consider a simple case where four AEs ar@.5 Dynamic aggregation

interacting in the following linear fashion (A» B . ) .
indicates that entities A and B interact with each other), ~Dynamic aggregation — where the entities that
ie. AE o AE, o AE, ~ AE, AE, comes into may.be aggregated are d_eC|ded on—the-f!y—m|ght bga
contact with a DE, resulting in its disaggregation. This@auirement for certain kinds of applications. Dynamic
forces AE to disaggregate, followed by ABnd AE. aggregation implies that the entities which could be_
The naive approach causes unnecessary disaggregatiddgregated are not known beforehand. Instead, this
and puts a burden on computing and network resourceS€cision may be postponed until the simulation runs.

Another option is to disaggregate up to some What-if” scenarios are an application of this idea. In

distance in the chain, but this is a rather ineleganrthe context of battl_efleld simulations themselves,
solution since the question of how to handle AE-DECOMManders may wish to make unorthodox force
interactions is still left open. et another option is to 9rouPings. V& have not seen any current schemes that
partially disaggregate the AE interacting with the DE,SUPPOrt dynamic aggregation.

but this can cause consistency problems.



2.6 Perceiver problem with A, it requests entity-level information., AAroceeds
. . ) . . to send information regarding the tanks of interest to T
Different entities might choose to view a partlcular(Fig_ 2). Wpically, this information would be culled
AE at different levels of aggregation. Most schemesg data A maintains on each tank.
hgndle this case by having all the participating entities A, receives information sent from,& “global”
disaggregate to the lowest common level. Instead, iiei4s — fields that are either common to all entities or

should be possible for a perceiver to specify at whatan pe deduced from the individual attributes of the
level of aggregation it wants to perceive entities. Anits (Fig. 3). For example, if T is absent, the velocity of
perceived entity should be designed such that it presenfse individual tanks in Awould not be important, and a
a choice of views to the rest of the simulation. Aglobal velocity vector in A could be sent to A
perceiver can specify a vievand the perceived unit, poyever if T is present, then A velocity vector could

which gets the request in unambiguous terms, can thef, computed as a weighted average of the individual
send the requested information. Note that it is theg|ocities of its constituent tanks.

responsibility of theperceiver to demand the kind of

information and the level of detail from the perceived.3.2  Maintaining consistency between levels
Obviously there would be a “base case” — the

lowermost level of units — agreed upon by the entire ~ Consistency must be maintained between levels of
simulation beforehand. This design is scalable, an@gdgregation. Interactions from T and with A; will

more closely resembles real-life interactions. have to be serialized and operated rtamically (Fig.
2). When A receives a message regarding an interaction

from any other unit, it must process that message fully
3 UNIFY before beginning to process any other message that
We believe that the dichotomy between aggregateghight arrive. The atomic constraint is necessary because
and disaggregated states is a false one. In the scheme interactions at any level mayfedt the other levels. If an
propose, each unit either maintains state information anteraction is from Tthen its diect on A should be
all allowed levels of aggregation or must be able toeflected in subsequent interactions betweeal A.
furnish it on demand. Simulation of the unit entailsIn this instance, information flows from the tank level to
handling incoming interactions about all levels. Eachthe platoon level in A Likewise, if an interaction
unit is responsible for enforcing logical consistencycomes from A, then the state of each tank in Way
across aggregation levels. Thdeef of any incoming have to be updated. Atomicity of interactions, while
interaction has to be reflected in the attributes of all thétrict, ensures that all levels are consistent with each
levels of the unit. other It is worthwhile to note that we have reduced the
For example, a platoon unit composed of four tankgroblem of maintaining consistency between aggregated
would contain information regarding the platoon as welland disaggregated entities to the task of serializing and
as the individual tanks (Fig. 1). Similarlg battalion atomically handling each request arriving to the unit.
unit would have information at the battalion level There exists a two-way relationship between the
regarding each of its platoons. In turn, each of theittributes at dierent levels. If there exists a functién
platoons would contain information regarding themapping a set of disaggregated attributes to an
individual tanks. Note that in this example we haveaggregated attribute, then there must exist at least one
arbitrarily chosen a tree structure to model militaryinverse function f* which maps the aggregated

organization. attribute to the disaggregated attributes. Lack of such an
_ _ inverse function may lead to temporal inconsistency
3.1 Functional description manifesting itself again. The “rules-of-thumb”

. - . . suggested in [Allen92] are useful guidelines in th
The perceiver initiates interactions when another 99 [ | 9 ©

L : . i ff £
unit is within its perception envelope [Sher92]. At this design off and

it th . ts inf tion f th There is a range of options for implementing a unit
point, he perceiver requests information from me_ single-CPU to distributed-network implementations.
perceived unit at the level of aggregation it desires. Thi

. . . i The latter introduces high network latencies while
;g?(\;\ésivgrnslts to be perceived thfently by diferent trying to maintain consistenci{fhe former may put an

tabl th PU.
Let A, and A be platoons of tanks and T be aunaccep able burden on the CPU. Modern parallel

. : . computers, with their fast interconnection networks,
solitary tank. The interactions petweepaﬁnd A occur ¢ ouid provide an BEient compromise.
at an aggregated level. For instance, battalion state
information such as velocity and strength may be

exchanged and acted upon. When T comes into contact



Platoon unit
Platoon state
kPIatoon attributes j
/ Tanks' state \
tank # attributes
tank 1
tank 2 .
tank 3 ..
Ktank 4 ... /

Figure 1 - Higher-Level Unit composed of Lower-level Entities

aggregated-level interacti ons

<Con3| stency Enforcer

/f‘\\

dlsaggregated -level interacti ons |

Figure 2 - Enforcing consistency between 2 levels




O

Az
Figure 3a - Entitiesin asimulation Figure 3b - T'sview of the entities
RNV
T, ) T, )
RN @
A, A

— 1
V12 \ I3
\,/ \,/

/

()
\

Figure 3c - A,’sview of the entities Figure 3d - A;'sview of the entities




4  Related Work 5 Solutions to the problems outlined

An approach to simulations involving aggregates is  UNI FY solves the temporal inconsistency problem.
Selective Vewing and is criticized in [Davis93]. Here, Individual entities (here, tanks) have their own attributes
the simulation is carried out at a higher resolutionthat may be computed independently or may be derived
When information about a lower resolution is requestedfrom global attributes (here, platoon-level attributes).
it is generated from the data at the higher resolution. Aor example, let us address the problem of the position
problem with this approach is that often, the lower of the tanks.
resolution information cannot be generated from the Some number of tanks in platoon, &ngage a
higherresolution information easily Also, by single tank T (Fig. 3). These tanks change position as
simulating at a higher resolution even when notnecessary to enact that battle. After completing all
necessary computing resources are wasted. A keyinteractions with T A, behaves purely as a platoon
difference between Selectivedewing andUNI FY is  towards other units (since there are no tank-level entities
that information flow is one-way in the former (high- currently interacting with it). As position is simulated
resolution to low-resolution), but bidirectional in the at an aggregate level, and the individual tanks’ positions
latter are ignored. If another tank entity T* begins interacting

Davis’ work with \ariable Resolution Modeling with A,, A, interacts with T at the tank level. Let us
(VRM is particularly relevant here [Davis93[RMdeals assume that T" engages the same tanks as T did. If T
with making simulations work at dérent levels of comes on to the scene soon after T leaves, the
resolution. There are process hierarchies and theggeviously computed position attributes of Atanks
processes may be modeled such that they can hell be used for T° (with some perturbation if the
simulated at varying levels of resolution. The sub-platoon has moved). But if T comes on to the scene
processes themselves, at any level, may possess subuch later then the global position, coupled with
subprocesses, or may be parametrized as constants refttrine and terrain would be used to position the

from a database. Davis says: individual tanks. This makes sense because in a real
The hierarchies treated here involve processes, not  battle, after reacting to interactions with enemy tanks
objects or entities... ~While hierarchical and completing those interactions, the tanks in a platoon
representation of objects is rather widely valid and || tend to regroup and preserve doctrinal formation.
natural in combat modeling, straightforward This is what UNI FY captures. Properly designed,

hierarchical modeling of processes is only
sometimes feasible. More generalhe relevant
processes have a complex relationship to each, other

UNI FY can be made to mimic any real-life situation.
Chain disaggregation is a phenomenon in which
with connections across branches of the hierarchical entities are forced to disaggregate along a C_hai” be_cause
tree and, in some cases, with iterations or cycles of the entities with which they are having interactions
data flow disaggregate. This is not a problemUNI FY because
Our approach is concerned with finding thethere is no concept of aggregation or disaggregation.

relationships between aggregate and Correspondir‘éaCh unit decides the level of detail at which it wants to

disaggregate attributes. Admittedlshe relationships Perceive any other unit, and the perceived unit is able to
may not be simple accumulative or distributive consistently present défrent views of itself to its
functions, but knowledge about the applications wouldPerceivers. UNI FY is not a partial disaggregation
help find these relationships. It isfiifilt to put forth ~scheme. In fact, it is not a disaggregation scheme at all
general formulae to model these relationships, becaugénce there is no explicit aggregation or disaggregation
different applications require éfent models. Indeed, involved.

at times these models are hard to find [Hill92]. We alleviate the network flooding problem by
While designing a simulation, not only are procesgeducing the number of messages in the systihEY

hierarchies important, as suggested by Davis, but so afi9es not cause entities to unnecessarily disaggregate,

object hierarchies. @/recognize thatRMandUNI FY  thereby reducing the number of entities in the
deal with related issues, and hence are not entirelyimulation. This means that there are fewer receivers
independent. If a process is simulated at a lowand senders of messages. By putting the burden of
resolution, it is likely that the objects in the simulation Specifying the required level of perception detail on the
will also be at a low resolution at that time. Likewise, if Perceivey we force the perceiver to take responsibility
a process is being simulated at a very high resolutiofor the level of detail it wishes to see. Also, we can

the objects also are likely to be at a high resolution.  reduce the load on the network by message aggregation.
When tank T interacts with platoon,'8 tanks, A

knows which tanks are of interest to T and can pack the



state information for these tanks in a single message to
T. This causes fewer long messages to be sent rather
than many short messages, thus increasing throughput.

Note that UNI FY permits aggregation of dissimilar
entities. Either during the course of the battle or prior to
the battle, certain dissimilar entities could be logicaly
grouped. This merely entails the creation of the new AE
and making the required DEs its fields. As required by
the scenario, the DEs may now be dissociated from their
previous AEs or may be a part of them.

UNI FY alows the perceiver to decide how it
perceives entities because this mimics rea-life
situations, where the perceiver has the best knowledge
of its own sensory capabilities. Also, the perceiver takes
the responsibility for increased network traffic,
computation and display processing required if it
requests the perceived entity be presented at afiner level
of detail. Lastly, this approach is conceptually scalable:
the perceived unit requires no knowledge about the
perceiver. It must only deal with requests about varying
levels of aggregation — levels that the unit initially
advertised to the rest of the simulation. Thus, new types
of units could be added to the simulation at a later date,
with minimal effect on the existing types.

6 Pros and cons

6.1 Advantages

In addition to solving or reducing the problems
presented earlier, UNI FY offers the additiona
advantages outlined below. The effect of these
advantages may not be readily apparent in battlefield
simulations, but we believe that there exist other
simulations for which these may find application.

6.1.1 Configuration Problem

The configuration problem is presented in [Horr92].
Aggregation causes some information, such as
configuration, to be partly or completely lost. A purely
mathematical approach towards modeling units does not
take the limits imposed by configuration into account.
By retaining al information in UNI FY, we ensure that
the configuration problem can be tackled. The
configuration of the unit’s sub-units can be stored as part
of the representation, or can be re-created from the
attributes of the sub-units.

6.1.2 Dynamic aggregation

UNI FY supports the concept of dynamic
aggregation. During the course of the simulation, certain
dissimilar entities may be grouped together in alogical
fashion. Current aggregation schemes do not handle this

possibility well. In UNI FY, this can be done by cresting
anew unit and making the individual entities that are to
be aggregated part of this new unit. The individua
entities may or may not be dissociated from any other
unit that they were part of depending on the semantics
of the ssimulation. For example, if one were simulating a
machine assembly, one could either simulate each
component of the assembly or decide at run-time that
certain sub-assemblies may be simulated as an
aggregate. This could be done by making the sub-
assembly a unit and having the components that make it
up as data structures inside this unit.

UNI FY requires that the data structures and
mapping functions for the dynamically-aggregated unit
be in place before the simulation begins, but the
instances of these entities could be created only when
desired. This form of dynamic aggregation is not quite
as powerful as the ability to create new types of units
during run-time. While the latter can be implemented
using UNI FY, it is a harder problem because the
mapping functions between the attributes at different
levelswould also have to be created dynamically.

6.1.3 Information degradation

One may want to model factors that might cause
information and/or requests between entities to be
somehow affected. Since UNI FY alows a very flexible
coupling between units, incorporating information
degradation into a simulation is simplified. Each unit
would receive a message from a designated sender
(which may or may not be the originator of that
message), and then respond to that message.

6.1.4 Localized operations

There is a hierarchy of networks — none (single
CPU), interconnection networks (multiprocessors/
multicomputers), LANs, WANs — over which a unit
may be simulated. UNI FY encourages simulating a unit
locally. For example, on a single CPU, consistency
across levels can simply be maintained by having the
CPU expend additional cycles. In case of non-local
units, the costs of maintaining consistency increases as
one moves up the network hierarchy. In schemes where
an AE disaggregates into many new DEs, consistency is
expensive since the DEs send messages to each other
across the network (at the highest level) to determine
“who can see whom” [Stein94]. With CPU speeds
increasing more rapidly than network transmission
speeds, a CPU-intensive approach is preferable to a
network bottleneck.

6.2 Disadvantages

We address some expected criticisms of UNI FY.



6.2.1 Lanchester equations

Lanchester equations are differential equations that
calculate attrition between aggregate entities [Karr83].
They are easily computed in their simplest form, but in
order to model the capabilities of the aggregated entities
better, a number of factors are added to the eguations,
which make them more time-consuming to compute. It
is then possible to create scenarios where the aggregate
units might have an inconsistent view of each other.
Consider platoons A, and A,, and an aircraft fighter T.
A, and A, interact at the platoon level, but T interacts
with A, at the tank level. A, may communicate its
current strength to A,, which computes attrition on A,
using Lanchester egquations. In the meantime, T may
inflict significant damage on A,. T may have much
simpler interactions with A, (e.g., “blow up a tank”),
and these may occur much faster than A,'s interactions
with A,. By thetime A, finishes its equations, the results
will be quite meaningless for A, because the
computations were performed with data that is now
stale.

This problem may be generalized by restating it as
one occurring when simulations at different levels
proceed at time steps that are orders of magnitude
different. We feel it would be beneficial for future
research to focus on finding cheaper aternatives to
Lanchester equations, and work towards making multi-
level simulationsinteract in more compatible time steps.

6.2.2 Legacy simulations

Over the years, substantial investment has been
made in producing simulation programs that are,
unfortunately, incompatible with each other. ALSP
[Weat93] presents a framework for linking unlike
simulations. But a large number of simulations were
intended to be stand-alone and continue to be so.
Increasingly, the view is that different simulations
should be able to work together [DIS93]. There have
been two initiatives towards this goal. One has been to
make existing simulations — legacy simulations —
work together. The second has been to devise standards
for al future simulations, wherein interoperability is a
requirement and not an afterthought [DoD94]. Existing
aggregate-level simulations might be changed elegantly
to support UNI FY, but we see our approach largely as
supporting the second initiative.

7 Cost of UNI FY

We now address the cost of implementing UNI FY
in terms of network, memory and CPU requirements. A
detailed analysis will be presented in a future
publication.

7.1 Network cost

UNI FY aleviates the network flooding problem by
reducing the number of messages. This is due to the
reduced number of active entities, i.e., entities that send
and receive messages, the possibility of aggregating
messages and by doing away with complex aggregation/
disaggregation protocols.

The worst case is if the underlying network is a
broadcast network and an aggregated unit conducts
interactions such that it sends messages about its
aggregated attributes and all its constituent entities. In
other schemes [Karr94], the unit would disaggregate,
and all the DEs would send messages. In UNI FY, there
would be messages for each entity and one more for the
aggregated attributes. We reason that this is a
pathological case. The worst case can be ameliorated by
message aggregation, and the “overhead” of the
aggregate attributes is small compared to the usual
number of entities that are aggregated. In addition,
interactions between sub-entities within the same unit
would not generate network messages in our scheme,
whereas they might in other schemes.

7.2 Memory requirements

UNI FY requires memory for the aggregate level
attributes and each of the sub-entities. Other schemes
regquire memory for only one level of aggregation at any
giventime. If n, isthe number of i-level entities per i+ 1-
level entity, the memory requirements for a memory-
efficient traditiona scheme and UNI FY would be

OEI EdOEII q tively, where | i
nC an n.0 respectively, where | is
AlIne =52 TIng repedvey
the number of levels of aggregation. The constants for
UNI FY are expected to be large since we need to store
more data per entity in order to maintain consistency.
We estimate that UNI FY’s memory usage would be 2 to
5 times that of the most memory-efficient traditional
scheme. Expending memory to achieve consistency and
efficiency is acceptable.

7.3 Local CPU requirements

CPU requirements are also higher in UNI FY. In
addition to all simulation activities, the CPU expends
cycles maintaining consistency between levels. This
involves ensuring that when a message arrives at one
level, the attributes at that level are changed and
compatible changes, if necessary, are made at other
levels. With CPU speeds increasing, this will not be a
significant bottleneck. Even with UNI FY implemented,
the network will remain the bottleneck for along time.



8 Conclusion

UNI FY is a new scheme for maintaining
consistency between aggregated and disaggregated
levels. It does away with explicit switching between
aggregated and disaggregated states, and instead,
maintains all state information for all levels. Units can
comply with interactions at different levels. Perceivers
are responsible for demanding information they need.

We solve the tempora consistency problem by
requiring atomic entity interactions. We resolve chain
disaggregations because disaggregation is non-existent.
We alleviate network flooding by causing fewer entities
to be created and making message aggregation simpler.
Also, we provide the mechanisms for aggregations of
dissimilar entities and dynamic aggregations.

UNI FY requires more memory and CPU cycles, but
reduces network traffic. It is not clear how computation
of complex Lanchester equations will match speeds at
which virtual entities perform interactions, and we
recommend research in this area. Existing simulations
may not be able to support UNI FY, but this may be an
advantageous way to design new aggregate-level
simulations. We intend implementing UNI FY to give a
proof-of-concept.

9 Acknowledgments

We thank Professor Paul Reynolds in the
Department of Computer Science at the University of
Virginia for conducting a Distributed Simulations
course in Fal 1994. We are grateful to him for his
suggestions, guidance and encouragement. We thank the
participants of our many discussions in class — Chenxi
Wang, Sudhir Srinivasan, Bronis de Supinski, Adam
Ferrari and Andrea Salas. We aso thank Sally McKee
for proofreading.

10 References

[Allen92] Allen, P. D., Combining Deterministic and
Stochastic Elements inalable Resolution Models
Proceedings of Conference on Variable-Resolution
Modeling, Washington, DC, May 1992,

[Clark94] Clark, K. J. and Brewer, D., Bridging the Gap
Between Ageggate Level and Object Level Esises
Proceedings of the 4" Conference on Computer
Generated Forces & Behaviora Representation,
Orlando, Florida.

[Davis92] Davis, P. K., An Introduction to ¥riable-
Resolution Modeling and @ss-Resolution Model
Connection Proceedings of Conference on Variable-
Resolution Modeling, Washington, DC, May 1992.

[Davisa3] Davis, P. K. and Hillestad, R. J., Families of
Models that Coss Levels of Resolution:
Design, Calibration and ManagemerRroceedings of
the 1993 Winter Simulation Conference.

[DIS93] DIS Steering Committee, The DIS Yéion, A
Map to the Futue of Distributed SimulatigrComment
Draft, October 1993.

[DoD94] Under Secretary of Defense (Acquisition and
Technology), Modeling and Simulation (M&S) Master
Plan, Dept. of Defense, September 30, 1994.

[France93] Franceschini, R. W., Intelligent Placement of
Disaggegated Entities Institute for Simulation and
Training, 12424 Research Parkway, Suite 300, Orlando
FL 32826.

[Hill192] Hillestad, R. J. and Juncosa, M. J., Cutting
Some fees to See the Fest: On Aggegation and
Disaggegation in Combat ModelsProceedings of
Conference on  Variable-Resolution  Modeling,
Washington, DC, May 1992.

[Horr92] Horrigan, T. J., The “Configuration Poblem”
and Challenges for Agggation Proceedings of
Conference on  Variable-Resolution  Modeling,
Washington, DC, May 1992.

[Karr83] Karr, A. F, Lanchester Attrition Rycesses and
TheaterLevel Combat Models Mathematics of
Conflict, Elsevier Science Publishers B.V. (North-
Holland), 1983, ISBN: 0 444 86678 7.

[Karr94] Karr, C. R. and Root, E., Integrating
Aggregate and &hicle Level SimulationdProceedings
of the 4th Conference on Computer Generated Forces &
Behavioral Representation, Orlando, Florida

[Robkin92] Robkin, M., A proposal to Modify the
Distributed Interactive Simulation Agggate PDU
Hughes Training, Inc., February 28, 1992.

[Sher92] Sherman, R. and Butler, B., Segmenting the
Battlefield Loral WDL, June 9, 1992.

[Smith94] Smith, R., Mystech Associates, Invited

speaker to the Department of Computer Science,

University of W ginia, December 1, 1994.

[Stein94] Steinman, J. S. (Jet Propulsion Laboratory,
Cdlifornia Institute of Technology) and Wieland, F.
(Naval Research Laboratory), Parallel Proximity
Detection and the Distribution List Algorithm

[Weat93] Weatherly, R. M., Wilson, A. L. and Griffin, S.
P, ALSP - TheoryExperience and FutarDirections
Proceedings of the 1993 Winter Simulation Conference.

Issues for



