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ABSTRACT
We recently contributed correct-by-construction synthesis of
architectural descriptions as a form of model-based devel-
opment (MBD), in which architecture-independent applica-
tion models are combined with specifications of architectural
styles to yield families of architectural descriptions for given
applications in given styles. We have demonstrated MBD
tool support for such styles as implicit invocation and pipe-
and-filter. We now show this approach can work for contem-
porary architectural styles induced by modern standards,
frameworks and middleware, and that it can be combined
with code synthesis to enable the synthesis of architecturally
correct-by-construction code targeted to modern architec-
tural frameworks and middleware. We validate our claims
by demonstration. Starting with a formalization of a model
of a sense-compute-control system from the literature, we
synthesize code for two frameworks: in the REST style for
the Restlet framework on a network of Android phones, and
in the implicit invocation style for the Prism middleware.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

General Terms
Design, Architectural Styles

1. INTRODUCTION
Architectural decisions, including decisions about the ar-

chitectural styles in which systems will be developed, are
generally understood as the earliest and most difficult to
change [37]. Yet style decisions are increasingly volatile [17],
for at least two reasons. First, they are increasingly being
driven by rapidly changing industrial standards, platforms
and middleware technologies that induce or define the styles
in which applications are written [29]. Second, we face in-
creasing demands for the mapping of application models to

University of Virginia, Technical Report # CS-2010-15.

diverse platforms: e.g., interoperability protocols for elec-
tronic health records systems. We need new concepts, meth-
ods and tools for abstracting from, and for later and more
diverse bindings of, otherwise hard to change architectural
style decisions.

Our earlier work addressed this problem with a new ap-
proach to correct-by-construction synthesis of architectural
descriptions from formal, abstract application models and
separate choices of architectural style specifications [5]. We
also showed that our approach is consistent with model-
based development (MBD) perspectives and technologies [6].
However, this work left open questions about support for
modern, industrially relevant architectural styles such as
representation state transfer (REST), and about the syn-
thesis of code for platforms that support such styles. This
paper resolves these issues.

The contribution of this paper is the demonstration that
our notion of architectural maps promises to support archi-
tectural styles induced by modern architectural standards,
platforms, and frameworks, and the synthesis of architec-
turally correct-by-construction code for such platforms and
frameworks. Among other things, this work provides experi-
mental support for the proposition that it can be practical to
pay a one-time cost to formalize the architectural styles de-
fined by modern standards to enable use of our specification-
driven approach to architecture and code synthesis.

Validation of these claims of feasibility is by demonstra-
tion of a working MBD tool and its use. We present an ex-
ample of a sense-compute-control application model system
from the published literature and its mapping to executable
code frameworks for two distinct targets: the Prism-MW
middleware and the Restlet framework for RESTful web-
based applications. Our RESTful application instance is
deployed on a network of Android phones, and its synthe-
sis was based on a formalization of the REST architectural
style developed for this work.

The rest of the paper is organized as follows. Section 2
presents our approach for dealing with architectural style
as a variation point with a model-based synthesis approach.
Section 3 describes two middleware platforms and a run-
ning case study that has been developed for them using the
proposed approach and an extension to our Monarch tool.
Section 4 surveys related work. Section 5 concludes and
discusses future work.

2. APPROACH
This section presents our approach, which builds on work

in three areas: our previous work on architectural maps [5,



Figure 1: High-level overview of the approach

6]; work starting with Di Nitto and Rosenblum [29] that rec-
ognized that application frameworks and platforms induce
or support architectural styles; and traditional model-based
synthesis of code from architectural models.

2.1 Architectural Maps
Our earlier work introduced and formalized the architec-

tural map, based on the idea that choices of architectural
style can and should make separately from choices of other
application properties. That is, architectural style is a sep-
arate variable in design. In our approach, one develops an
application model of a given application type then selects
an architectural map for that type and a given architectural
style. Applying this map to the application model yields a
family of correct-by-construction architectural descriptions
for the given application in the given style. The concept of
application type comes to parallel that of architectural style.
Our approach builds on these ideas, extending them in two
dimensions. First, we formalize the architectural styles re-
quired by modern frameworks. Second, we use standard
model-based techniques to synthesize code from our synthe-
sized architectural descriptions.

The overall mapping occurs in five steps, as illustrated in
Figure 1. First, we define architecture-independent applica-
tion properties in a model of a given application type. We
customize the Generic Modeling Environment (GME) [25]
such that application types are realized concretely as GME
meta-models, providing architecture-independent modeling
languages (AIML). Second, we transform application mod-
els, viewed as concrete instances of application types, to an
abstract syntax. We use Alloy [20] to specify application
types and as an abstract syntax for application models. Al-
loy is appropriate for defining the formal semantics of mod-
eling languages [22]. Third, we combine application models
with choices of architectural style specifications and use the
Alloy Analyzer to compute architectural descriptions sat-
isfying the conjunction of the constraints. This paper first
shows that this can be done for industrially important styles.
Fourth, we transform the resulting Alloy solutions (archi-
tectural descriptions) into concrete architecture description
languages (ADL). The new transformation in this paper
(bottom right) uses traditional model-based code synthesis
to map synthesized architectural models to executable code
that runs on industrial frameworks and platforms.

2.2 Middleware-Induced Architectural Styles
Software-intensive systems are continuously growing in

size and complexity. In recent years, they have migrated
further from traditional enterprise settings to distributed
and embedded environments. Middleware infrastructures
are further emerging to be used as a major building of large-
scale distributed systems. There are many middleware plat-
forms, such as CORBA and DCOM, and application frame-
works, such as Ruby on Rails, Microsoft.net, Enterprise Jav-
aBeans (EJB), and Restlets.

A design method commonly used in practice is to select a
platform for the services it offers and then to design software
in the de facto architectural style it requires. This approach
can have a counterproductive impact on system architec-
ture. Deferring middleware decisions promotes separation
of concerns and a high level of abstraction in early software
design [29, 37]. On the other hand, middleware decisions are
not independent of architecture. Decisions regarding archi-
tecture can limit decisions about the middleware that can
be used to implement a system.

Problems can occur when the architectural styles chosen
for an application conflict with the assumptions of the cho-
sen middleware. Blair et al. [8] argue that the architectural
models can be used in systematic synthesis of middleware
configurations. It would be helpful to consider structural
and behavioral constraints implied by middleware infras-
tructures as architectural styles [29]. Formal definition of
these styles will allow architects to exploit them in a way
that avoids mismatches between required application prop-
erties and the constraints imposed by middleware-induced
architectural styles.

Numerous approaches have been explored to separate and
relate middleware infrastructures and the architectural styles
they induce: for embedded systems [26], web-based sys-
tems [18], etc. However, insufficient progress has been made
on mapping architecture-independent application models into
the modern and practical, middleware-induced architectural
styles and in turn, into architecturally compliant implemen-
tations. Our vision is to map architecture-independent ap-
plication models, considered as platform independent mod-
els, to implementations in conformance with the architec-
tural styles induced by platforms and other complex and
practical application frameworks. This paper shows that
this vision can be realized in practice.



2.3 Architectural Frameworks
In practice, platforms, frameworks and design approaches

often emerge before their underlying architectural styles are
fully developed, understood or characterized precisely. The
architectural styles they induce are clarified later. Platforms
are then refined to support the refined styles in every re-
spect [9]. More precisely, accidental architectures emerge;
and once they succeed, their architectural styles and pat-
terns are studied more systematically [15].

The architectural styles so derived promise benefits for
both development and maintenance. However, even formal
specifications of architectural styles generally lack bindings
to implementation-level constructs. It is thus difficult to
verify the fidelity of the developed software system with
respect to the architectural models. To use architectural
models and stylistic guidelines extracted from the middle-
ware platforms in an effective manner, such models should
also provide support for implementation [31]. Implement-
ing architectural models further is a problem of mapping
abstract design decisions to implementation elements that
realize those decisions [37].

Frameworks can provide the required bridge. In concrete
terms, an architectural framework is a software technology
built upon the functionalities provided by the programming
language and the operating system that provides services
with respect to a supported architectural styles. Architec-
tural frameworks are practical technologies that facilitate
system development in conformance to a specific architec-
tural style. They are considered as a significant strategy
for bridging the gap between architectural models and as-
sociated implemented technologies. In this paper we fill the
gap between architectural models and executable code by
synthesizing code for specific architectural frameworks from
synthesized architectural models in the supported architec-
tural styles.

There are many architectural frameworks for different lan-
guages, platforms and styles [37]. Examples include the
standard I/O library, java.io, and java.nio for pipe-and-filter
architectures; Lightweight and Flexible C2.frameworks for
the C2 style [36]; the Aura framework [33] for the Aura
style for ubiquitous computing; and numerous architectural
frameworks in various platforms for REST architectural style.
We envision—and this paper demonstrates the potential for—
synthesis of architecturally correct-by-construction code from
synthesized architectural models for a wide variety of such
frameworks based on the formalizations of the architectural
styles they support.

Figure 2: Code Synthesis as MBD model transfor-
mations

Tools do exist to support synthesis of code for various lan-
guages and frameworks, but to our best knowledge previous
work has not exploited the idea that architectural styles can
play a key role in bridging the implementation gap. This pa-
per proposes a model-driven code synthesis approach with
a focus on architectural style. As represented in Figure 2,
our approach is to synthesize code from synthesized archi-
tectural models, viewing architectural styles as source meta-
models in this second phase of synthesis, and architectural
frameworks and middleware constructs as destination meta-
models. As such, every (architectural) model which is an
instance of the source (style) metamodel can be transformed
to an instance of the destination model. More precisely, ar-
chitectural models conforming to the constraints implied by
an architectural style can be transformed to executable code
developed atop a middleware supporting the given architec-
tural style.

3. EVALUATION
In this section we report and interpret data from exper-

imental testing of our approach and hypothesis. In a nut-
shell, we support our claims of the feasibility and potential
profitability of our approach with a practical demonstration.

Using our Monarch tool [1], available for download, we
have mapped an application model taken from a case study
in the published research literature to practical platforms
supporting two architectural styles: the Restlet platform
supporting the REST style for World Wide Web applica-
tions, and the Prism-MW middleware system supporting
(among other things) an implicit invocation architectural
style for embedded software. Prism-MW [26] is a middle-
ware platform supporting architecture-based software devel-
opment especially in distributed embedded environments.
The Restlet middleware [2] an open source Java framework
that supports the REST style. Reasons for choosing Prism-
MW and Restlet for this study include their straightforward
mechanisms for mapping of architectural constructs into im-
plementations, and their availability and success in their re-
spective industrial and research domains.

The following subsection introduces the running case study
which is used extensively throughout the experiments. The
next two subsections report on the execution and results of
two experiments. We conclude this section by discussing and
interpreting the results of our experimental systems effort.

3.1 MIDAS: A Case Study
Our application case study is inspired by Edwards et al. [11].

They illustrate the structuring of an application called MI-
DAS [27] from a family of embedded applications at Bosch,
in two typical architectural styles, client-server and implicit-
invocation, to assess the influence of architectural style on
quality attributes. Three analyzer components, FireAlar-
mAnalyzer, IntrusionAlarmAnalyzer and LogAnalyzer, ana-
lyze the information provided by FireAlarmSensor and In-
trusionAlarmSensor components for fire and intrusion de-
tection. In case of fire or intrusion, the analyzer transmits
messages to the corresponding components.

We view this application as an instance of a sense-compute-
control (SCC) as an application type for embedded control.
We use a simple formal model of the SCC type to model
applications in which sensors and actuators are connected
to controllers that cycle through the steps of fetching sensor
values, computing function values, and sending outputs to



Figure 3: application model of MIDAS example in: a) GME modeling Environment b) Alloy

actuators [37]. Figure 3a illustrates our application as mod-
eled in GME using our generated modeling environment for
our SCC meta-model.

Figure 3b presents the Alloy representation of the ap-
plication model generated from its concrete model by the
GME-Interpreter. For presentation purposes, some details
are omitted. The Alloy module starts by synthesizing the
module name. It then imports the Alloy specification mod-
ule(s) for application type(s). For each instance of Sensor,
Actuator, and Controller in a concrete model, we synthe-
size a signature definition that represents the inheritance of
a concrete element from its associated abstract class. The
element’s properties (if any) are also specified as Alloy facts
for the corresponding signature of that element, e.g. Intru-
sionAlarmAnalyzer has a periodic high frequency task. The
following subsections represent the results of mapping this
application model to two different platforms.

3.2 Experiment: MIDAS, II, Prism-MW
After modeling the application, Monarch uses the Alloy

analyzer, Alloy formalizations of the REST and implicit-
invocation architectural styles, Alloy formalization of SCC
application type, and corresponding architectural maps to
synthesize satisfying architectural models. In this subsec-
tion, we have leveraged the architectural mapping for the
SCC application type and implicit-invocation style specified
in earlier work [6]. The output models refine the application
description in conformance with the fully formal definition
of the implicit invocation architectural style. Monarch, us-
ing our Alloy2ADL transformer, converts the abstract XML-
format outputs to a traditional architecture description lan-
guage (ADL). Figure 4 represents one of the formally derived
architectural models in Acme.

3.2.1 Implicit-Invocation and Prism-MW
Prism-MW [26] is a middleware platform that provides

support for development of software systems by means of the
architectural constructs. Having its origin in programming-
in-the-small-and-many (Prism), the middleware focuses on
the embedded systems environment. Besides the typical

Figure 4: One of the formally derived architectural
models in implicit-invocation style represented in
Acme

support for architectural concepts, such as component, con-
nector and configuration, Prism-MW provides explicit sup-
port for architectural styles. Application architectures de-
signed in selected architectural styles can be implemented by
extending Prism-MW classes with application-specific de-
tails. We illustrate the process of transforming an archi-
tectural model into its corresponding implementation devel-
oped atop Prism-MW framework using the running example.

The first step is to declare an implementation class for
each component. The synthesized class for each component
extends the AbstractImplementation base class. The base
class provides the code to both send and handle events. It
also enables dynamic association between the component
and its real implementation [26]. As a case in point, the
FireAnalyzer component subscribes to the events of Fire-
AlarmSensor and will be implicitly invoked. Then, its han-
dle method is called automatically by the framework as a re-
quest of a recognized type arrives for this component. This
allows it to perform the fire detection analysis. This, in turn,



causes the actuator components to be invoked implicitly, as
the FireAnalyzer component sends an appropriate message
in the necessary case.

Listing 1 presents an automatically synthesized implemen-
tation of a formally computed architectural model for this
application. For the sake of readability, we omit details.
First, an ExtensibleArchitecture is created, an object that
represents an architectural structure conforming to the rules
implied by an architectural style: here, the publish-subscribe
style. Next, components of the application are created.
Each component is an instance of ExtensibleComponent with
its associated implementation of AbstractImplementation in-
stalled on it. Then, the instances of each of the connec-
tors are created and added to the architecture. Afterwards,
components and connectors are linked together according
to the generated architectural model, and the architecture’s
start method is called. The result is an automatically syn-
thesized, architecturally correct-by-construction implemen-
tation of the MIDAS application that runs on Prism.

1 pub l i c c l a s s MIDAS {
2 pub l i c s t a t i c void main ( St r ing [ ] args ) {
3 . . .
4 // Create the MIDAS a r ch i t e c t u r e
5 Exten s ib l eArch i t e c tu r e arch = Sty leFactory .

g ene ra t eArch i t e c tu r e ( ”MIDAS” ,
PrismConstants .PUB SUB ARCH) ;

6
7 // Create components
8 FireAnalyzer f i r eAna lyze r Imp l = new

FireAnalyzer ( ) ;
9 ExtensibleComponent fireAnalyzerComp =

Sty leFactory . generateComponent (”
fireAnalyzerComp ” , PrismConstants .
PUB SUB COMP, f i r eAna lyze r Imp l ) ;

10 fireAnalyzerComp . s c a f f o l d = s ;
11 . . .
12 // Create connector s
13 Extens ib leConnector EventBus0 = Sty leFactory .

generateConnector ( ”EventBus0 ” ,
PrismConstants .PUB SUB CONN) ;

14 EventBus0 . s c a f f o l d = s ;
15 arch . add (EventBus0 ) ;
16 . . .
17 // Add components to the a r c h i t e c t u r e
18 arch . add ( fireAnalyzerComp ) ;
19 arch . add ( fireAlarmSensorComp ) ;
20 arch . add ( alarmLoggerComp ) ;
21 . . .
22 // Create l i n k s btw . components and connectors
23 arch . weld ( fireAlarmSensorComp , EventBus0 ) ;
24 arch . weld ( fireAnalyzerComp , EventBus0 ) ;
25 arch . weld ( alarmLoggerComp , EventBus0 ) ;
26 . . .
27 arch . s t a r t ( ) ;
28 }
29 }

Listing 1: Code snippet of the automatically
synthesized MIDAS application based on Prism-
MW

3.3 Experiment: MIDAS, REST, Restlet
This section introduces REST, explains the mechanisms

that RESTful applications use, and touches on the Rest-
let [2] architectural framework.

3.3.1 REST and Restlets
Representational State Transfer (REST) is an example of

an architectural style derived from a successful technology:
the World Wide Web [12]. REST is style for distributed
systems: from applications on embedded systems to large

enterprise systems. Rather than focusing on details of com-
ponents, REST emphasises the roles of components and the
communication between them. The main element of REST
is called resource. The information in a resource is called
state, and method invocations are performed by transfer-
ring state representations.

Similar to the other architectural styles, REST consists of
a set of rules. Applications complying with the rules of the
REST styles are called RESTful. The following assert briefly
the principle rules of REST [12, 37]. A Resource is the fun-
damental abstraction of information, and is identified by a
resource identifier. A resource representation is a sequence
of bytes along with metadata explaining those bytes. Inter-
actions are stateless: each method invocation contains all
the required information without any dependency on pre-
vious messages. Resources are manipulated using a few
primitive operations defined over representations. In other
words, information are accessed via a fixed set of interfaces,
and components communicate by transferring representa-
tions through these interfaces rather than operating directly
upon resources. More precisely, instead of adding partic-
ular interfaces to the architecture, new resources add new
pieces of information to be manipulated using generic oper-
ations. For the purpose of caching and representation reuse,
idempotent operations and representation metadata are of
utmost importance. Finally, Intermediary components, such
as proxy and gateway, handle requests and responses trans-
parently, based on their representations and corresponding
metadata, for filtering or redirection purposes among others.

1 module REST
2
3 s i g Entity {}
4
5 s i g MediaType{}
6
7 s i g Representat ion extends Entity{
8 metadata : MediaType
9 }

10
11 s i g I d e n t i f i e r extends Entity{
12 i d e n t i f i e s : one Resource
13 }
14
15 s i g Resource{
16 reps : s e t Representat ion ,
17 s t a t e : needHandle
18 }
19
20 abs t ra c t s i g Component{
21 connector s : s e t Connector
22 }
23 s i g Or ig inServer extends Component{
24 conta ins : s e t Resource
25 }
26 s i g UserAgent extends Component{}
27 s i g Proxy extends Component { } { . . . }
28 s i g Gateway extends Component { } { . . . }
29
30 abs t ra c t s i g Connector{
31 connects : s e t Connector
32 }
33 s i g C l i en t extends Connector{}
34 s i g Server extends Connector{}
35 s i g Server Cache extends Server {}
36 s i g Cl ient Cache extends C l i en t {}
37 s i g Reso lver extends Connector{}
38 s i g Tunnel extends Connector{}
39
40 . . .

Listing 2: part of REST style described in Alloy



A key contribution of this paper is evidence in the form
of this case study suggesting that it is practical to formal-
ize such modern industrial architectural standards so that
they can be employed within our synthesis framework. List-
ing 2 (eliding details) demonstrates this claim for the REST
style using Alloy. Entity is a basic type consisting of a se-
quence of bytes. Representation and Identifier inherit from
the Entity signature. The representation of a resource is an
Entity plus metadata describing it. An Identifier is also an
Entity uniquely identifying a Resource. Each Resource has
a set of representations. The state is defined by an encap-
sulated needHandle object which is an abstract signature
that the other objects, such as sensors, extend. Each Com-
ponent handling a set of resources has a set of Connectors.
REST components are specified by roles. OriginServer is
the container of resources. UserAgant using Client connec-
tor initiates a request. Proxy is an intermediary compo-
nent providing interface encapsulation of other services such
as security for UserAgents. On the contrary, Gateway in-
termediate components provide interface encapsulation for
OriginServers.

The remaining parts of the module specify connector types.
Connectors in the REST style are like ports in Component-
Connector based styles. They provide an abstract interface
for component communication. Client and Server are the
key types of Connectors. Another connector type is Cache,
which itself could be a server connector or a client connec-
tor. A Resolver is in charge of translating resource identi-
fiers into the network address, e.g. DNS. Tunnel is the final
connector type that relays communication over a connection
boundary [12].

3.3.2 Architectural Map
We now exhibit (in elided form) the main result of this

work: an Alloy implementation of an architectural map,
map(SCC,REST ), that takes SCC application models to ar-
chitectural models in the REST style. An architectural style
specification defines the co-domain of an architectural map.
We represent a map, such as map(SCC,REST ), as a set of
predicates that define the relationships required to hold be-
tween an application description and computed architectural
descriptions.

1 module SCC REST
2
3 open SCC
4 open REST
5
6 pred mapping ( ) {
7 a l l n : needHandle | one r : Resource | r . s t a t e = n
8 a l l r : Resource | one c : Or ig inServer | r in c .

conta in s
9

10 a l l s : Sensor | one cConnector : C l i en t | cConnector
in s . ˜ s t a t e . ˜ conta in s . connector s

11 a l l a : Actuator | one sConnector : Server |
sConnector in a . ˜ s t a t e . ˜ conta ins . connector s

12 a l l c : Con t r o l l e r | one sConnector : Server |
sConnector in c . ˜ s t a t e . ˜ conta in s . connector s

13 a l l c : Con t r o l l e r | (#c . actuators >0) => {
14 one cConnector : C l i en t | cConnector in c . ˜ s t a t e

. ˜ conta ins . connector s }
15
16 a l l c : Sensor | ( c . ˜ s en so r s . ˜ s t a t e . ˜ conta in s .

connector s & Server ) in
17 ( c . ˜ s t a t e . ˜ conta ins . connector s & Cl i ent ) . ˆ

connects
18
19 a l l c : Con t r o l l e r | ( c . a c tuato r s . ˜ s t a t e . ˜ conta ins .

connector s & Server ) in

20 ( c . ˜ s t a t e . ˜ conta ins . connector s & Cl i ent ) . ˆ
connects

21 . . .
22 }

Listing 3: The (elided) mapping predicate for the
SCC application type and the REST architectural
style

Listing 3 presents the elided map(SCC,REST ) Alloy pred-
icate. It states that there is a Resource for each sensor,
actuator and controller. Line 8 assigns a component of type
OriginServer to each resource. Each component handling
a sensor resource has a Client connector to post its latest
state to the controllers. According to lines 11–15, each com-
ponent handling either an actuator or a controller resource
has a connector of type Server to receive the latest state
from the corresponding sensors. Provided that having con-
nected to an actuator, each component handling a Controller
resource has also Client connector. Lines 16–20 state that
Client connector of each Sensor’s component is connected to
Server connectors of the corresponding Controllers’ compo-
nents, and Client connector of each Controller’s component
is eventually connected to Server connectors of the corre-
sponding Actuators’ components.

Figure 5: Process view of a REST-based architec-
ture for an example of MIDAS application

Using the Alloy Analyzer, Monarch computes architec-
tural models, represented as satisfying solutions to the con-
straints of the architectural map applied to the application
model. Alloy guarantees that computed outputs conform
to the REST architectural style. The mapping predicates
also ensure that the resulting architectural models refine
the given application model. Figure 5 represents the pro-
cess view [30] of a REST-based architecture for our example
of MIDAS application. The result in Alloy XML-format was
computed automatically, but redrawn manually for presen-
tation. To simplify the diagram, we omit some details.

3.3.3 Implementing Architectures in Restful Frame-
work

Numerous architectural frameworks have been proposed
for the REST style, some of which have found their way into
industrial practice. Restlet is one. In contrast to Prism-MW,
which was rooted in an academic project, Restlet is an in-
dustrial product. It supports the REST architectural style
with an open source Java framework. As such, an archi-
tectural model in REST style can be mapped comfortably
to an executable program based on the Restlet framework.



Like to other architectural frameworks, it supports architec-
tural abstractions that provide a means of direct mapping
between architectures and implementations.

The synthesized class for each resource extends the Re-
source base class. Each resource class implements the re-
quired REST methods, i.e. GET, POST, PUT and DELETE.
Support of POST and PUT requests is indicated by the im-
plementation of the methods acceptRepresentation(Representation)
and storeRepresentation(Representation) respectively, which
provide the facilities to process the posted entity. Similarly,
the implementation of the storeRepresentation(Representation)
method indicates the support for GET method.

According to the generated architectural description, the
Client connector associated to the component of each sensor
resource is connected to the Server connector of the com-
ponents of its corresponding controllers. As such, each con-
troller’s resource supports receiving of the latest alarm mes-
sage through an explicit call of its PUT method invoked
by its corresponding sensors. That is, each sensor calls ex-
plicitly the method of its associated Controllers as a new
alarm fires. This allows the recipient to perform the re-
quired detection analysis and to call the PUT method of
the corresponding actuators if required. All the resources
furthermore responds to GET requests with a representa-
tion that lists the alarm messages.

Figure 6: Deployment of automatically generated
programs in Android platform

Our hand-written model-based code synthesizer generates
resource identifiers (URIs) automatically based on the name
of a resource’s host machine and name. Host name manage-
ment is handled manually. By assigning URIs to resource
classes, each incoming call is handled by a dedicated instance
of each resource class. Figure 6 shows the deployment of au-
tomatically synthesized programs to the Restlet framework
running on a distributed system of Android cell phones. To
test the synthesized application framework code, we synthe-
sized sufficient test driver code to see the application actu-
ally run. It works.

3.4 Discussion
Malek has suggested that the lack of support by tradi-

tional middleware platforms for architectural abstractions
leads to uncertainty about the consistency of implemented
systems with their software architectures, making such tra-
ditional platforms a poor fit to architecture-driven develop-
ment [26, 27]. This paper shows by contrast that architec-

tural middleware can support effective, correct-by-construction
synthesis of both architectures and corresponding implemen-
tations. Moreover, our work supports reasonable extension
for new platforms and mappings. To that end, one can pick
a platform, identify and formalizes the style it requires, and
specify the map required to support high-assurance architec-
ture and code synthesis for a range of architectural styles.

It is also important to acknowledge that, in practice, a
system rarely completely conforms to a single style: differ-
ent parts conform to different styles. Although in this work
we focus on illustrating how to map a common application
model to different styles and thereby to different platforms,
there are other research studies which focus on that issue.
As a case in point, Wong et al. [38] proposed an approach
based on the Alloy language for modeling and verification of
the complex systems that exploit multi-style structures. In
an implementation, each subsystem can be considered as a
separate architecture in the context of middleware platforms:
a system is implemented with a number of architecture ob-
jects that may be comply with different architectural styles.
We plan to extend our work to multi-style systems and do
not foresee great difficulty in doing so.

Overall, we view this paper as providing significant ev-
idence in support of the proposition that a formal, archi-
tecturally correct-by-construction approach to synthesis of
both architectural models and executable code for architec-
tural frameworks and middleware is a promising approach.
This is the primary intellectual contribution of this work.
All of the software assets needed for an independent verifi-
cation of our claims are available on the World Wide Web.

4. RELATED WORK
We identify four areas of research that are most related

to our work. The first area concerns research dealing with
middleware-induced architectural styles. The second encom-
passes all the researches on filling the gap between archi-
tectures and implementations. The next area is on formal
approaches to model transformation. The last is our own
earlier work on architectural mappings.

Considering the first category, the notion that an applica-
tion framework induces one or more architectural styles and
that systems using an application framework are required to
conform to those styles in order to both take the advantages
of the framework and avoid unintentional mismatch side-
effects was first considered by Di Nitto and Rosenblum [29].
The basic ideas are replicated in numerous publications.

Gall et al. [14], considering the correspondence between
component technologies and software architectures, iden-
tified the architectural style (ComPAS) induced by com-
ponent programming, and claimed that it can be used in
developing software systems. Baresi et al. [7] argued that
constraints imposed by a certain choice of platform could
be considered as an architectural style. They focused on
service-oriented architectures, and defined refinement rules
based on graph transformations for checking the consistency
of an application with constraints implied by the styles to
which it conforms. We share with these researches the prob-
lem domain, namely architectural styles imposed by middle-
ware platforms, but our focus is on developing end-to-end
transformations that map architecture-independent applica-
tion models to executable program implementations in se-
lected platform-induced architectural styles.

Sousa and Garlan [32] using the Wright ADL, modeled



structural and behavioral constraints imposed by the En-
terprise JavaBeans framework. Sullivan et al. [34] simi-
larly used Z to model and analyze composition mechanisms
provided by Microsoft’s Component Object Model (COM).
These works use formal modeling and verification for de-
tecting architectural mismatch [16], whereas we focus on
preventing such mismatches in the first place with a correct-
by-construction synthesis approach.

Giesecke et al. [19] discussed the styles imposed by web-
based middleware frameworks, such as Spring and Apache
Cocoon, but they did not present the model or results in
detail. It is unclear how far this work has progressed.

A notable attempt to bridging the gap between software
architecture and its correspondence implementation is Arch-
Java [3], an extension to Java to provide capabilities of ar-
chitecture description languages within a programming lan-
guage. It can verify conformance of an implementation to
the architectural constraints. However, it does not explicitly
support architectural styles or application synthesis.

Kruger and Mathew [24] proposed an approach to develop
software implementations in service-oriented architecture.
Using aspect-oriented programming [23], they provided a
mapping from their service-enabled architecture description
language (ADL) to the implementation of the architecture.
In fact, they realize the system by assigning a Java class
to each role and component type of the architecture. Ser-
vices are then specified as aspects that relate components
and the roles they implement. Although their work has par-
tially common intent with ours on mapping architectural
models to implementations conforming to the constraints of
given styles, our work introduces a new concept of applica-
tion type along with the architectural mappings that specify
the refinement rules based on not only architectural style,
but also on application type of system.

Medvidovic et al. [28] focused on relating the modeling fa-
cilities provided by software architectures and the implemen-
tation abilities of the application frameworks and proposed
an approach to using middleware to implement architectural
connectors. Malek et al. [26] extended the same line of work
by proposing that using application frameworks supporting
architectural styles is a crucial approach to bridging the gap
between concepts in architecture descriptions and the sys-
tem implementation. They devised a mature architectural
middleware infrastructure (Prism-MW) for embedded sys-
tems, supporting architectural styles. Our approach builds
on such architectural frameworks but we have focused on
end-to-end mapping of architecture-independent application
models into realized applications conforming to architectural
styles.

Regarding the third area of related work, Tamzalit and
Mens [35] recently proposed an approach for the evolution
of an architecture description under the guidance of architec-
tural style, rooted in the idea that the evolution follows cer-
tain common patterns, which they identified as architectural
evolution patterns. To this extent, they rely on a formalism
based on graph transformation. This work shares with ours
an emphasis on applying architectural styles, but our work
focuses on formal mappings of architecture-independent ap-
plication models to a diversity of realized architectural mod-
els in practical architectural styles.

The other similar work is the recent work of Garlan et al.
[17] on the evolution of programs with respect to architec-
tural style. The premise of this work is that it is sometimes

necessary to change a program written in one architectural
style into a related program in another style. The approach
they propose involves incremental steps between programs,
each step being affected by the application of a well defined
incremental architectural operator. The key ideas that re-
main implicit in Garlan et al., and which are the central
focuses of our work, are (1) we are dealing with one or more
architecture-independent application models, (2) architec-
tural models are obtained from application models by way
of architectural maps, and (3) making architectural maps
explicit. Beyond just evolutionary transitions between pairs
of architectural models, we focus on architectural style as
a separate variable in design. That said, until one can rely
entirely on models, viewing synthesized code as a detail that
can be regenerated when needed, it will be important to con-
sider requirements for architecture evolution. We plan to
investigate the potential for our approach to assist in such
tasks.

Bucchiarone and Galeotti [10] also proposed an approach
based on graph grammars and DynAlloy [13] to verify pro-
grammed dynamic software architectures in which all possi-
ble architectural changes are defined before run-time. Like
other work we have studied, this work lacks an explicit no-
tion of mappings from application models to architectures
via choices of styles. That said, this work appears to have
the potential to help us extend application models to include
richer semantics.

Another interesting approach to model transformation,
though not directly relying on formal methods, is by Almeida
et al [4]. They defined the notion of an abstract platform
as an abstraction of platform attributes to be used in the
role of meta-model for platform-independent models (PIMs)
of an application. Their work stems from the observation
that PIMs must be balanced against realization of PSMs.
They argued that an abstract platform should specify char-
acteristics that are required to be mapped into the concrete
target platforms. In other words, they developed platform-
independent application descriptions in the language of the
abstract platform. By contrast, we view the platform (even
the abstract platform) as the target to which we map plat-
form and architecture-independent descriptions. Our work
thus develops a notion of application type explicitly, while
they do not, and in the first stage of synthesis takes archi-
tectural styles specifically as abstract platforms.

Finally, our earlier work [5] formalizes the concept of ar-
chitectural mappings, and it shows that it is possible to sepa-
rate, and combine formal representations of application con-
tents and architectural styles respectively, and provide MBD
tool support for architectural model synthesis for simple
styles. Recent work [6] presenting a proof of concept sup-
porting tool showed how the proposed separation of concerns
can be placed within the formal framework of model-based
development. The current work extends our notion of archi-
tectural mappings to platform-induced styles, and composes
are initial synthesis of architectural models from application
models with synthesis of platform code from architectural
models to provide an end-to-end approach to synthesis of
architecturally correct code from abstract application mod-
els. This work this provides a critical advance toward an
industrially viable theory and technology.

5. CONCLUSION
In this paper, we proposed a formally specified approach



to end-to-end transformation of formal application models
into architecturally correct code, averting the difficult prob-
lem of mapping application models to diverse architectural
styles and platforms with assurance of consistency between
the code and the architecture. Our contribution builds on
prior work in architectural maps, research studies dealing
with middleware-induced architectural styles, and work on
filling the gap between architectural model and executable
implementations. As an experimental evaluation, we have
mapped a common application model to two platforms sup-
porting two styles: Prism-MW in an implicit invocation
style, and Restlet in the REST style. We demonstrated the
viability of this approach by among other things synthesiz-
ing an architecturally correct RESTful application running
on a network of Android phones.

We identify three key goals for future work. First, we in-
tend to integrate architectural analysis into our theory and
tools. Second, once this is done, it will enable automated op-
timizing design space search over architectural variants not
only within a style but across styles, yielding a new approach
to finding appropriate styles and architectures for given ap-
plications. Work by Jackson et al. [21] suggests a promising
approach that we intend to explore. Third, as part of our
future work, we plan to extend our work to support forgetful
back-mappings, i.e., abstraction from code back to architec-
tural models and thence to application models. With such
a technology in hand, combined with the forward mappings
we have already demonstrated, we will have a technology for
automated architectural evolution of modern applications to
further address the needs we articulated at the beginning of
this paper.
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