
Performance Evaluation of an Off-Host Communications Architecture 

Jeffrey R. Michel, Alexander S. Water”, and Alfred C. Weaver 

Department of Computer Science 
University of Virginia 

Charlottesville, VA 22903 

Abstract 
The Computer Networks Laboratory at the University 

of Virginia has implemented the SAFENET lightweight pro- 
tocol suite on the Navy’s Desktop Tactical Computer (DTC- 
2). The software delivered includes the Xpress Transfer 
Protocol, a new transport and network layer protocol to 
support high-throughput, low-latency, priority-sensitive 
communications. One of our research questions was 
whether to embed XTP in the DTC-2’s UNIX kernel or run 
XTP on an attached processor on the DTC-2’s VMEbus. We 
implemented both strategies and the attached processor 
approach proved to have somewhat higher performance. In 
this paper we survey the hardware and software system 
environment, report the performance achieved at the MAC, 
transport, and user levels, and develop an analytic model 
for predicting throughput and latency as a function of ven- 
dor-provided or easily-measured system parameters. Our 
conclusions identifr both the advantages and perSormance 
concerns inherent to of-host protocol execution. 

1 Introduction 

The United States Department of Defense has adopted 
SAFENET (Survivable Adaptable Fiber Optic Embedded 
Network) [6] as its communications architecture for mis-  
sion-critical computer systems. SAFEmT is unique in that 
it specifies a dual-protocol architecture. A suite of IS0  pro- 
tocols is specified for use in non-real-time systems (e.g., file 
transfer, electronic mail), and a so-called Lightweight Pro- 
file defines the protocols to be used for latency-sensitive 
applications. On the “lightweight” side, SAFENET’S trans- 
port services are provided by the Xpress Transfer Protocol 
(XTP) [7]; SAFENElT’s physical layer is based on FDDI. 

The Computer Networks Laboratory at the University 
of Virginia was awarded a Navy contract to provide the 
SAFENET lightweight protocol suite for the Desktop Tacti- 
cal Computer (DTC-2), including XTP, an XTP interface to 
FDDI, an Ada API, directory services, and demonstration 

programs. The resulting DTC-2 architecture, Ada binding, 
and XTP implementation are described in detail in [ 1,2,3]. 

Our challenge was to implement the communications 
services in a way which preserved the throughput and 
latency goals of the Lightweight Services. Two approaches 
seemed obvious: (1) embed XTP protocol processing in the 
DTC-2’s UNIX kernel, or (2) run XTP on an attached pro- 
cessor on the DTC-2’s system bus. The first idea was con- 
ventional; the second was intriguing because it offered the 
opportunity for off-loading the host and gaining some par- 
allelism between the user application running on the host 
and the protocol running on the attached processor. 
Whether or not that potential parallelism would result in 
enhanced performance was the object of our research 
project. 

We implemented both strategies, and the attached pro- 
cessor architecture proved to have somewhat higher perfor- 
mance overall. The details of the kernelized approach may 
be found in [8]. This paper summarizes our results for the 
attached-processor approach; full details are in [5 ] .  

2 Off-host implementation 

In order to achieve the potential advantages of an off- 
host communications architecture, great care must be taken 
in its design and implementation. In the following sections 
we discuss the possible benefits of an off-host architecture 
and how we sought to achieve them through our hardware 
and software design choices. 

2.1 Potential advantages of an off-host architec- 
ture 

An off-host communications architecture can benefit 
both the host processor and the protocol implementation. 
As a result, host applications can run faster and more pre- 
dictably and protocol performance can be maximized. The 
host processor may receive the following advantages due to 
the off-host approach: 

414 
0742-1303193 $03.00 0 1993 IEEE 



Reduced host load. Since all protocol processing activ- 
ities are handled on the attached processor, no host proces- 
sor cycles are consumed for protocol processing. 

Predictable application processing. Since transport 
protocols perform retransmissions, react to incoming traf- 
fic, and sometimes block on network access, the execution 
times for protocol processing are nondeterministic. When 
using an off-host architecture, such nondeterministic activ- 
ity occurs on the attached processor and not on the host. As 
a result, the CPU demands of host processes become more 
deterministic, thus promoting the predictable execution of 
such processes. 

Reduced and bounded interrupt arrivals. A transport 
protocol typically receives interrupts from its lower-layer 
communications service in order to indicate packet activity. 
Some minimum number of packets are necessary for each 
message, and, in addition, an unbounded number of packets 
may arrive from other hosts or result from retransmissions. 
Each packet can result in a processor interrupt. When the 
protocol runs on an attached processor, the host is shielded 
from these interruptions. When using an off-host architec- 
ture, host interrupts need only occur on a per-message, 
rather than a per-packet, basis. This results in substantially 
fewer host interrupts per message. Furthermore, the proto- 
col interrupts the host only for those messages which the 
host desires to receive. This enables application processes 
to place a bound on the amount of interrupt handling in 
which the host will engage. These characteristics have been 
referred to as a “network firewall” [4]. 

The communications protocol can receive the follow- 
ing benefits when run on an attached processor: 

Dedicated processor cycles. When run on the host, a 
communications protocol must contend with application 
tasks for processor cycles, thereby incurring overhead from 
scheduling and context swaps. Such overhead reduces the 
amount of work the processor can perform for its applica- 
tion and causes poor response time to protocol events. With 
a dedicated processor, more cycles are available to the pro- 
tocol, thereby raising throughput, and context swaps can be 
avoided, thereby lowering latency and reducing the likeli- 
hood of buffer overflow. 

Specialized hardware. Protocols can benefit from spe- 
cial hardware features such as high-speed RAM, DMA cop- 
ies, block moves, and fast checksumming. Such hardware 
may allow certain protocol operations to be accelerated or 
performed in parallel. Components providing these services 
can be utilized on the protocol processor board. Further- 
more, if the network interface resides directly on the pro- 
cessor board, a fast communication path between it and the 
protocol can be achieved. 

Ideal operating system environment. It has been recog- 
nized that an operating system environment can place 
severe constraints on a protocol’s performance and proper 

implementation [9]. With an attached processor board, one 
is free to choose the ideal operating system for the protocol 
implementation, including none at all. 

2.2 Hardware 

Figure 1 depicts our hardware and software architec- 
ture. The host platform for our work is the C3 Desktop Tac- 
tical Computer (DTC-2). This machine features a 25-Mhz 
SPARC CPU and uses the SunOS 4.1.1 operating system, a 
variant of UNIX. The DTC-2 employs a VME backplane 
bus which we use to contain our FDDI adapter and protocol 
processor. The FDDI board is manufactured by Network 
Peripherals (NP), and the protocol processor board is a 
Motorola MVME-167A (167). The 167 contains a 25-MHz 
MC68040 microprocessor and 8 MB of on-board, 70-ns 
DRAM, all of which is addressable on the VMEbus. An 
FDDI MAC device driver resides on the 167 and communi- 
cates with the NP board through both shared memory and 
VME interrupts. The system is configured such that a por- 
tion of the 167’s memory is mapped into the DTC-2 ker- 
nel’s 32-bit virtual address space, facilitating 
communication through shared memory between the 167 
and DTC-2. Communication also occurs through interrupts 
generated on the 167 board for the DTC-2. The 167 runs 
pSOS+, a lightweight multitasking operating system, and 
the off-host implementation of XTP. 

IF Ada Packages 
I I I CLibrary I 

Device Driver Ea 
DTC-2 

I I  - VME-addressable 
memory 1 A- Buffer pool -,,”* 1::~~iEr’I 

D- NP registers 

Figure 1 : System Architecture 

2.3 Software 

Our software architecture exists to provide transport 
services to Ada applications running as UNIX processes. It 
consists of a set of Ada packages, a C library, a UNIX char- 

415 



acter device driver, an implementation of XTP, and an 
FDDI MAC device driver. These individual software com- 
ponents are partitioned onto our two processor platforms 
and run in several address spaces. On the host, the Ada 
package bodies and C library run in the address space of 
their Ada application's process, while the character device 
driver runs in the kernel with its own distinct address space. 
On the attached processor, the XTF' implementation and 
MAC driver run as a set of pSOS+ tasks sharing a common 
address space. 

An Ada application employs primitives such as 
SEND-MESSAGE and GET-MESSAGE from the Ada pack- 
ages to perform network communication. The Ada program 
is linked with the library of C code which contains the user- 
level portion of the implementation of the transport ser- 
vices. Aside from the management of some user-level 
resources and state information, the function of this C code 
is to command the protocol processor and receive its 
acknowledgments of command completion through the use 
of the character device driver. 

The C-library interacts with the transport layer via a 
standard UNIX character device interface. It utilizes system 
calls such as open ( ) , read ( ) , and write ( ) to commu- 
nicate with the off-host protocol processor. Commands are 
packaged in control blocks that include the command, a 
connection identifier with which it is associated, and point- 
ers to any required user data buffers. The device driver 
maintains enough information on each connection to asso- 
ciate it with its user process. The control block communica- 
tion to the protocol processor follows an asynchronous 
request-acknowledgment protocol. To issue a control block, 
a user process issues a wri te ( ) to the protocol processor. 
Once the control block is queued for the protocol processor, 
the device driver returns control to the user. When the com- 
mand associated with the control block completes, the pro- 
tocol processor notifies the user process by queueing an 
acknowledgment block and interrupting the host. This inter- 
rupt invokes a device driver interrupt routine which in turn 
issues a UNIX signal to the process owning the connection 
identified in the acknowledgment block. A signal handling 
routine in the user process performs a read ( ) in order to 
access the acknowledgment. 

The device driver maintains the status of all XTP con- 
nections and manages the allocation of connection identifi- 
ers along with shared-memory data buffers associated with 
each connection. A 4-MB memory region of the local mem- 
ory on the protocol processor is allocated as a buffer pool 
for incoming and outgoing messages. 

The control- and acknowledgment-block communica- 
tion mechanism between the host and the protocol proces- 
sor employs two queues, the FN (From Network) queue and 
the TN (To Network) queue. The FN and TN queues reside 
in shared memory and allow both processors to command 

and acknowledge each other asynchronously. The host 
enqueues control blocks on the TN queue to be dequeued 
by the protocol processor, whereas the protocol processor 
enqueues acknowledgment blocks on the FN queue to be 
dequeued by the host. 

Unfortunately, control blocks and user message data 
are transferred between the host and protocol processor 
using programmed YO. Although both the host and the pro- 
tocol processor support the use of DMA, memory architec- 
ture limitations on the host prohibited a straightforward 
implementation. Such limitations are due to the fact that 
only the highest 1 MB of kernel virtual address space is 
addressable on the VMEbus (DVMA space), and the host 
maps this region to the lowest megabyte of VME address 
space. 

3 Performance 

In order to illustrate the overall performance of our 
architecture, we provide throughput and latency measure- 
ments at its MAC layer, transport layer, and user level for 
the full range of message sizes available at each. We also 
include a profile of overall processing time for a 
SEND-MESSAGE operation and an assessment of the host 
CPU load incurred to perform it. 

3.1 MAClayer 

The MAC layer provides the transport protocol with a 
raw data link service over the 100-Mbps FDDI network. 
The results below were obtained using a pair of Network 
Peripherals FDDI boards and a pair of Motorola MVME 
167A processor boards in two stand-alone Vh4E card cages. 
During these tests, no operating system ran on the proces- 
sors, and we performed communication between the pro- 
cessor board and FDDI board using block-mode DMA over 
the =bus. Figure 2 shows our end-to-end latency, and 
Figure 3 shows our throughput. Here, latency is half of the 
round-trip time of a frame, and throughput measures the 
rate at which the MAC driver can transmit frames with no 
receiver. A minimum latency of 9 1.5 ns occurs for a frame 
with no payload, and the maximum throughput of 56.6 
Mbps occurs for frames carrying a payload of 4,487 bytes 
(4,500-byte maximum FDDI frame less LLC and SNAP 
headers). 

3.2 Tkansport layer 

The transport protocol (XTP) provides reliable end-to- 
end delivery of memory buffers from the local memory of 
one protocol processor board to another. Results were 
obtained at the top-level interface to XTP, which is the 
interface used by our UNM device driver. For the through- 
put measurements, the data transfer operations were pipe- 

416 



lined using the “streaming” features of our XTP 
implementation, and data checksums were disabled via the 
XTP NOCHECK option [7]. End-to-end latency and 
throughput are shown in Figures 2 and 3, respectively. As 
before, latency measures half the round-trip time of a mes- 
sage. In this case, throughput is for reliable, connection-ori- 
ented message transmission. The minimum latency of the 
protocol is 2.7 ms for a one-byte message, and a maximum 
throughput of 23.8 Mbps occurs for a 64-KE3 message. 

write ( ) system call 

disable signals 

enable signals 

70 I I 

83 1 83 
25 3 75 

22 3 66 

0 10 20 30 40 50 60 70 
Message Size (Kbytes) 

Figure 2: End-to-End Latency vs. Messege Sire 

I 
0 10 20 30 40 50 60 70 

Message Size (Kbytes) 

Figure 3: Throughput vs. Message Size 

3.3 User level 

All user-level performance measurements were 
obtained using two Ada application processes running on 
separate DTC-2 hosts and employing the connection-ori- 

tives. Latency measures half the round-trip time of a 
ented SEND-MESSAGE and GET-MESSAGE MI primi- 

message sent from one Ada application to another. The 
minimum latency occurred at a message size of one byte 
and was 5.1 ms. For the throughput measurements, the 
communication primitives were pipelined using the asyn- 
chronous mode of our Ada M I ,  and XTP’s rate control fea- 
tures [7] and NOCHECK option were used to provide 
maximum performance. Such results were achieved using a 
RATE value of 1.5 MB/sec and a BURST value of 10 KB/ 
burst. These settings result in our architecture’s peak 
throughput: 12.1 Mbps at a message size of 64 KB. 

3.4 Profiling 

To study the user-level results, we profile the execution 
of the SEND-MESSAGE and GETMESSAGE primitives 
used in the performance tests. First we concern ourselves 
with the processing of short messages. Table 1 lists where 
the host processor spends its time during a synchronous 
SEND-MESSAGE call for a one-byte message. The “other” 
category accounts for accumulated measurement error and 
operations which consume less than 10 ps. The profile for a 
one-byte GETMESSAGE operation is similar. 

physio ( ) & iodone ( ) 

read ( ) system call 

signal delivery 143 1 143 

I control block copyin ( ) I 29 I 1 1  29 I 
I ack block copyout ( ) I 1 1  

Table 1: Profile of a One-Byte SEND-MESSAGE 

The wait for completion measures the amount of time 
that the host awaits an indication that the operation is com- 
plete. Although it accounts for most of the total time, the 
wait itself does not require host processor cycles; rather, it 
is a function of the transport protocol’s performance. All 
other times in the table are incurred by various UNIX ser- 
vices. Even the simple operation of disabling a signal takes 
a surprisingly large amount of time because it requires a 
UNIX system call. Most significant is the time required to 
perform the processing of physio ( ) and iodone ( ) rou- 
tines, kernel utilities that manage the arguments of the 
read ( ) and write ( ) system calls. It is clear that UNIX 
overhead dominates the host processing time when the mes- 
sage size is small. 

To study the processing overhead of long messages, we 
profile a SEND-MESSAGE of 64 KB in Table 2. As before, 

417 



the total time is dominated by the wait for completion. 
However, with the long message size, the cost of allocating 
and deallocating a buffer on the local memory of the proto- 
col processor now becomes notable. Furthermore, a star- 
tling result is the time required to perform the data 
copyin ( ) across the VMJ3bus. For long messages, the 
time to perform this backplane transfer dwarfs all UNIX 
overhead and even rivals the wait for completion. 

Operation pdcall Calls 

wait for completion 23,455 1 

data copyin ( ) 18,164 1 

physio ( ) & iodone ( ) 301 3 

totalps 

23,455 

18,164 

903 

I read ( system call I 81 I 21 1621 

signal delivery 
get and r e m  buffer 

write ( ) system call 

143 1 143 
109 1 109 

83 1 83 

disable signals 

enable signals 

control block copyin ( ) 

1 ack block copyout ( ) I 

25 3 15 

22 3 66 

29 1 29 

Table 2: Profile of a 64-KB SENI-mssAGE 

The profile for a 64-KB GETMESSAGE is similar 
except that the data copyin ( ) in the table above is 
replaced with a 23,714-ps data copyout ( 1, and the wait 
for completion takes only 17,525 ps. Note the counterintu- 
itive result that the host spends more time copying the 
received message from the protocol processor than it does 
waiting for the protocol processor to handle the reception of 
the message from the network. 

3.5 Host load incurred 

The total time necessary for a SENE-MESSAGE call is 
6.1 ms for a one-byte message and 44.8 ms for a 64-KB 
message. However, 3.8 ms of the one-byte operation and 
23.5 ms of the 64-KB operation are spent waiting on com- 
mand completion and are therefore free for other host pro- 
cessing. Thus the one-byte call effectively consumes only 
2.2 ms, and the 64-KB call consumes only 21 ms of actual 
host processor time. Furthermore, only one host-processor 
interrupt is generated for a call with either message size. 

“How can we predict the possible performance of a given 
off-host architecture before its implementation has begun?” 
We have developed an architecture-based performance 
model for off-host protocol processing which attempts to 
provide answers to such questions. 

4.1 Background and purpose 

In a previous work on protocol processing [4], 
Kanakia and Cheriton estimate the performance of their 
proposed Network Adapter Board. Their analysis takes into 
account such factors as bus transfer time, network transfer 
time, and memory access time in order to predict the 
request-response delay of their device. The approach is 
quite informal, and it takes into account factors above and 
below the level of their transport protocol (VMTP). 

Our approach differs from Kanakia and Cheriton’s in 
two main areas. First, our performance predictions result 
from the evaluation of simple, yet formal, mathematical 
expressions. Second, the transport protocol is treated as a 
“black box,” making its performance characteristics param- 
eters of the model. That is, the transport protocol processor 
is analyzed in isolation, outside the context of any host pro- 
cessor. Its performance parameters are then used by the 
model to predict the performance that will be visible at the 
user level in the completed system. 

Our performance model has as its goals simplicity and 
practicality. With our model there is no need to acquire the 
probability distributions of any input parameters as would 
be required of a queueing theory model. Rather, one need 
only use readily-available, time-average measurements or 
vendor-provided specifications. With minimal effort one 
can predict the end-to-end latency and throughput seen at 
the user level. One may also obtain an estimate of the 
amount of host processing time required for data transfer 
operations. Such predictions are practical in that they are of 
interest to the developers of systems making use of off-host 
protocol processing. Furthermore, the model’s complexity 
and accuracy are scalable in the following manner. In pro- 
gressive stages of system implementation, one may use 
knowledge of the overhead of the software components in 
the implementation to gain more accurate predictions using 
the general methodology of the model. 

4.2 Terminology and symbols 

418 



host 2 2 2 

A: 
B: 
c 
D 
E: 
F 
G 
H 
I: 
J: 
K 

protocol 
processor 

I E I 

time to enter the device driver write ( ) routine 
time to copy the send command to the protocol processor 
time to copy the user data to the protocol processor 
time to return from the device driver write ( ) routine 
protocol processing time required to service the request 
time to initiate. the user-level interrupt handler routine 
time to enter the device driver read ( ) routine 
time to read the acknowledgment from the protocol processor 
time to return from the device driver read ( ) routine 
time to enter and return from the device driver read ( ) routine 
time to return from the user-level interrupt routine 

To + P7.1 
I I 

Figure 4: Delay Components of the User-Level Period 

la 
pw 

parallelism causes certain terms to drop out of the analysis. 
All predicted quantities, as well as many terms, are a func- 
tion of the message length, represented here by the symbol 
1. 

length in bytes of an acknowledgment block 
per-byte time required for the host to write data or control infor- 
mation to the protocol processor 

Symbol 

round-trip delay of the write ( ) driver entry point 

round-trip delay of the read ( ) driver entry point 
round-trip user-level interrupt delivery time 

pr 

S, 

I I ,  I length in bytes of a control block I 

per-byte time required for the host to read data or acknowledg- 
ments from the protocol processor 

time required for the protocol processor to transmit a minimum- 
length message end-to-end 

ps 

To 

per-byte time required for the protocol processor to transmit data 
end-to-end 

period of the protocol processor in transmining a minimum-length 
message 

I per-byte addition to the period of the protocol processor in trans- I PT I mitting a message 

Table 3: Input Parameters of the Model 

We must first present some terminology for two quanti- 
ties used in the analysis, delay and period. In our model, 
delay measures the time between the beginning of a trans- 
mission operation at one endpoint and the completion of the 
corresponding receiving operation at a peer endpoint. In 
contrast, the period of an operation is the time between the 
beginning of the operation and the local indication of its 
completion. The three most fundamental output quantities 
of the model are the user-level delay, 6(1), the user-level 
period for a transmitting operation, T#), and the user-level 
period for a receiving operation, T,(l). The delay predicts 

user-level end-to-end latency, and the periods can be used 
to predict the user-level throughput for synchronous trans- 
fers, ~ ~ ( l ) ,  and the user-level throughput for asynchronous 
transfers, ~ ~ ( l ) .  In addition, one may predict the host pro- 
cessing overhead (in units of seconds) required to transmit a 
message, Ht(I), or to receive a message, H,(l). Table 3 lists 
the parameters of the model and their respective symbols. 

4.3 Analysis and formulae 

All derivations are based on summations of time val- 
ues. Therefore, in the following analysis, the p-quantities 
(in units of secondshyte) are multiplied by the 1-quantities 
(in units of bytes) to produce elapsed times. To estimate the 
user-level period, we undergo the following analysis. Pro- 
cessor execution time lines for a transmitting operation are 
given in Figure 4. Note that 6,6, and 6i are defined above 
as round-trip times rather than one-way times because 
round-trip times are easier to measure in practice. The one- 
way time of each is then estimated as simply half the round- 
trip time. The 6, term at location J is subtle. Because inter- 
rupts do not queue, a single interrupt may signal the arrival 
of more than one protocol-processor acknowledgment. The 
6, term represents a second read of the protocol processor's 
status to determine if another acknowledgment is pending. 
Given these time lines, we may sum the serial components 
to obtain the user-level period for a transmitting operation. 

' r  ' r  'i - + prz, + - + tir + - 
2 2 2 

'W 
= (p, + P T )  I +  - +To + 6,+ 2tir+ pwz, + p,l, 2 

419 



We base the second step of the derivation on the 
assumption that 6,/2 I To + pfi, which should be quite 
acceptable in most cases. This is an example of where pro- 
cessor parallelism causes a serial delay term to drop out. 

The analysis of the other output quantities proceeds 
along these same lines and is omitted for brevity. For more 
information, see [5 ] .  The period for a receiving operation is 

6, T,(l) = (p,+ pT) 1 + - + To + 6i + 26, + p,l, + pi,. 2 
From Tf(l) and T'(1) we obtain the synchronous user- 

level throughput: 
1 

"(T#h T,(I)) * 
TS(O = 

The derivation of the asynchronous user-level through- 
put, TJZ), is more complex due to the fact that we must take 
into account both the parallelism of the host and protocol 
processors and the shared resource of the backplane bus. 
The derivation is based upon the following assumptions 
about the steady-state operation of the asynchronous mode: 

The host keeps the command queue to the protocol 

The protocol processor is always either busy or block- 

An insignificant portion of TO is spent on bus access. 

The time represented by p$ is dominated by that of 

This implies that the 6,/2, TO, &, and 26,. terms of Tf(l) and 
T,.(I) drop out of the analysis so we have: 

processor full. 

ing on bus access. 

bus transactions. 

1 

max (TJE), T,(I)) - ( - + To + 6i + 26,) 
T,(l) = 

6, 
2 

The expression for S( l )  is 
6 
2 6(0 = (p, + ps + p,) 1 + + 6, +ai  + 26,+ p,l,+ pi , .  

The minimum host processing time required to trans- 
mit a message is 

H,(l) = (1, + I )  p, + 6, + 6i+ 26, + l a p r ,  

and the minimum host processing time to receive a message 
is 

H,(O = (1, + 1 )  p, + 6, + l,pw + ai + 26r. 

Parameter 

6%' 

4.4 Predictions 

Value 

392 p 

For our architecture, the inputs to our model have the 
values listed in Table 4. Given this input, the model predicts 
the user-level end-to-end latency shown in Figure 5 and the 
user-level synchronous throughput shown in Figure 6, both 
as a function of message length. Furthermore, the model 
predicts the minimum host processing time to transmit a 

message to be 1.4 ms for a one-byte message and 19.5 ms 
for a 64-KB message. 

I I 
4 143 ps 
c I104 bytes 

64 bytes 

3.112 ms 

363.97 nslbyte 

2.062 ms 
PT 295.82 nsibyte 

Table 4: Input Parameter Values for our 
Architecture 

70 

60 

50 

h 

540 
6 
I g 30 

20 

10 

0 
0 10 20 30 40 50 60 70 

Message Size (Kbytes) 

Figure 5: Latency vs. Message Size 

12 

10 

2 

0 
0 10 20 30 40 50 60 70 

Message Size (Kbytes) 

Figure 6: Throughput vs. Message Size 

420 



4.5 Comparison 

By examination of Figure 5 we can see that the end-to- 
end latency prediction is a good estimate of the observed 
user-level end-to-end latency. Figure 6 shows that the user- 
level throughput predictions of the model are relatively 
accurate for large messages; however, they overestimate the 
throughput for short messages. This discrepancy indicates 
that there is more delay overhead in the data path than the 
terms of Tl(l) and TA9 take into account. A comparison of 
the observed minimum host processing time to perform a 
transmission with the predictions above indicate a 36% dif- 
ference for a one-byte message and a 7.1 % difference for a 
64-KB message. 

5 Conclusions 

The performance results reported and the platform cho- 
sen for our SAFENET research enable us to assess the pro- 
posed benefits of an off-host implementation. 

Reduced host load. Due to addressing limitations, the 
architecture we chose did not reveal the reduction of host 
load we anticipated. A large percentage of time is spent in 
both the SEND-MESSAGE and RECEIVE-MESSAGE 
operations performing programmed YO, where pro- 
grammed YO entails data copies that involve the host pro- 
cessor. Some amount of programmed U0 will be necessary 
in any off-host or in-host implementation to command the 
attached network device. Address space restrictions forced 
us to use host-driven programmed U0 to transfer data 
between the host and the attached processor. We believe 
that this is a problem inherent to our specific hardware 
architecture, and not a problem inherent to off-host protocol 
processing. The introduction of user buffer DMA capabili- 
ties would reduce the VME! data copy overhead to a con- 
stant DMA setup time, not dependent on data length, thus 
host load would be constant and low. 

Predictable application processing. Predictability is 
achieved through the asynchronous control block strategy 
employed for command submission. The control block is 
queued for processing in constant time. Immediately after- 
ward, control returns to the user process such that it may 
continue processing; the system need not wait on the com- 
pletion of the data transfer to regain control. 

Reduced and bounded interrupt arrivals. Preliminary 
measurements show that the transmission of one 64-KB 
message produces 26 host interrupts for a UNIX in-host 
implementation of XTP, compared to 1 host interrupt for 
our off-host implementation. This is a reduction in host- 
processor interrupts of 96%. This percentage would be even 
higher if malicious or malfunctioning network nodes were 
generating spurious packets. The ability of the attached pro- 
cessor to field network interrupts and drive the MAC device 

also decreases work the host must perform for communica- 
tion processing. 

Dedicated processor cycles. The attached processor 
has the sole responsibility of running the XTP implementa- 
tion, and all of its cycles are dedicated to the communica- 
tion system, since user processes are located on the host. As 
a result, there is no contention with other processes for pro- 
cessor cycles; thus, the overhead associated with context 
swaps and scheduling is avoided. Preliminary results of a 
UNIX kernel implementation of the same protocol show 
transport layer throughput to be about 36% lower than that 
of the off-host approach. 

Specialized hardware. The architecture adopted for our 
SAFENET system was not able to fully utilize the DMA 
hardware offered on the attached processor. The architec- 
ture could benefit from both the support of DMA and spe- 
cialized hardware for protocol functions such as the 
checksum. Additionally, the maturation of technology such 
that the attached processor and network adapter reside on 
the same board would very likely enhance performance. 
This is because such an architecture would reduce both con- 
tention for the backplane and the overhead of transfers 
across it. 

Ideal operating system environment. The lightweight 
operating system environment of the attached processor is a 
better match to the performance demands of a communica- 
tions system. Much of the lost performance of the in-kernel 
approach can be attributed to data copies mandated by the 
UNIX communication architecture [8]. In contrast, the 
attached processor operates as a dedicated protocol engine, 
and its operating system is better suited for such a purpose. 

The application of the simple performance model to 
our architecture and comparison with observed perfor- 
mance indicates that our implementation allows us to make 
conclusions about the exploitation of our chosen architec- 
ture. The latency comparison indicates that our implemen- 
tation incurs more constant overhead than was predicted 
given our design and its architectural components; thus, 
further optimization of our implementation may result in 
reduced latency. We do, however, seem to exploit all of our 
architecture’s throughput potential. The model indicates 
that our implementation does indeed reach the throughput 
limits imposed by its surrounding architecture; hence, any 
significant improvement in throughput must arise from a 
modification of our fundamental architectural design rather 
than by optimizations within its architectural framework. 

In short, we have shown that it is possible to achieve 
many of the promising benefits of off-host architectures. 
However, we have also demonstrated that certain design 
choices (e.g., the use of host-driven programmed YO) can 
erode some of the potential benefits of the off-host 
approach. 

421 



Acknowledgments 

The authors gratefully acknowledge the extensive sup- 
port provided by Mr. John C .  Fenton who developed our 
protocol processor software and documented its perfor- 
mance characteristics. 

References 

B. J. Dempsey, J. C. Fenton, J. R. Michel, A. S. Waterman, 
and A. C. Weaver, “Tutorial on UVA SAFENET Lightweight 
Communications Architecture,” Computer Science Technical 
Report Number TR-93-01, University of Virginia, January 
1993. 

B. J. Dempsey, J. C. Fenton, J. R. Michel, A. S .  Waterman, 
and A. C. Weaver, “Ada Binding Reference Manual- 
SAFENET Lightweight Application Services,” Computer 
Science Technical Report TR-93-02, University of Virginia, 
January 1993. 

B. J. Dempsey, J. C. Fenton, J. R. Michel, A. S .  Waterman, 
and A. C. Weaver, “SAFENET Internals,” Department of 
Computer Science Technical Report Number TR-93-05, UN- 
versity of Virginia, January 1993. 

H. Kanakia and D. R. Cheriton, ‘The VMP Network Adapter 
Board (NAB): High-Performance Network Communication 
for Multiprocessors,” Proceedings of the SIGCOMM ‘88 
Symposium on Communications Architectures and Protocols, 
pp. 175-187. 

J. R. Michel, “Performance Evaluation of an Off-Host Com- 
munications Architecture,” M.S. Thesis, Department of 
Computer Science, University of Virginia, August 1993. 

MIGSTD-2204: Survivable Adaptable Fiber Optic Embed- 
ded Network (SAFENET), United States Department of 
Defense, September, 1992. 

W. T. Strayer, B. J. Dempsey, and A. C. Weaver, XTP: The 
Xpress Transfer Protocol, Addison-Wesley, Reading, Massa- 
chusetts, 1992. 

A. S. Waterman, “A Comparison of Off-Host vs. In-Kernel 
Communications Architecture,” M.S. Thesis, Department of 
Computer Science, University of Virginia (in preparation). 

R. W. Watson and S. A. Mamrak, “Gaining Efficiency in 
Transport Services by Appropriate Design and Implementa- 
tion Choices,” ACM Transactions on Computer Systems, Vol. 
5 ,  No. 2, May 1987. 

422 


