

Using OER to Enhance Transparency in Calculus I

Daniel James
Assistant Professor of Mathematics, General Faculty
University of Virginia

Innovations in MATH 1310 Calculus I

GOAL: to improve access to success in MATH 1310 for all students and to close outcome gaps that exist between various student groups

2016-2019: flipped classroom pilot initiated to improve student outcomes

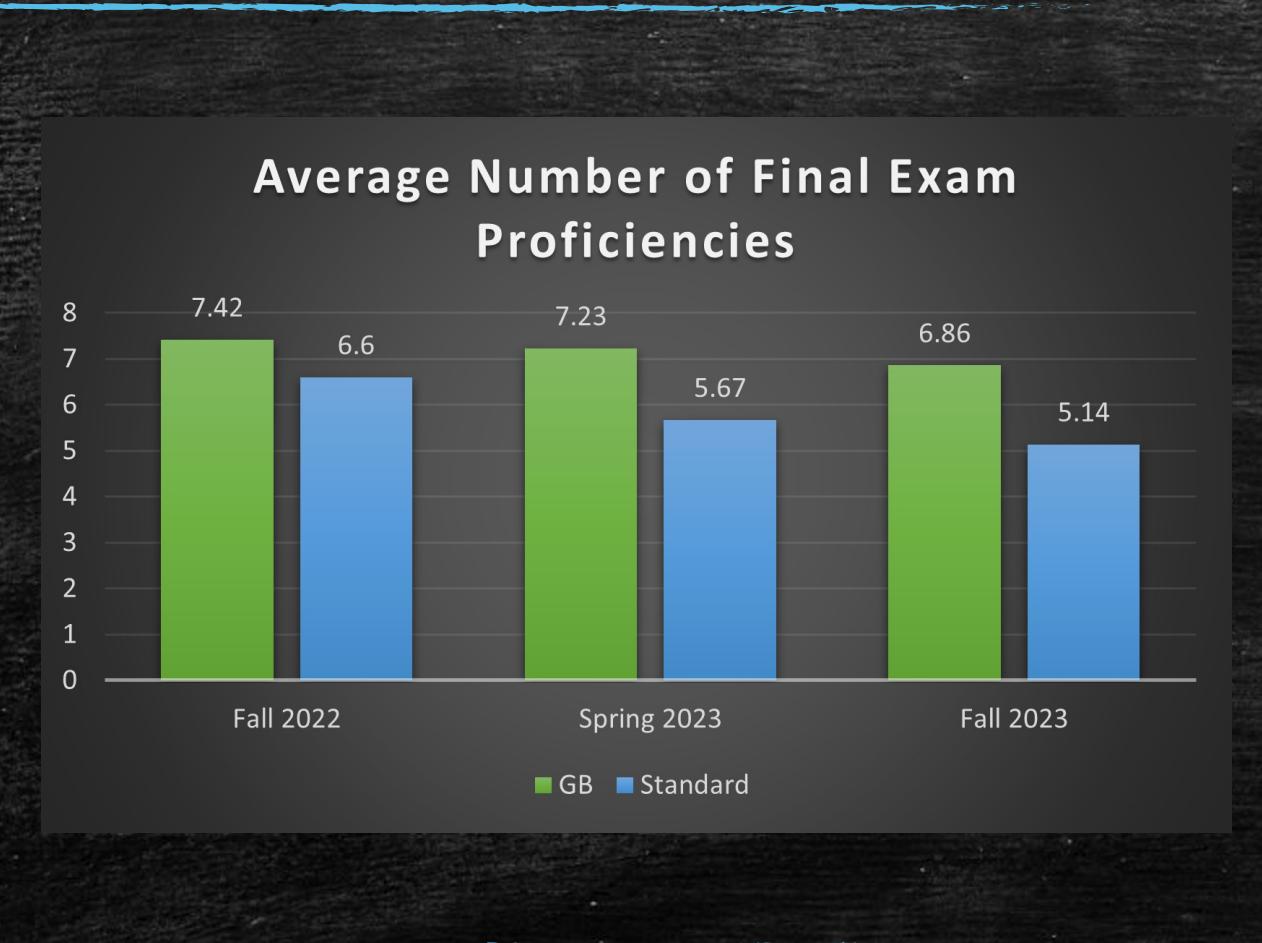
2019-2020: full transition to flipped classrooms after positive results (i.e. increased learning, lower DFW rates) from the pilot

2022-current: growth-based assessment structure pilot to improve student outcomes further

What does growth-based assessment look like in MATH 1310 Calculus 1?

Twenty-five distinct learning targets capturing the most important mathematical ideas of the course were created and shared on course LMS sites.

Course materials were redesigned to align with the new learning targets.


Five assessments were given during the semester, with each assessment question corresponding to a learning target, 1 question per target.

Responses to each question were awarded a proficiency score to measure student progress toward each learning target.

Students had multiple attempts – typically 3 or 4 – to demonstrate proficiency on each target, with only their maximum score counted.

A student's letter grade was based on the number of demonstrated proficiencies.

Growth-Based Assessment: Some Results

We are seeing statistically-significant learning differences between the growth-based assessment structure and the standard assessment structure.

These differences persist when we control for prior math knowledge & experience.

Notably, students who identified as members of an underrepresented minority group or as a first-generation college student benefitted **more** from the growth-based assessment structure – shrinking the gap.

Why, though? What is the mechanism?

Impacts of Transparency on Student Outcomes

RESEARCH

A Teaching Intervention that Increases Underserved College Students' Success

► **Mary-Ann Winkelmes**, coordinator, instructional development and research, office of the provost and associate graduate faculty, history department, University of Nevada, Las Vegas; senior fellow, AAC&U
Matthew Bernacki, assistant professor, educational psychology and higher education, University of Nevada, Las Vegas
Jeffrey Butler, visiting lecturer, department of economics, University of Nevada, Las Vegas
Michelle Zochowski, graduate student, University of Nevada, Las Vegas
Jennifer Golanics, graduate student, University of Nevada, Las Vegas
Kathryn Harriss Weavil, graduate student, University of Nevada, Las Vegas

The challenge to provide equitable opportunities for college students to succeed is a critical priority for the Association of American Colleges and Universities (AAC&U). In 2014, AAC&U partnered with the Transparency in Learning and Teaching in Higher Education (TILT Higher Ed) project, founded at the University of Illinois and now housed at the University of Nevada, Las Vegas, on an initiative that significantly increases underserved college students' success. TG Philanthropy funded the Transparency and Problem-Centered Learning project (www.aacu.org/problemcenteredlearning), with Tia McNair, Ashley Finley,

low-income students lag far behind those of students whose family incomes are above the bottom quartile (Tough 2014). And first-generation college students are 51 percent less likely to graduate in four years than students whose parents completed college (Ishitani 2006).

Colleges and universities have of course made valuable efforts to address these skewed and inequitable outcomes, relying upon predictive analytics and resources including advising, scholarships, tutoring, and community-building programs. But there has been little systematic study of the role that faculty can play collectively in improving learning

Winkelmes et al (2016) asked:

"What is the effect when teachers provide two transparently designed, problem-based take-home assignments on spring-term first-year college students' learning experiences?"

Impacts of Transparency on Student Outcomes

RESEARCH

A Teaching Intervention that Increases Underserved College Students' Success

► **Mary-Ann Winkelmes**, coordinator, instructional development and research, office of the provost and associate graduate faculty, history department, University of Nevada, Las Vegas; senior fellow, AAC&U
Matthew Bernacki, assistant professor, educational psychology and higher education, University of Nevada, Las Vegas
Jeffrey Butler, visiting lecturer, department of economics, University of Nevada, Las Vegas
Michelle Zochowski, graduate student, University of Nevada, Las Vegas
Jennifer Golanics, graduate student, University of Nevada, Las Vegas
Kathryn Harriss Weavil, graduate student, University of Nevada, Las Vegas

The challenge to provide equitable opportunities for college students to succeed is a critical priority for the Association of American Colleges and Universities (AAC&U). In 2014, AAC&U partnered with the Transparency in Learning and Teaching in Higher Education (TILT Higher Ed) project, founded at the University of Illinois and now housed at the University of Nevada, Las Vegas, on an initiative that significantly increases underserved college students' success. TG Philanthropy funded the Transparency and Problem-Centered Learning project (www.aacu.org/problemcenteredlearning), with Tia McNair, Ashley Finley,

low-income students lag far behind those of students whose family incomes are above the bottom quartile (Tough 2014). And first-generation college students are 51 percent less likely to graduate in four years than students whose parents completed college (Ishitani 2006).

Colleges and universities have of course made valuable efforts to address these skewed and inequitable outcomes, relying upon predictive analytics and resources including advising, scholarships, tutoring, and community-building programs. But there has been little systematic study of the role that faculty can play collectively in improving learning

Winkelmes et al (2016) found:

"Students who received more transparency reported gains in three areas [...]: academic confidence, sense of belonging, and mastery of the skills that employers value. [...] For first-generation, low-income, and underrepresented students, those benefits were larger."

Impacts of Transparency on Student Outcomes

RESEARCH

A Teaching Intervention that Increases Underserved College Students' Success

► **Mary-Ann Winkelmes**, coordinator, instructional development and research, office of the provost and associate graduate faculty, history department, University of Nevada, Las Vegas; senior fellow, AAC&U
Matthew Bernacki, assistant professor, educational psychology and higher education, University of Nevada, Las Vegas
Jeffrey Butler, visiting lecturer, department of economics, University of Nevada, Las Vegas
Michelle Zochowski, graduate student, University of Nevada, Las Vegas
Jennifer Golanics, graduate student, University of Nevada, Las Vegas
Kathryn Harriss Weavil, graduate student, University of Nevada, Las Vegas

The challenge to provide equitable opportunities for college students to succeed is a critical priority for the Association of American Colleges and Universities (AAC&U). In 2014, AAC&U partnered with the Transparency in Learning and Teaching in Higher Education (TILT Higher Ed) project, founded at the University of Illinois and now housed at the University of Nevada, Las Vegas, on an initiative that significantly increases underserved college students' success. TG Philanthropy funded the Transparency and Problem-Centered Learning project (www.aacu.org/problemcenteredlearning), with Tia McNair, Ashley Finley,

low-income students lag far behind those of students whose family incomes are above the bottom quartile (Tough 2014). And first-generation college students are 51 percent less likely to graduate in four years than students whose parents completed college (Ishitani 2006).

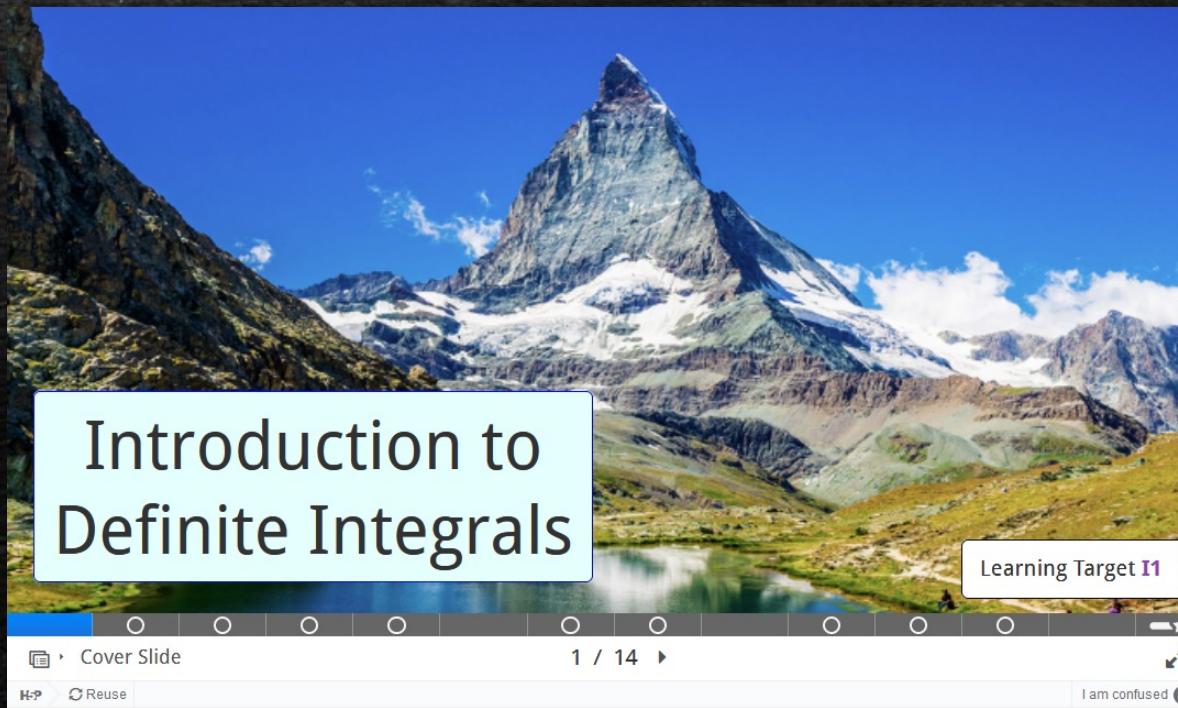
Colleges and universities have of course made valuable efforts to address these skewed and inequitable outcomes, relying upon predictive analytics and resources including advising, scholarships, tutoring, and community-building programs. But there has been little systematic study of the role that faculty can play collectively in improving learning

This article studies to the impacts of a transparently-designed *assignment*. But what if we scale that idea up to the course design level?

What would a transparently-designed course look like?

What impact would such a course have on student learning and retention?

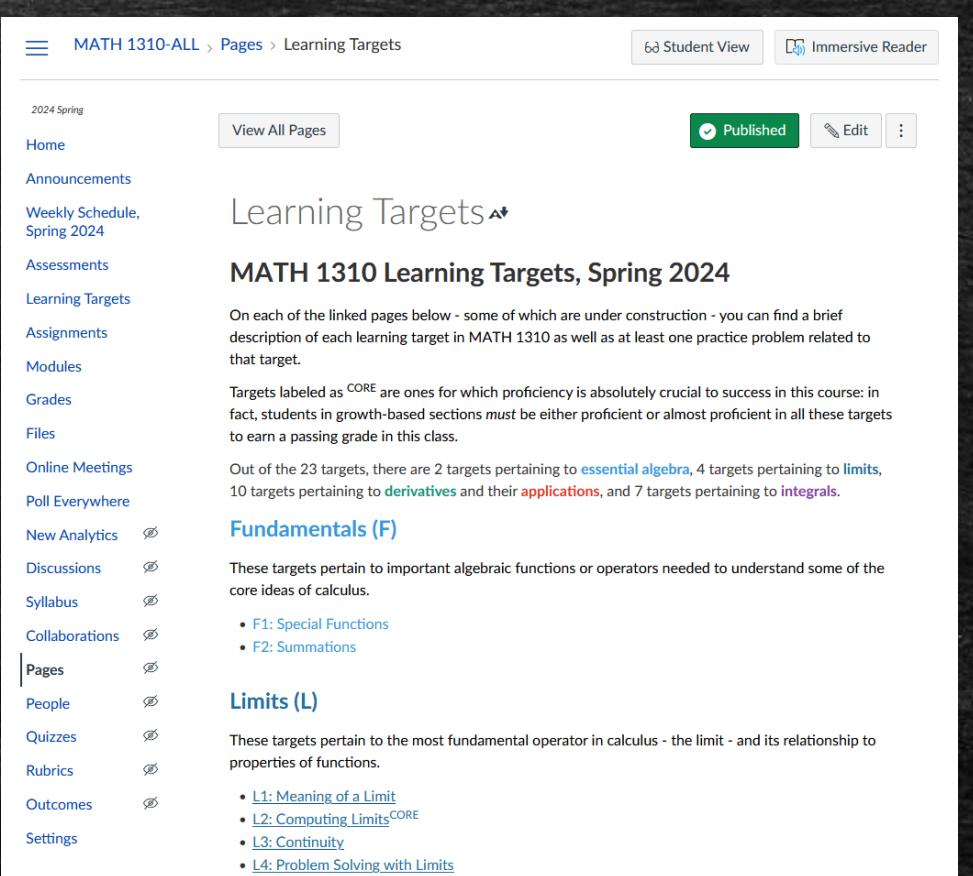
Before a course can be transparent, it must first be accessible. Cost is a barrier.



My OER project seeks to expand transparency in learning calculus to all students, regardless of privilege.

OER's Current Role in Promoting Transparency in MATH 1310

Learning-target-aligned H5P activities are used as pre-class assignments.



The image shows a screenshot of an H5P (HyperText Preprocessor) activity. The main title 'Introduction to Definite Integrals' is displayed in a white box with a black border. The background of the slide is a scenic photograph of the Matterhorn mountain in the Swiss Alps, with its characteristic pyramid shape and snow-capped peaks. At the bottom of the slide, there is a navigation bar with a progress bar showing 14 steps, a 'Cover Slide' button, a 'Reuse' button, and a 'Learning Target I1' button. The slide is currently on step 1 of 14. A small text box in the bottom right corner says 'I am confused' with a help icon.

[\(link to activity\)](#)

OER's Current Role in Promoting Transparency in MATH 1310

Course learning targets are currently available to students in MATH 1310.

The screenshot shows a digital course page for MATH 1310-ALL. The top navigation bar includes 'Student View' and 'Immersive Reader' buttons. The left sidebar lists course sections: '2024 Spring', 'Home', 'Announcements', 'Weekly Schedule, Spring 2024', 'Assessments', 'Learning Targets' (which is the current page), 'Assignments', 'Modules', 'Grades', 'Files', 'Online Meetings', 'Poll Everywhere', 'New Analytics', 'Discussions', 'Syllabus', 'Collaborations', 'Pages' (selected), 'People', 'Quizzes', 'Rubrics', 'Outcomes', and 'Settings'. The main content area is titled 'Learning Targets' with a sub-section 'MATH 1310 Learning Targets, Spring 2024'. It explains that the page contains descriptions of learning targets and practice problems. It highlights 'CORE' targets as crucial for success. Below this, sections for 'Fundamentals (F)' and 'Limits (L)' are listed with their respective sub-targets.

MATH 1310-ALL > Pages > Learning Targets

2024 Spring

Home

Announcements

Weekly Schedule, Spring 2024

Assessments

Learning Targets

Assignments

Modules

Grades

Files

Online Meetings

Poll Everywhere

New Analytics

Discussions

Syllabus

Collaborations

Pages

People

Quizzes

Rubrics

Outcomes

Settings

View All Pages

Published

Edit

Learning Targets

MATH 1310 Learning Targets, Spring 2024

On each of the linked pages below - some of which are under construction - you can find a brief description of each learning target in MATH 1310 as well as at least one practice problem related to that target.

Targets labeled as **CORE** are ones for which proficiency is absolutely crucial to success in this course: in fact, students in growth-based sections **must** be either proficient or almost proficient in all these targets to earn a passing grade in this class.

Out of the 23 targets, there are 2 targets pertaining to **essential algebra**, 4 targets pertaining to **limits**, 10 targets pertaining to **derivatives** and their **applications**, and 7 targets pertaining to **integrals**.

Fundamentals (F)

These targets pertain to important algebraic functions or operators needed to understand some of the core ideas of calculus.

- [F1: Special Functions](#)
- [F2: Summations](#)

Limits (L)

These targets pertain to the most fundamental operator in calculus - the limit - and its relationship to properties of functions.

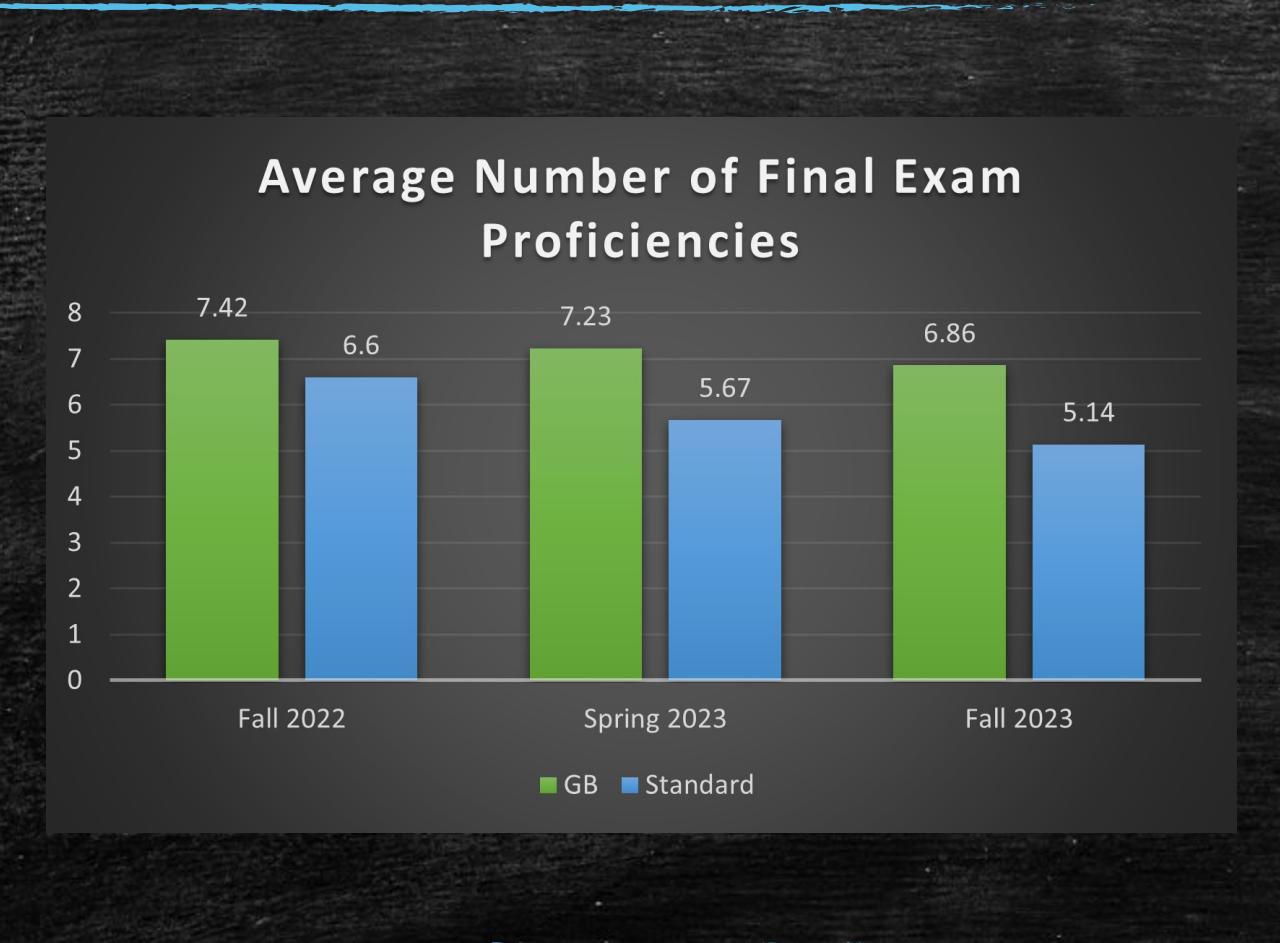
- [L1: Meaning of a Limit](#)
- [L2: Computing Limits CORE](#)
- [L3: Continuity](#)
- [L4: Problem Solving with Limits](#)

Current Work

With funds from the Jefferson Trust by way of the Affordability & Equity program, two faculty colleagues, an undergraduate student, and I are working to add: solutions to the provided problems; rubrics used to score those problems; and scored examples of student work on those problems.

The course H5P activities have been made public and are already being used in calculus instruction in a local high school.

I am also hoping to create and implement transparently-designed OER more extensively in upcoming calculus course redesigns.


Questions? :)

References

Winkelmes, M., Bernacki, M., Butler, J., Zochowski, M., Golanics, J., & Weavil, K. (2016). A Teaching Intervention that Increases Underserved College Students' Success. *Peer Review*. 18.

APPENDIX: P-values & Effect Sizes in the Growth-Based Assessment Pilot

Raw Differences:

- Fall 2022: 0.82
- Spring 2023: 1.56
- Fall 2023: 1.72

Standardized differences & p-values:

- Fall 2022: **0.32** ($p=0.018$)
- Spring 2023: **0.58** ($p=0.001$)
- Fall 2023: **0.62** ($p=6.18\times10^{-6}$)