A Scheme for Selective Squash and Re-issue
for Single-Sided Branch Hammocks

Technical Report — CS-2001-14

Karthik Sankaranarayanan, Kevin Skadron
Department of Computer Science,
University of Virginia,
Charlottesville, VA 22904

July 10, 2001

Abstract

This report describes work to minimize re-execution of control independent instructions
in case of branch mispredictions. This technique differs from prior work in its emphasis
on compiler scheduling in order to minimize changes to the hardware of an out-of- order
processor. Work so far has focused on single-sided branch hammocks.

1. Introduction

A branch hammock [1] is a code fragment corresponding to an ‘if’ language construct. It
is called as a double-sided branch hammock (fig 1a) when it corresponds to an ‘if-then-
else’ construct and as a single-sided branch hammock (fig 1b) when it corresponds to an
‘if- then’ construct alone (i.e., without the ‘else’ part). When the ‘then’ and the ‘else’
contexts constitute only of one basic block each, the branch hammock is called ‘simple’.
Otherwise, it is called a ‘nested branch hammock’.

branch branch
con d cond
then else then

context context context
join join

context context
(a) (b)

Fig. 1 - single and double-sided branch hammocks

In typical speculative processors, when there is a control misspeculation for a conditional
branch corresponding to the branch hammocks, all the instructions fetched after the
branch are squashed. However, the ‘join’ context is executed irrespective of whether the
branch was taken or not. At the time of discovering the misspeculation, if the fetch
engine of the processor had gone past the join context, it would have fetched some
potentially useful instructions. Those instructions need not have been squashed and
refetched. If those potentially useful instructions can be identified by some co-operative
work between the compiler and the hardware, the misspeculation penalty can be reduced.
Their squashing can be avoided and/or their refetching can be eliminated. This project
attempts to implement such a co-operative mechanism for reducing misspeculation
penalty in the particular case of single-sided, simple branch hammocks.

2. Related Work

Rotenberg et al. [2] have analyzed control independence in superscalar processors.
Instructions that are executed irrespective of the direction of a branch are called control
independent instructions. Their paper analyzes the bounds of potential performance
improvement due to the exploitation of such control independence. It also assesses the
complexity of various possible implementations. Sodani ef al. [3] have done a detailed
study on dynamic instruction reuse. The potential branch hammock reuse described
above, called squash reuse, is a subset of the dynamic instructions reused in a program’s
execution. However, the re-fetching of instructions is not eliminated in their technique,
and reuse techniques typically require substantial, multi-ported lookup tables and other
hardware support. Rychlik et al. [4], proposed the reduction of value misprediction
penalties by re-issuing of value mispredicted instructions to the functional units, thus
eliminating their re-fetching and re-renaming. However, their work does not examine re-
issue with respect to branch mis-speculation. Klauser et al. [5] proposed the dynamic
predication technique for reducing misprediction penalties in case of simple branch
hammocks. The instructions of a non-predicated instruction set are predicated
dynamically using hardware augmentation.

3. Overview of the Project

This project combines the ideas of the above-mentioned works (control independence, re-
use, re-issue) in the domain of optimizing single-sided, simple branch hammocks. In such
hammocks, the join context is control independent of the branch. If instructions can be
found in the ‘join’context that are data independent of the instructions in the ‘then’
context, their execution is not erroneous and hence, they need not be squashed. Such
instructions are both control independent of the branch and data independent of the ‘then’
context. For simplicity sake, let us call these instructions as ‘independent instructions’.
Also, though the instructions in the ‘join’ context that are data dependent on the ‘then’
context have been executed with erroneous values, they need not be re-fetched if they are
re-issued with the proper values. These instructions are control independent of the branch
but are data dependent on the ‘then’ context. Again, for simplicity purposes, let us call
them ‘dependent instructions’. With the above observation, this project implements the
‘selective squashing’ (i.e., the ‘join’ context need not be squashed) and the ‘selective re-
issue’ of instructions (i.e., the dependent instructions should be re-issued) with respect to
the above branch hammock scenario.

If the instructions in the ‘join’ context that are independent of the ‘then’ context, are
grouped together by the compiler and placed above the other dependent instructions in
the ‘join’ context, and if the compiler can annotate the conditional branch with the
number of independent instructions it could find, then the implementation of the selective
re-issue and squashing can be done efficiently. The squashing can be implemented with
just by switching the commit stage pointers. The re-issue can be done by re-renaming the
dependent instructions (by retaining the dependent instructions in the instruction buffer).
Implementing this way, the cost of the hardware is minimized and the control
independence is also exploited. This project implements the above mentioned ideas and
evaluates the implementation.

4. Implementation

The implementation can be categorized mainly into two parts viz. the scheduler and the
processor implementation using SimpleScalar [6] simulator tool set. Each is explained in
detail below

4.1 The Scheduler

The scheduler identifies the single-sided simple branch hammocks in a program. It also
finds in the ‘join’ context, as many independent instructions as possible and groups them
together at the beginning of the ‘join’ context. The scheduler has been written in C and
takes Simplescalar assembly file as its input. It identifies the single-sided simple branch
hammocks by walking through the assembly file in search of conditional forward
branches devoid of any nesting.

Once it finds a basic block as a possible candidate, it analyses the dependences of each
instruction in the ‘join’ context to determine which of them is independent of the ‘then’
context. Register dependences are easily identified based on the instruction format and
the addressing mode. However, it is impossible to resolve memory dependences
statically. So, the scheduler assumes that every load depends on all preceding stores in
the basic block. As a result of this chain dependence analysis, the instructions in the
‘join’ context that are not truly dependent on the ‘then’ context are identified.

Now, the scheduler performs the ‘code motion’ of these independent instructions to the
beginning of the ‘join’ context. In doing so, all correctness requirements are taken care
of. No output or anti dependences are violated. Again, since it is not possible to resolve
memory dependences statically, stores don’t move past earlier loads or stores. Moreover,
instructions also don’t move beyond a label in the hammock because there could be entry
to this label from some other part of the program.

After the grouping of the independent instructions, the scheduler now annotates the
branch of this hammock with the size of the block, the number of independent
instructions and the position of the join context. Instruction annotation is a facility
provided by the simulator to allow a compile time tool to communicate data to the
simulator hardware. Each instruction has a 16-bit annotation field that can be set by
assembly directives and can be accessed in the hardware on demand. The scheduler
modifies the assembly file to include the appropriate annotation directives at the position
of the branch instruction. This output assembly file is compiled into a Simplescalar
binary using an assembler with proper support for annotations [8]

4.2 The Hardware

The processor-level implementation of selective squashing and re-issue has been done
using the SimpleScalar simulator tool set. The out-of-order (OOQ) superscalar processor
simulator of the tool set - ‘sim-outorder’, has been modified to incorporate selective
squash and re-issue. ‘sim-outorder’ unifies re-order buffer, reservation stations and
physical registers into a common structure called as Register Update Unit (RUU).

Instructions are stored and retired in program order from this RUU. The following figure
(fig. 2) shows a ‘simple branch hammock’ in the RUU. Assume that the branch of the
hammock was predicted not taken but actually taken. Also assume that this figure shows
the time when the misprediction is detected.

Static
Code

branch
cond

l join
context

then
context } indep

then
* context

} indep
inst

branch

join
context

Fig. 2 — state of the RUU corresponding to a hammock

In the scenario of above mentioned ‘grouping’ support from the compiler, selective
squashing can be easily implemented in the hardware. In case of normal squashing, head
and tail pointers are just brought back together indicating that the RUU is emptied. For
selective squashing, it is enough to bring the head pointer to the beginning of the ‘join’
context. This squashes only the then context. There is also a subtle issue in this way of
implementing selective squashing — since the RUU is not emptied, and since some
instructions remain in it, the register maps can’t just be restored as they were at the
branch position. However, in real processors, obtaining the new register map is just an
easy masking operation of the ‘branch-position’ register map.

In SimpleScalar, register maps are implemented as copy-on-write buffers for easy
squashing (create_vector, spec_create_vector). Hence, the implementation of ‘register
map recovery’ in this project involves a long process of walking through the buffers and
restoring them. However, in a real processor, this step won’t be present and hence the
selective squashing can be implemented with minimal hardware complexity.

In the above figure, at the time of the detection of misprediction, if the tail pointer is
amidst the dependent instructions of the join context, then as before, only the ‘then’
context is squashed. However, the dependent instructions have not been executed with
the right values. Moreover, their dependence information might also be wrong. So, they
should enter the rename stage once again. In order to achieve this, the implementation
holds them in the instruction queue that decouples the processor front end from the back

end. As they are inserted into the instruction queue, the dependent instructions are
marked with a tag denoting the hammock branch. They are held in the instruction queue
until the branch corresponding to the hammock resolves. On a misprediction, only all the
untagged instructions in the instruction queue are squashed. The tagged ones are not
squashed. This ensures that the dependent instructions get to re-issue to the functional
units with the proper values. Finally, on a successful branch resolution, all associated
instructions are purged from the fetch queue.

Both in selective squash and re-issue, another subtlety exists when the branch is predicted
taken but is actually not taken. The processor should remember the PC of the start of the
‘join’ context and that of the tail of the RUU. After the misprediction is detected, the
fetch is redirected to the fall through path of the branch and continues till the beginning
of the ‘join’ context. After that, it is resteered to the point after the saved tail pointer. In a
typical superscalar processor, multiple instruction fetch resteers means possibly many
empty fetch slots too. Also, the ‘remembering of PC’ is actually a feedback datapath from
the writeback/commit stage to the fetch stage and some extra registers. So considering
the implementation complexity, this case could be omitted in a real processor. However,
in this implementation, this is considered.

5. Performance Evaluation and Results

Performance evaluation of the techniques detailed above has been done by running the
SpecInt95 benchmarks on the modified Simplescalar simulator. The benchmarks were
first compiled into assembly and were scheduled by the instruction scheduler. The
scheduled assembly files were compiled and linked into the binaries. These were the
binaries run on the simulator. Table 1 shows the static scheduling data for the
benchmarks.

comp gce g0 ijpeg li m§8k perl vort

ress S1m ex
Scheduled hammocks 5 984 341 68 13 85| 40 13
Max. hammock size 4 8 7 9 4 7 6 9
Max. ‘then’ context size 3 6 6 3 2 4 3 3
Max. no. of indep. Inst 2 6 4 6 1 3 4 1
Avg. hammock size 4 4 3.3 4| 3.4 3.9 41 52
Avg. ‘then’ context size 2.4 2.2 2.2 2.3 2 24| 21| 22
Avg. no. of indep. inst 1.4 1.4 1 1.5 1 1.2 1.7 1

Table 1 — data from static scheduling

From the table, one might observe that typical schedulable hammock sizes are about 3-4
instructions. Also, the typical number of independent instructions found by the scheduler
is typically 1 or 2 per hammock. In the perspective of potential performance
improvement, this is on the lower side. However, one can expect these numbers. The
task of the scheduler is to find control and data independent instructions. This task is the
same as that of a compiler that tries to fill branch delay slots of a processor. Typical
branch delay slot occupancy is 1-2 instructions. Branch delay slots are also filled with the

same kind of control and data independent instructions. So, the above numbers are
realistic in spite of being on the lower side. Moreover, we can observe that the typical
“then” context size is 2-3 instructions. This size is very conducive for predication. These
instructions could very well be predicated too.

Actual measure of the performance is obtained by comparing the IPC of the benchmarks
running on the baseline and modified SimpleScalar simulator. The simulation setup for
this evaluation closely resembles the one in [9]. The benchmarks were each run for 100
million instructions after warm up periods mentioned in [9]. The inputs were standard
reference inputs. The compiler optimizations used were ‘~“O3’ and ‘ —funroll-loops’.
Since the simulations involve modeling of branch mis-speculation issues, a realistic good
branch predictor configuration was chosen. A hybrid predictor with 4K entry selector that
selects between a GAg predictor and a PAg predictor was chosen. The GAg predictor
was with a 4K PHT and a 12-bit history register. The PAg had 1K BHT, 1K PHT and 10
bits of history. Also, a 32-entry return address stack and a 2K entry 2-way BTB were
used in the predictor. Other configuration options were simulator defaults. From the
simulations, it was found that the performance improvement for all the benchmarks other
than ‘gec’ and ‘go’ were very negligible. Table 2 summarizes the results of the
simulations for ‘gcc’ and ‘go’.

It can be seen that the performance improvement obtained from the benchmarks is very
small and is of the order of one-hundredth of a percentage. Another interesting
observation that can be made is that in static figures, ‘gcc’ seemed to be a better
candidate for performance improvement because the scheduler was able to find many
hammocks and independent instructions. However, ‘go’s performance improvement is
better than ‘gcc’ s mainly because of its lower prediction accuracy. Lower prediction
accuracy means more squashes and hence more savings due to selective squashing and
re-issue.

gee g0
Branch prediction accuracy 206 | 823
(address + direction) (in %) ' '
No. of mispredicted branches 1.7M | 2.1M
Nl'lmber. of hammocks seen on 6K 26K
misprediction

No. of useful hammocks 1376 | 3655
No. of re-used instructions 1383 | 3672
No. of re-issued instructions 236 51
IPC improvement (in %) 0.02 | 0.04

Table 2 — dynamic data from simulations

6. Conclusion

This project implements a scheme for selective squashing and re-issue of instructions for
the specific case of ‘single sided simple branch hammocks’ and evaluates the
performance gains possible. From the results however, it can be seen that the
performance gains obtained due to the technique are not substantial. In the scheduler, the
unavailability of memory dependence information and high-level compiler information
form the major causes. Since memory dependence can’t be resolved at compile time,
possibly independent instructions have to be considered dependent. Also, since the
scheduler operates at the assembly language level, higher-level compiler information is
not available to it. For e.g., instructions are not moved past empty labels. This restriction
could be relaxed if higher-level information is available for the scheduler. These suggest
that dynamic techniques like [5] could be more useful for exploiting control
independence in hammocks.

As for the processor implementation, in spite of the simplicity of hardware
implementation, instruction fetch resteers and useless hammocks may be some reasons
for the low performance. When the branch of a hammock is predicted taken and is
actually not taken, there is high amount of fetch resteer. This might lead to many empty
slots in the fetch bandwidth. Also, even when an annotated branch is present in the RUU
at the time of misprediction recovery, if the fetch engine had gone past the basic block,
the instructions are fully squashed. This is due to the lack of information stored inside the
processor. If state information can be stored for multiple branches, then this could be
exploited. However, as a trade-off, the complexity of the processor now increases.

As an extension to this work, one might investigate the effectiveness of predication in
lieu of such re-issue and re-use. The sizes of the basic blocks found by the scheduler
strongly suggest this. The contrast between the natures of control independence exploited
by these techniques (predication, re-use/re-issue) is an interesting aspect for investigation.

Acknowledgements

This material is based in part on work supported by the National Science Foundation
under grant no. CCR-0082671.

References

[1] J. Ferrante, K. Ottenstein, and J. Warren. “The Program Dependence Graph and Its
Use in Optimization”. ACM Transactions onProgramming Languages and Systems,
9(3): 319-349, July 1987.

[2] E. Rotenberg, Q. Jacobson, J. Smith. “A Study of Control Independence in
Superscalar Processors”. 5th International Symposium on High Performance
Computer Architecture, January 1999.

[3] A. Sodani and G. S. Sohi. “Dynamic Instruction Reuse”. In Proc. of 24th Annual
International Symposium on Computer Architecture, pages 194-205, July 1997.

[4] B. Rychlik, J. Faistl, B. Krug, and J. P. Shen. “Efficacy and Performance Impact of
Value Prediction”, In Proc. of the international conference on Parallel Architectures
and Compilation Techniques, Paris, October 1998.

[5] A. Klauser, T. M. Austin, D. Grunwald, B. Calder. “ Dynamic Hammock Predication
for Non-predicated Instruction Set Architectures”. In Proc. of the international

conference on Parallel Architectures and Compilation Techniques, Paris, October
1998.

[6] D. Burger, T. M. Austin, "The SimpleScalar Tool Set, Version 2.0", University of
Wisconsin-Madison Computer Sciences Department Technical Report #1342, June
1997.

[7] M. E. Benitez, J.W. Davidson, “Target-specific Global Code Improvement: Principles
and Applications”, Department of Computer Science, University of Virginia,
Technical Report, CS-94-42, November 4, 1994.

[8] M. Plakal, “SimpleScalar Fixes and Improvements” - “http:// www.cs.wisc.edu/
~plakal/simplescalar/”

[9] K. Skadron, P.S. Ahuja, M. Martonosi, and D.W. Clark. "Branch Prediction,
Instruction-Window Size, and Cache Size: Performance Tradeoffs and Simulation
Techniques." IEEE Transactions on Computers, 48(11): 1260-81, Nov. 1999.

