

An Introduction to the ADAMS Interface Language
Part I

John L. Pfaltz
James C. French

Andrew Grimshaw

IPC-TR-91-06
April 17, 1991

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 2290l

This research was supported in part by
DOE Grant #DE-FG05-88ER25063 and
JPL Contract #957721

Abstract

ADAMS provides an interface between host application programs and a
space of persistent data items, or a database. The interface consists of
ways to describe a user’s space of persistent data items, sometimes called
a "data description language", or DDL, together with mechanisms to
access those items, which is sometimes called a "data manipulation
language", or DML, or a "query language". In this part we concentrate
only on the descriptive power of ADAMS. What kinds of databases can
be represented in ADAMS. In Part II, we will focus on the manipulative
and query power of ADAMS.

Every database implementation is eventually grounded in a number of
primitive concepts which are fundamental to understanding the system.
ADAMS is based on six primitive concepts: attribute, codomain, ele-
ment, map, sequence, and set, which we regard as fundamental to all
database implementation. We show that ADAMS has at least the same
descriptive power as the more traditional database models, such as the
relational model, the semantic model, and the object-oriented model by
showing all such database configurations can be expressed in terms of
these primitives.

ADAMS, the Advanced DAta Management System of the University of Virginia’s Institute
for Parallel Computation, has been designed to function as clean interface between user processes
and one, or more, persistent data bases. It is not meant to serve as a traditional database
language. In particular, it provides no mechanisms for displaying retrieved data. We expect that
user programs will be written in some established language (and henceforth called the host
language), such as Fortran, C, or Pascal, that is most appropriate for the desired data processing
operations. ADAMS, itself, only provides mechanisms for defining and naming persistent data-
base structures on permanent storage media, and for accessing these structures. Thus, ADAMS
can be regarded as a tool for implementing database access mechanisms (possibly other database
languages) and for porting them to a variety of hardware configurations, including parallel
machines.

An interface is really a language — a way of referencing those things of importance to the
interface. In this paper we concentrate entirely on the linguistic aspects of the interface and
largely ignore the mechanisms we have used to implement it. All languages are designed to talk
about some area of interest; one cannot understand the structure of the language without first
understanding what it is about the world that the language was designed to convey. ADAMS, for
example, has a structure that is quite different from most familiar programming languages
because ADAMS was not designed to describe computational processes. The ADAMS language
is not concerned with data processing. Its entire focus is on the storage and retrieval of "things"
(essentially character, or bit, strings).

In the first sections we describe, using a variety of intuitive analogies, the primitive con-
cepts that we think are fundamental to a database interface. Then we describe the actual structure
of the ADAMS language — the syntactic constructs it has adopted to describe and manipulate
these basic concepts. Finally, we show how higher level database concepts, as developed in the
relational, semantic, and object-oriented models, can be expressed in this interface language. In
effect, this last section illustrates the expressive power of the ADAMS language and how it can
be used in the world of computer applications that are highly data dependent.

1. Primitive Concepts in the ADAMS Approach
Basically, ADAMS provides a systematic way of dealing with sets associated with a data-

base. But to do so, it must identify three very different kinds of sets and provide three different
linguistic mechanisms to deal with each kind.

First, there are abstract sets of values, where a value denotes some bit string that will be
interpreted according to a pre-defined convention. For example, the set of "integers", the set of
"reals", or the set of "strings of 5 or fewer characters". Many programming languages call these
sets "data types". We will call them codomains, and discuss them more thoroughly in later sec-
tions.

The second, and most important, ADAMS set concept is that of a set of elements, where an
element is considered to be any of a large variety of instantiated objects. Typically, elements are
fairly simple composite structures with several associated values; but they can be arbitrarily com-
plex structures. ADAMS provides computational procedures to manipulate sets, or elements; and

the term set will only be applied to sets of instantiated elements. In the ADAMS language the
word "set" will always refer to one of these.

The elements of a set are unordered. a closely related concept is that of a sequence of ele-
ments on which a user specified order has been imposed. Given any element of a sequence, there
is a unique successor and a unique predecessor element.1 Sets and sequences, in ADAMS, are
treated very similarly, except for the kinds of operations that can be defined on them. The union
of two sets is meaningful. The union of two sequences is not.

Finally, there are abstract sets of ADAMS elements. An ADAMS class is a generic pattern
that defines the characteristics and properties of all possible elements of that kind. Thus it
denotes the universe, Uclass , of all such elements.2 Each ADAMS element is only a single
representative of its class. A database, for example, may contain instances of "linked lists", or
instances of "relations" with different schema. ADAMS provides a language in which one can
describe such different classes of elements.

Individual codomains and classes are defined "syntactically" within the ADAMS language.
Specific sets and sequences (of elements) must be defined by construction (e.g., by computational
process).

The underlying premise of ADAMS is that there are only a few very basic underlying con-
cepts in database representation. We assume that all database models can be expressed in terms
of these basic concepts, and thus all databases can be implemented using this reduced set of data-
base concepts. Moreover, we assume that if one knows how these few concepts have been
represented, then one knows how the entire database has been implemented.

The primitive concepts are

a) codomain - abstract set of data types
b) class - abstract set of element typles
c) element - instantiated ADAMS object
d) set - " " "
e) sequence - " " "
f) attribute - functional operator/instantiated ADAMS object
g) map - " " " " "

where each of these will be described in detail in the next sections. In the last sections we illus-
trate how more traditional database models can be expressed in terms of these ADAMS concepts.

1.1. Elements
An element is a primitive concept in ADAMS. An element has no a priori form or struc-

ture. The only essential characteristic of an element is that it is uniquely identifiable. We will
give two analogies to expand on the "element" concept.

���

1 ADAMS is a pure implementation of the Peano "successor" concept, except that, since we are con-
cerned with the persistent storage of such sequences, all sequences must be finite. Consequently, all se-
quences have a unique first and last element (which respectively have no predecessor or successor). In
UNIX, a sequence of objects is called a stream, which is processed by filters in pipes. An ADAMS se-
quence can be regarded as a database implemented stream.

2 In many object-oriented systems [GoR83, Kim90] the class denotes not only the universe of possible
elements in the class, but the universe of actually instantiated objects as well. This is an effective mechan-
ism when using the object-oriented paradigm as a programming language; it causes considerable difficulty
when using the object-oriented paradigm for database retrieval.

2

In formal set theory, one traditionally defines a set as a "collection" of elements (this primi-
tive definition is always a bit circular). It is irrelevant what these elements "really are"; all that is
required is that we be able to identify them, say as a, b, or c, so that we may make statements
such as S = { a, b } or c ∈ X ∩ Y . These elements are certainly not the strings "a", "b", or "c"
themselves. And it makes no difference whether we ever know what the symbols a, b or c
denote. "Meaning" may, or may not, later be ascribed to them.

A different, more concrete, analogy comes from the area of object-oriented programming.
An "element" may be regarded as an object. An instantiated object is identifiable; it exists in a
virtual address space and its address uniquely identifies it. Being able to identify an object, that
is knowing its "address", tells us nothing about the object itself. It may be a chunk of executable
code, a linked list, a single data value, or a text file.

The concepts of element and object are so nearly synonymous that we are tempted use them
interchangeably. We have chosen to use the term "element" partially because the term "object"
already has many existing connotations in the computer literature [BBK87, CoM84, SSE87], and
partially because ADAMS elements are not properly objects in the sense of [Str88]. Nor is
ADAMS is an object-oriented database system in the sense of [Kim90]. For example, there are
no methods associated with ADAMS elements. "Object-based", as in [Weg87], is probably the
best description of ADAMS, for it does employ the usual class hierarchy, with multiple inheri-
tance [Car84]; and it can support object-oriented database languages.3

All elements (or instantiated objects, if you prefer this terminology) in an ADAMS database
must be typed, that is belong to a known class. Except for the four system defined classes4,

SET,
SEQUENCE,
ATTRIBUTE, and
MAP,

the class (or type) of an element has no pre-defined significance. A user can define arbitrary
classes, such as "Q", "Budweiser", or "XX3", and instantiate elements belonging to these classes.
Any significance attached to a user defined class is completely the responsibility of the user. In
section 2.1 we will discuss the way that classes are defined. ADAMS only requires that:

(1) every element in the system must be assigned some class (or type) at the time of its
instantiation, and

(2) if the element is to function as either a set, sequence, map, or attribute (as described in the
next sections), it must be so classified.

1.2. Names and Unique Identifiers
All ADAMS elements are uniquely identifiable. The unique identifier of an element x we

denote by uidx , or just its uid. Every element has a uid, but such identifiers are commonly vari-
ous forms of "virtual addresses" that are not accessible outside of the particular database structure
in which the element is embedded; uids are "invisible" to user programs. But, unless some
ADAMS elements are "externally identified", or "named", subsequent access will be impossible.
As an example, consider a file of records. The individual records in the file need not be named,
but the file itself must be named so that it can be attached to processes using it.

���

3 The ADAMS run-time system has also been implemented in C++, but this is irrelevant to the ques-
tion.

4 These four pre-defined classes, together with CLASS itself, are super-classes of which all user
defined classes are sub-classes.

3

The way that ADAMS uses names, or literal identifiers, is at the syntactic heart of ADAMS.
All ADAMS names are recorded in a dictionary, in which existing names and their meaning5 can
be found; and into which newly defined names are entered. Because, ADAMS is a "permanent"
entity, its philosophy is quite different from more traditional programming languages. Declara-
tions made several years ago in one process may be saved in its persistent dictionary, and used
repeatedly by other processes. Consequently, the names used to designate classes, codomains,
and elements are themselves persistent and may not be freely reused in separate programs.

While elements are nameable; most elements are never, in fact, given unique literal names.
One reason that most instantiated elements remain unnamed is that, for all intents and purposes,
only a relatively small name space is available. Good programming (and database design) prac-
tice dictates that names be mnemonic and relatively short. One, time honored way that mathema-
ticians extend a restricted name space is through subscript notation.

The name, or literal identifier, of any instantiated element may be subscripted. Thus the
names of elements, sets, sequences, attributes, and maps may be subscripted; but the names of
generic sets (that is, classes and codomains) may not. Subscripting an identifier does not imply
an underlying array, or vector, structure, as in most languages. Only the identifier is subscripted.
However, regular array and/or vector structures may be represented by this mechanism as we will
explore in a later section. In a similar vein, identifier subscripting is independent of the sequence
concept. If an element in a sequence is subscripted, its subscript need not have any relationship
to the order of elements in the sequence.

1.3. Sets and Sequences
Sets and sequences constitute the fundamental database "structures" in ADAMS. If the ele-

ments of the set were "tuples", then one would customarily call the set itself a "relation"; if the
elements of the sequence were "records", one would call the sequence a "sequential file", or a
"stream".

Sets and sequences of elements are characterized by the following properties
(1) A set or sequence is uniquely identi f iable . While they consist of collections of elements,

they are themselves also elements.
(2) All sets and sequences are finite.
(3) All sets are unordered .
(4) The elements of a set or sequence must all be of the same class , or type. If, for example,

several elements of class "Q" were instantiated, any number of them could belong to one,
or more, sets or sequences. Elements of different classes, say "Q" and "XX3", can not
belong to a common set or sequence.6

(5) Sets are elements of the class SET. More accurately, they belong to a class of the form
"SET of <class>", where <class> denotes the class of its constituent elements. Sequences
are elements of the class SEQUENCE; they belong to a class of the form "SEQUENCE
of <class>", where <class> denotes the class of its constituent elements.

(6) All of the standard set operations (except unary complement) may be performed on
ADAMS sets. Specifically, ADAMS recognizes: union , intersection , relative comple-
ment , element insertion , element deletion , set membership test, test for emptiness , car-
dinality , and looping over a set.
ADAMS sequences support iterators [GrG83, GrO88] by means of the get_f irst and
get_next operators. They can be manipulated by append element, subsequence

���

5 The meaning of a name is often called metadata. It may include the class of an element, the various
attributes defined on a class, etc.

6 unless it is a set of elements whose class is a super-class of both.

4

insertion , and subsequence deletion operators.

1.4. Codomains
The concept of a "data value" is purposely left undefined in ADAMS. Data values are

strings of bits that other processes manipulate in various fashions. ADAMS will store, and
retrieve, such data values on request of a host process, so it needs to know enough about such
data values to facilitate their storage and later retrieval — but no more.

A codomain may be regarded as an abstract set of data values. For example, the half open
interval [0,10) consisting of all real values x, 0 ≤ x < 10.0, could be a codomain. Conceptually a
codomain may be infinite, as is this half open interval, even though it is bounded and finitely
describable.

More precisely, in ADAMS, a codomain is any regular set that is definable in LEX (or a
LEX-like language). A codomain is a "nameable" set, but it cannot itself be an element (in the
ADAMS sense) and it cannot be generally manipulated in the manner of the sets in the preceding
section. The only set operation that can be performed with a codomain is that of set membership.
Given a particular value, it can be determined whether it is a member of the codomain (i.e.
accepted) or not. Generally, a codomain can be regarded as the specification of the legal form of
a kind of data value.

Codomains must be named.

We close by noting that the ADAMS codomain concept is analogous to that of "domain" in
many other database models. And they will be used in a similar manner; for example, the value
of any attribute mapping must be an element of a codomain. We choose to call the concept a
codomain (rather than domain) for two reasons. First, it is mathematically more correct since an
attribute maps from a set of elements (its domain) to a set of values (its codomain). Secondly, we
chose to restrict the concept to regular sets. The different terminology emphasizes this restric-
tion.

1.5. Attributes and Maps
Attributes and maps are both functions, that is, they are singled valued. The only distinc-

tion is the nature of their respective image sets. An attribute is a function mapping elements into
a codomain; that is, the image of an attribute is a value. In contrast, a map is a function mapping
elements into a class; its image is another ADAMS element.

In DAPLEX [Shi81] these concepts are called property and f unction respectively. In
ORION [KBC87] the only mechanism for associating two different objects is an attribute con-
cept, because there is no clear distinction between "objects" and "values", such as we have made.
However, "primitive objects" behave similarly to our "values". Relational database languages,
(c.f. [Cha76, Cod70, Kim79, Mai83, StW83]) use the term attribute identically (except that we
call the image space a codomain). The relational model has no analog to a map; such inter-class
relationships are implemented by the join operator.

Let a denote an arbitrary attribute, and let x denote any element in the database on which a
is defined, then the ADAMS expression x.a denotes some value in the codomain of a . Note that
every codomain has a default udf (undefined) value; so the expression x.a itself is well defined
whether or not a specific attribute value for a has been assigned for x .7 The ADAMS statement

x.a ← | count int |
���

7 The default udf value can be user redefined. Users can also define a ukn (unknown) value to more
precisely indicate the nature of missing data values.

5

assigns the value of the host language8 integer variable count as the image of x.a provided that
the value of count is actually in the codomain of the attribute a . The statement

| count int | ← x.a

will assign the current image of x.a to the host language variable count , on which further pro-
cessing can be performed. These ways of referencing codomain values correspond to putDomVal
and getDomVal in [CAD87].

Attributes are a kind of element. Consequently, we may create sets of attributes and apply
set operations to them. This capability is important in both the relational approach to databases
and the handling of array data.

As we noted at the beginning of this section, a map is a function which maps an element
into a class of elements. Thus application of a map to an ADAMS element yields another
ADAMS element instead of a codomain value produced by an attribute function; otherwise they
behave just like attributes. Some find it easier to think of a map as an element pointer value.

Frequently, the class of elements which constitute the image of a map will be a restriction
of the class SET. This introduces the ability to construct one-to-many and many-to-many maps,
which we explore more fully in section 4.4.

1.6. Concise Summary of Primitive Concepts
All of the fundamental properties of ADAMS database concepts are outlined here.

(1) element:
a) uniquely identified, and optionally nameable;
b) must be typed with some class membership;
c) pre-defined classes are:

1) SET of ...
2) SEQUENCE of ...
3) ATTRIBUTE
4) MAP

d) may be a member of multiple sets or sequences.

(2) codomain:
a) regular set;
b) must be named, but not manipulable;
c) constituent values are not uniquely identified.

(3) set:
a) uniquely identified, and nameable;
b) must belong to a SET class;
c) all elements must be of the same class;
d) can be argument to set operations;
e) can be used with iterators.

(4) sequence:
a) uniquely identified, and nameable;
b) must belong to a SEQUENCE class;
c) all elements must be of the same class;

���

8 To distinguish host language variables and their types we delimit them by | ... |. This would be un-
necessary if we were willing to parse host language declarations as well as ADAMS statements in the
preprocessor.

6

d) can be used with iterators.

(5) attribute:
a) function from an element to a codomain;
b) uniquely identified, and normally named.

(6) map:
a) function from an element to an class (often a SET);
b) uniquely identified, and normally named.

The following sections describe syntactic constructs that assume these properties.

2. ADAMS Data Definition Syntax
The preceding sections described the kinds of basic data elements that are embraced by the

ADAMS language. In this section we explore many of the linguistic constructs that we have
adopted to introduce these data constructs into computer programs. As noted earlier, ADAMS is
not concerned with data processing. Its entire focus in on the storage and retrieval of "objects"
(elements and their associated values) and sets and sequences of these elements. Consequently,
the language emphasizes constructs which can be used to describe the structure of such elements.
In the preceding sections we have described the primitive elements which ADAMS understands.
They are: values , or bit strings that have meaning to a host language, and elements , which are
essentially distinct aggregations of values, belonging to a class of all such elements; but which
may also be distinct objects such as f unctions , sets , sequences .

But it is inconvenient to repeatedly develop database applications in terms of these very
primitive concepts. It is slow and error prone. In the visualization and subsequent design of
databases we often think in terms of various kinds of composite structures such as, records and
files, relations and relationships. These are the kinds of higher level concepts that are primitive
in most database design. ADAMS can bootstrap itself up, in a manner analogous to standard
object-oriented programming languages [Str87, 81] 9, so that the database designer can name
these more complex data constructs and treat them as basic elements in his, or her, database view.
But to do this we must develop additional linguistic and meta-linguistic concepts.

2.1. Class Description
In ADAMS, sets, elements, codomains, maps, and attributes denote the kinds of things that

can be accessed and manipulated. In a sense they represent the nouns of the language. The class
to which they belong, or more properly its name, is a common noun denoting in a generic sense
the characteristics and properties of all such things. We may speak of the class PERSON, that is,
the collection of all objects which are people. But we may also speak of a particular person, say
James French , who is an instance of the class. Specific instances constitute proper nouns in the
ADAMS language.

For pedagogical purposes, whenever a word in this paper denotes an entire class, it will be
set in UPPER CASE. Whenever the word identifies a specific instance, it will be set in lower
case characters. Reserved words have been emboldened for emphasis. The following three

���

9 However, we again emphasize that ADAMS itself is not properly an object-oriented database sys-
tem in the manner of EXODUS [CDV88] or ORION [KGB90].

7

ADAMS statements10 follow this convention.

Q isa CLASS

Q_SET isa SET, of Q elements

q_set instantiates_a Q_SET

Q denotes a class (which is arbitrary). Q_SET denotes the class of all possible sets whose ele-
ments are of class Q . q_set denotes a particular instantiated set of some such elements.
ADAMS does not enforce this upper-lower case distinction, but we find its consistent use
enhances reader comprehension.

The first and last of the statements above illustrate the most basic <class_declaration> and
<element_instantiation> forms. The second statement has an additional <set_elements_clause>
which further describes the type of elements to be found in a Q_SET . Such clauses may be
separated by optional commas, as shown above.11

2.1.1. Associating Attributes and Maps with a Class
Attribute functions are defined on elements. That is to say, some classes (or kinds) of ele-

ments have some attributes defined on them. These attributes are associated with the class of ele-
ments by the having construct. Consider the following sequence of ADAMS statements.

REAL_ATTRIBUTE isa ATTRIBUTE, with image REALS
INT_ATTRIBUTE isa ATTRIBUTE, with image INTEGERS
STRING_ATTRIBUTE isa ATTRIBUTE, with image STRINGS

a1 instantiates_a REAL_ATTRIBUTE
a2 instantiates_a INT_ATTRIBUTE
a3 instantiates_a STRING_ATTRIBUTE

Q isa CLASS, having { a1, a2, a3}

Q_SET isa SET, of Q elements

Attribute functions are elements, and all elements must belong to a class. The class of any attri-
bute is a sub-class of the pre-defined class ATTRIBUTE, where the image codomain is specified.
In the example above, we have created three generic attribute classes — REAL_ATTRIBUTE ,
INT_ATTRIBUTE , and STRING_ATTRIBUTE . a 1 is declared to be (the name of) a specific
REAL_ATTRIBUTE , in much the same way that f might be declared to be a "real valued func-
tion", or g might be declared to be a "continuous, complex valued function". Thus this sequence
has declared that any element in any set of class Q_SET will be of class Q and each element will
���

10 To the ADAMS language interpreter, all reserved words are only tokens. For presentation, and ini-
tial exposure to the language, long unwieldy tokens such as instantiates_a carry valuable mnemonic mean-
ing. Practiced coders soon use equivalent abbreviated tokens, such as ::=.

11 Entire ADAMS statements are delimited by << ... >>. These delimiters serve as a convenient way
for our preprocessor to separate ADAMS statements from those of the host language, and will be omitted
in this paper.

An ADAMS statement may be continued on multiple lines for readability.

All commas are treated as white space; and may occur anywhere that a blank, tab, or newline can appear.

8

have the three attributes { a 1, a 2, a 3 } defined on them.

For a different and slightly more complex example consider the following sequence in
which we use more traditional file processing terms. In spite of the different terminology, the
underlying structures of the classes Q_SET and PERSONNEL_FILE , are very similar.

DATA_FIELDS isa SET, of ATTRIBUTE elements

pdata instantiates_a DATA_FIELDS,
consisting of { p_nbr, name, age, dept, salary }

PERSONNEL isa CLASS, having attributes = pdata

PERSONNEL_FILE isa SET, of PERSONNEL elements,
having attributes = { date_last_mod }

In this example, we have assumed that the attribute functions, p_nbr ,...,salary , have been previ-
ously instantiated. Notice that DATA_FIELDS denotes any set of attributes, and that pdata is
one such set. Normally, when an element of type SET is instantiated, it is instantiated as an
empty set, ∅. But in the code above, we used the consisting of clause to initialize pdata to an
enumerated set of attribute elements. An instantiated set of the class PERSONNEL_FILE , we
might call a personnel_f ile ; another might be called the manager_f ile . Elements of the file are
of class PERSONNEL ; which in traditional unit-record terminology would be called personnel
records. The data fields of each record are p_nbr, name, age, dept, and salary. While these attri-
butes (fields) are associated with the elements (records) of the set (file), there is also an attribute
(field) associated with the set (file) as a whole; that is, date_last_mod, the date the file was last
modified.

The having construct can only associate extant sets with a class. In the preceding example,
the set pdata was instantiated and named before defining the class PERSONNEL . The
enumerated set of defined attributes { date_last_mod } was implicitly created in the definition of
the class PERSONNEL_FILE. The set pdata (since it has a name) is independently modifiable.
We can change the definition of what it means to be a PERSONNEL by simply manipulating the
set pdata . Any change to the set pdata will not only change the meaning of PERSONNEL ; it
will also be dynamically reflected in every instantiated element of the class. By deliberately
treating attributes as elements that can be included in, or deleted from, sets like any other data
element, the ADAMS language introduces provision for dynamic schema modification.12

Because it cannot be independently referenced, the unnamed set { date_last_mod } can not be so
changed.

The issue of naming elements, classes, and codomains, and of what names are known to
what processes, is important in ADAMS.

Note that the class PERSONNEL has used the name attributes to be an additional synonym
for its associated set of attributes. In conjunction with the association operator (section 2.2),
these synonyms may be used to provide a mechanism by which different users can be provided
with different "views" of the elements in a database. The use of such synonymous designators is
completely optional.

���

12 To support this linguistic feature, our ADAMS system [PFG89] implements attributes literally as
functions, not fields in a static structure. Other implementations could be equally effective.

9

2.1.2. Attribute Denotation Operator
In the preceding section, we instantiated the attributes a 1, a 2, and a 3 which belong to the

generic attribute classes REAL_ATTRIBUTE , INT_ATTRIBUTE , and STRING_ATTRIBUTE
respectively. The names a 1, a 2, and a 3 denote the attribute functions themselves. Let q be an
instantiated element in the class Q . The having clause in the class declaration of Q has asserted
that a 1, a 2, and a 3 are defined on any element of the class; consequently they are defined on q .
In ADAMS, the corresponding image values are denoted by the expressions

q.a1, q.a2, and q.a3 .13

Map images are treated in the same fashion. If m is an instantiated MAP whose image
class is Q , and if x denotes an element belonging to a class on which m is defined, then

x.m
denotes that element of Q which is currently the image of x under m .

Use of the postfix "dot" notation to express functional evaluation, instead of the more tradi-
tional prefix notation, such as a 1(q) or m (x), simplifies the expression of functional composi-
tion. The expression

x.m.a1
is well-formed, and denotes the current image value of a 1 applied to the element of the class Q
which is the current image of x under m . Thus, ADAMS enables "navigational", or "pointer
chasing", expressions which adherents of the relational model find abhorrent [Ste90]. But, the
design goals of ADAMS have been to implement a variety of database models. ADAMS users
can choose abstract database models which employ, or avoid, such constructs.

2.1.3. Predicates
A predicate is any expression, P , that evaluates to true or false. For example, (∀ s ∈

q_set) [class_of (s) = Q] is a predicate. It would be expressed in ADAMS as

(all s in q_set) [s.class_of = Q]

Predicates can also involve attribute values, as shown in the next example. Let set_ 1 and
set_ 2 be two sets whose elements belong to classes on which the attribute a is defined (they need
not be the same class). If x denotes an element in set_ 1, then x.a denotes a specific value in
codomain of a . The predicate

(all x in set_1)(exists y in set_2) [x.a = y.a]

will evaluate to true if and only if for every element currently in set_ 1 there is at least one ele-
ment in set_ 2 having the same a attribute value. Of course, any change in the composition of
either set_ 1 or set_ 2, or of their assigned attribute values, may change the truth value of this
expression.

Throughout ADAMS we assume that the values of any codomain can be ordered, and that a
predicate expression denotes a decidable process.

The first assumption can be assumed, if necessary, as a byproduct of the binary encoding scheme.
The second assumption follows largely as a consequence of our requiring codomains to be regu-
lar sets.

���

13 Expressions such as q.a 1 only denote the image of a 1 on q ; it need not automatically access that
image value, in the sense of assigning its value to a variable of the host language.

10

2.1.4. Class Restriction
It is common, in natural discourse, to define a new class of objects by further restricting an

existing class. For example:

FISH isa ANIMAL, provided (all x in FISH) [x.swim_in_water]

That is, the class of FISH is a subclass of the class of ANIMALS which is further restricted by the
requirement that any member, x , of the class must "swim_in_water". Predicate restrictions are
denoted by the clause

provided <predicate_expr>.

The predicate must be true in order for the element to have class membership. Predicates can
be composed with the usual boolean operators, and ,or , and not .

Predicate expressions of the form (∀x ∈<set_class >) [x.class_of =<element_type >],
which restrict the <set_class> to a single specific class of elements, are so ubiquitous that we
have condensed them to a single set element clause

of <element_class> elements.

Provided clauses and set element clauses restrict the kinds of elements that can belong to a
class. If X is a restriction of Y , which is in turn a restriction of Z , then X "inherits" the properties
of both Y and Z . To be a member of X , x must satisfy predicateX as well as predicateY and
predicateZ .

2.1.5. Name Definition
ADAMS uses two basic language constructs to enlarge its vocabulary.

<class_name> isa <class> [and <class>]*
having <associated attributes/maps>
provided <restrictions and/or qualifications>
of <element_class> elements

<instance_name> instantiates_a <class>
consisting of <enumerated set>

The first defines (or names) an abstract "class" of things.14 The second names a specific instance
(thing or object) within a class. The isa construct is used to define new classes. It is not a
specific inheritance operator as in [ACO85, Car84] or [BuA86]. Inheritance is, however, implied
because <class_name > is a sub-class of <class > and thus inherits all of the properties of <class >
(or of all <class>es in its super class list.

The <class_name > or <instance_name >, together with its corresponding definition is
automatically entered into the users local dictionary. It is now part of the user’s own database
language. The name and its definition may be later exported to more global dictionaries to
become part of a larger database group, or system, vernacular.

���

14 The having, provided, and consisting of clauses are optional in any class definition, or element in-
stantiation statement, as are other clauses such as the scope clause which governs the "visibility" of the
defined "name".

11

2.1.6. Parameterized Class Definition
In section 2.1.1, we illustrated the creation of a class PERSONNEL_FILE. First, the class

DATA_FIELDS denoting any set of attributes was declared. Then a specific set of attributes
pdata was constructed by enumeration. The class PERSONNEL denoting a class of elements (or
records) all of which have the associated attributes in pdata was declared. And finally, the class
PERSONNEL_FILE was declared as any set of elements (records) belonging to PERSONNEL.
At best, such a definition mechanism is tedious. At worst, this mechanism (1) is error-prone, (2)
clutters up the dictionary with a lot of class names that may never again be referenced, and (3)
defines only a single, rigidly constrained kind of "file". Let us now explore how one could define
a generic sequential file in ADAMS; this time using the sequence construct.

Consider the following ADAMS declarations

DATA_FIELDS isa SET, of ATTRIBUTE elements

$Z_RECORD isa CLASS,
having attributes = $Z

FILE_OF_$Z isa SEQUENCE, of $Z_RECORD elements,

In the second ADAMS statement, Z is a macro parameter. It must be instantiated as in:

pdata instantiates_a DATA_FIELDS,
consisting of { p_nbr, name, age, dept, salary }

personnel_file instantiates_a FILE_OF_pdata
or

manager_file instantiates_a FILE_OF_pdata

Now the class name is literally, FILE_OF_pdata and any element of the file is a
pdata_RECORD . The instantiation segment pdata becomes part of the name. The use of macro
instantiations provides an economical way of declaring a large number of similar classes. For
example, with just the two basic classes DATA_FIELDS and FILE_OF_$Z , one can define an
indefinite number of simple files.

There is an obvious potential problem with the declaration of FILE given above. Its macro
parameter could be instantiated with any name, not necessarily the name of a set of attributes.
ADAMS employs an only if clause to test for consistency in such macro substitutions, as in

$Z_RECORD isa CLASS
having attributes = $Z
only if (all x in $Z) [x.class_of = ATTRIBUTE]

The provided and only if clauses are similar, yet different. The predicate of a only if clause is
tested only once — on declaration. If it is not satisfied the declaration is aborted. A provided
clause becomes part of the persistent declaration. Its predicate may be tested repeatedly at run-
time whenever elements are instantiated or manipulated to insure database consistency. If the
predicate is not satisfied the statement fails15 and the process is aborted.
���

15 The possibility of an ADAMS statement f ailing is an important concept that is not found in many
programming languages. We have borrowed the concept from SNOBOL [GPP68].

All database languages must make some provision for statement, and/or transaction, failure if one is to en-
force concurrency criteria, such as serializability, or consistency constraints as above.

12

2.2. Designators
A name uniquely designates something. In ADAMS, a name is a literal identifier, just as

the literal ’-5.63’ uniquely designates the corresponding real value. In ADAMS, names are literal
symbol strings that are accessible to the external world (that is to a host language program)
through the dictionary. Most names simply denote specific database objects, such as a file, a rela-
tion, or a set. Given the name of the object, interrogation of the dictionary will return all the
information a process needs to use the object. Other names denote element classes, codomains,
and attribute and map functions. The purpose of many ADAMS statements is to create and/or
interpret dictionary entries. All sets, classes, codomains, attributes, and maps are nameable .
Codomain values are not nameable — in the sense that literals denoting such values are never
entered into the dictionary.

A designator is any expression that denotes one, or more, things in an ADAMS database.
Every name is a designator. But elements may be designated by mechanisms other than literal
naming.

For example, in the ADAMS set looping construct

for_each x in q_set do ...

x successively designates individual elements of the named set q_set . Such variable designators
are called ADAMS variables to distinguish them from other variables declared in the host
language, and must be declared before use by a statement of the form

ADAMS_var x, y, z

These ADAMS variables introduce the capability of designating elements of the database without
assigning literal names to them all, in the same manner that the variables of a program support
the manipulation of numeric and character values without treating each as a literal constant.
Most of the elements of any database are instantiated without ever being literally named, as in

x instantiates_a Q
insert x into q_set

where x is a variable element designator.

Variable designators are clearly central to the ADAMS interface. But, possibly more
important, are set designators . In section 2.1.1, we declared classes with associated sets of attri-
butes using a having clause; and we initialized newly instantiated sets by means of the consisting
of clause. In both cases, the association set and initializing set were denoted by enumerated sets .
Standard set notation is used to denote enumerated sets. That is, the set is denoted by a curly
brace followed by an enumerated list of its constituent elements and a closing curly brace, as in

{ <element_designator> [, <element_designator>] }.

The <element_designator>s comprising the enumeration list are frequently literal identifiers; but
need not be.

In addition to enumeration, set designators can be created using predicates. For example,
the expression

{ x in q_set | x.a3 = ’Computer Science’ }

designates the subset of q_set comprised of those elements x whose a 3 attribute have value

13

’Computer Science’, if any.16 In the predicate

x.a3 = ’Computer Science’

the ADAMS variable x is free. In the overall set designating expression, the variable has been
bound to designate an element in the instantiated set q_set . There can be no free variables in a
set designator.17

Set designators of the form shown above, are called retrieval sets . They represent the most
important way that elements of interest are retrieved in ADAMS. They can be quite complex.
For example,

z instantiates_a Q_SET
consisting of { x in q_set | x.a3 = ’Computer Science’ and

(exists y in r_set) [x.a1 > y.a1] }

creates a new set z consisting of those elements of q_set which not only have a 3 value equal
’Computer Science’, but also have an a 1 value that is greater than the a 1 value of at least one
element in r_set .

The association operator, denoted by →, is used to denote a set that has been associated
with an ADAMS class. As an example, consider the second example of 2.1.1, in which we
defined a PERSONNEL_FILE , and suppose that a user process is given only the name of
personnel_f ile , a specific object of that class. The following code could be used to display all
values contained in personnel_f ile .

for_each x in personnel_file do
for_each a in x.class_of→attributes do

write (x.a)
writeln

writeln
for_each a in personnel_file.class_of→attributes do

write (a.name_of, ’ = ’, personnel_file.a)

Note that in this example the term attributes does not uniquely designate any set. The two
separate set designators x.class_of →attributes and PERSONNEL_FILE →attributes do, how-
ever, designate unique sets of attributes. Assuming some reasonable implementation of the write
operator, we would expect this latter code to generate

11111 Smith 36 sales 23,000
22222 Johnson 43 engineering 33,500
33333 Lefler 22 sales 19,000

date_last_mod = 7/14/87

In mathematical notation, we commonly use literal identifiers (or names) such as x or f to
denote elements or functions of interest. An identifier, such as x , can denote anything, although
the nature of the thing being designated is usually understood, either by formal definition or by
context. When a mathematician exhausts his supply of convenient identifiers, he frequently

���

16 The vertical bar | is typically read as "such that".
17 Because all variables are bound to existing sets, evaluation of these expressions is "safe", in the

sense of [Mai83, p.247].

14

begins subscripting them, as in x 1, x 2, or Gα, X β,k , etc.18 The important aspect is that subscript-
ing is purely a linguistic convention designed to provide a larger pool of available identifiers; it
does not necessarily imply an array structure.19 ADAMS introduces subscripting for precisely the
same reason — to expand the space of available identifiers. We add one additional caveat. Only
instantiated element identifiers can be subscripted. One cannot subscript class, or codomain
names.

An element instantiation of the form

x[*, *, *] instantiates_a <class>

indicates that any triply subscripted occurrence of the identifier x , such as

x[n, 13, 0]

will denote an instantiated element in <class>, and may be used in ADAMS expression in the
same manner as any other designator of elements in the <class>. The subscripts must be integer;
but there is no a priori upper, or lower, bound specified in the instantiation statement.20 In effect,
all possible subscript combinations are implicitly instantiated.

This last assertion emphasizes a very important distinction between the ADAMS approach
and a more standard object-oriented approach. Typically, in object-oriented languages, when an
object is instantiated some memory resident object is actually created. In ADAMS, many ele-
ments have only a logical existence; a uid is assigned to the element which may appear in func-
tions, or which may appear in sets or sequences. No actual storage need be reserved, to which the
uid is some kind of pointer. Consequently, instantiation implies only a logical creation — that
an element uid has, or could be, assigned to this element designator.

3. Implementation Examples
ADAMS is intended to be a basic tool with which many database models may be imple-

mented. In this section we illustrate how one may implement

relational,
hierarchical, and
network

databases using ADAMS primitives. One purpose is to demonstrate the general utility of
ADAMS concepts. A second purpose is to provide an abundance of ADAMS examples in juxta-
position with known database organizations.
���

18 When the mathematician exhausts his convenient subscripts, he often turns to superscripting as
well, as in xi , j

k . ADAMS only supports subscripting!
19 Of course, subscripting is a convenient mechanism that can be used in array representation. One

can use subscripting in ADAMS as well to denote array structures.
20 This is an important variant on earlier ADAMS syntax, in which subscripts were drawn from arbi-

trary subscript pools .

On some ADAMS implementations, subscripts have been restricted to non-negative integers, in which case
[0, 0, ... , 0] is an implicit lower bound.

15

3.1. Implementation of a Relational Model
During the last few years, the majority of formal database theory has been couched in terms

of the relational model. It has proven itself to be a flexible context for expressing a wide range of
database queries and operations, particularly those occurring in business applications. Because of
this flexibility, the relational model is the dominant database model, with many available com-
mercial systems and many running applications.

The goal of this section is to show that the basic ADAMS constructs are sufficient to sup-
port the relational approach to database design. At the same time we can illustrate use of many
ADAMS syntactical constructs in the context of a fairly specific, concrete application. Note,
however, that the relational model is a simple database model. For example, it requires only the
basic concepts of element, set, attribute and codomain. There is no equivalent of either the map
or sequence concepts. It has been this very simplicity that has rendered it amenable to formal
analysis (e.g. [Mai83, Ull82]), and has led to its wide spread use in practice.

We will demonstrate this capability primarily by developing a running example. Recall the
hackneyed, but comfortably familiar "Suppliers-Supplies-Parts" database that can be found in any
undergraduate text. Its relational implementation consists of three relations supplier, supplies,
and part which have the following schema:

supplier (s_nbr, s_name, s_city, s_zip)

supplies (s_nbr, p_nbr)

part (p_nbr, description, unit_price)

Figure 3-1

We assume that s_nbr and p_nbr are keys of the supplier and part relations respectively.

In the following subsections we will illustrate the ways in which the primitive ADAMS
concepts can be used to develop this application.

3.1.1. Schema and Relations
We begin by defining ADAMS classes corresponding to the concepts of relational schema

and general relations (with schema) using the isa operator to create and name such generic
classes.

SCHEMA isa SET, of ATTRIBUTE elements

$Z_TUPLE isa CLASS,
having attributes = $Z,
only if $Z.class_of = SCHEMA

$Z_RELATION isa SET, of $Z_TUPLE elements

Now SCHEMA denotes a restricted kind of set consisting only of elements of type ATTRI-
BUTE. A relation is a set of elements (or tuples), on each of which a specified set of attributes
(called the schema of the relation) is defined. Thus to create any relation, there must first exist a
specific named set of attributes to serve as its schema. In the definition of RELATION above, the
macro parameter Z will be replaced by the name of the set serving as the schema, as described in
section 2.1.6. That named set is associated with the class, becoming the schema of the elements
of the relation by a having clause.

In the next three ADAMS statements, we first create a specific schema consisting of three
distinct attributes, a1, a2, and a3. Then we create two different relations r and s which have

16

identically the same schema R .

R instantiates_a SCHEMA, consisting of { a1, a2, a3 }

r instantiates_a R_RELATION
s instantiates_a R_RELATION

r and s denote specific sets of elements, and may be manipulated as such. Since their elements
are of the same class, operations such as r ∪ s and r ∩ s will be well defined.21 Individual
tuples can be instantiated, assigned values, and inserted into relations as in

t instantiates_a R_TUPLE
t.a1 ← ’5’
t.a2 ← ’-3.7’
t.a3 ← ’Smith’
insert t into r

We would expect that the classes SCHEMA , $Z_TUPLE , and $Z_RELATION would be so
common and so important, that they would be persistently declared with a system-wide status.

3.1.2. A ’Supplier-Parts-Supplies’ Database
Let us assume that generic constructs of SCHEMA and RELATION have been created by

declarative statements as shown in the preceding section. The necessary codomains can be be
defined by statements of the form22

string isa CODOMAIN, consisting of #[a-zA-Z0-9]*#
suppno isa CODOMAIN, consisting of #[0-9]{5}#
partno isa CODOMAIN, consisting of #B[A-Z]-[0-9]{4}-[A-H]#
zip isa CODOMAIN

consisting of #[0-9]{5} | [0-9]{5}-[0-9]{4}#,
udf = ’e’

money isa CODOMAIN
consisting of #$ | + | - | ∈)[0-9]{1,10}(.[0-9]{2} | ∈)#

Generic attribute functions into each of these codomains can be defined by a single parameterized

���

21 The standard set operators, ∪, ∩, ∼, are readily defined over any two sets whose elements are of the
same identical class. They can also be defined over sets whose elements belong to different (even non-
comparable in the class hierarchy) classes; but care must be taken to correctly determine the class of ele-
ments in the resultant set [Pfa88].

22 Here we have established the codomain partno consisting of all 8 symbol strings whose first char-
acter is a ’B’ followed by a single upper case letter, four digits, a hyphen, and a single upper case letter A
through H. Using a COBOL syntax, this codomain could have been described by PICTURE AA9999XA
which provides far less information regarding the structure of these data values. The codomain zip permits
either the old 5 digit zip codes or the newer 9 digit codes with an embedded hyphen. Finally, the money
codomain allows 1 to 10 "dollar" digits, optionally followed by a decimal point and 2 "cents" digits and/or
a preceding dollar sign or plus or minus sign. Notice that this definition does not permit embedded com-
mas.

All domains are assumed to have an appended default udf (undefined) element. In the case of zip a specific
element, the character ’e’, was designated as the udf element.

17

statement of the form:

$Z_ATTRIBUTE isa ATTRIBUTE,
with image $Z

With this, one can instantiate the 7 distinct attributes needed for this example by

s_nbr instantiates_a suppno_ATTRIBUTE
s_name instantiates_a string_ATTRIBUTE
s_city instantiates_a string_ATTRIBUTE
s_zip instantiates_a zip_ATTRIBUTE
p_nbr instantiates_a partno_ATTRIBUTE
description instantiates_a string_ATTRIBUTE
unit_price instantiates_a money_ATTRIBUTE

Once the preliminary declarations have been completed, one can actually create the data-
base itself.

SUPPLIER instantiates_a SCHEMA
consisting of { s_nbr, s_name, s_city, s_zip }

supplier instantiates_a SUPPLIER_RELATION

PART instantiates_a SCHEMA
consisting of { p_nbr, description, unit_price }

parts instantiates_a PART_RELATION

SUPPLIES instantiates_a SCHEMA
consisting of { s_nbr, p_nbr }

supplies instantiates_a SUPPLIES_RELATION

In the first statement, the type SCHEMA has been previously defined to be a set of attribute(s).
Thus SUPPLIER is the name of a specific schema instance which consists of precisely the four
attributes s_nbr, s_name, s_city, and s_zip.23 Attributes could be added to, or deleted, from this
schema set at some later time.

The second statement establishes the specific relation named suppliers. That is, suppliers
denotes an arbitrary set whose only constraint is that the attributes of SUPPLIER (the RELA-
TION macro parameter) are defined on all of its elements. The set supplier is empty, since it has
just been created and no elements have been explicitly inserted into it.

It should be apparent that the preceding ADAMS statements have (a) defined the basic rela-
tional terminology in terms of the ADAMS primitives, and (b) then created an empty supplier-
supplies-parts database. The wordiness of these expressions should be an anathema to most data-
base designers and/or application programmers. This is why we regard ADAMS as a moderately
low-level interface. Indeed, we would expect to see many more concise forms of expression such
as,

���

23 Here we violate the ADAMS convention of setting instances in lower case, because in the relational
model one customarily sets schema in upper case and relations with that schema in lower case.

18

schema SUPPLIER is { s_nbr, s_name, s_city, s_zip }.

relation suppliers has_schema SUPPLIER.

where these more concise forms can be easily implemented in the language itself, as macro sub-
stitutions over the language, or as procedures.

3.2. Using Maps
Before illustrating the implementation of either the hierarchical or network models we must

develop the ADAMS concept of a map more fully. The relational model does not require a map
concept, which is at once both its great strength and its weakness. Mapping concepts are unfami-
liar to many database users; so a database model which is based on only flat tables is much easier
to explain and to visualize [Cod70]. But invariably relationships must be created between data
sets; and the relational join is not always the most effective way of implementing the relationship.

An attribute function defined on an ADAMS element functionally associates a single
codomain value with that element. A map defined on an ADAMS element functionally associ-
ates a single ADAMS element with that element. That is, attributes are functions from a class of
ADAMS elements into codomains; maps are functions from a class of ADAMS elements into
another class of ADAMS elements. The image element of a map may be a set element; thus
while maps are properly single valued, they can nevertheless be used to represent one-to-many
mappings.

A generic class of maps is declared by naming it and designating its image class, as in:

Q_MAP isa MAP, with image Q
SUBSET_MAP isa MAP, with image Q_SET

A particular map is instantiated from the generic class, in exactly the same manner that attributes
are instantiated.

f instantiates_a Q_MAP
g instantiates_a SUBSET_MAP

Here, the image under the map f must be a single element in the class Q , and for any element x ,
x.f must have been previously established with an assignment statement. The image under the g
map will be a set of elements in the class Q .

Maps are associated with elements in a class, just as attributes are associated with the ele-
ments of a class. In the following example, any element of class P has the two map functions f
and g defined on it, as well as the three attributes a1, a2, and a3.

P isa CLASS
having { f, g } ,
having { a1, a2, a3 }

Assume the ADAMS statement

x instantiates_a P

Now x.f will denote an element from the class Q . Note that we use the same application opera-
tor, to apply maps that we use to apply attribute functions to an element. The expression x.f.a
denotes the attribute a defined on the Q type element denoted by x.f . Or, since g maps to a

19

Q_SET of Q type elements, we could used the fragment of code

for_each y in x.g
write (y.a)

to display the a attribute values of every element y that is the set which is the image of x under
the g map.

As before, we may choose to provide a synonym for either the set of associated maps or
attributes as below.

P isa CLASS
having maps = { f, g } ,
having attributes = { a1, a2, a3 }

In this example, we have used "maps" to be a synonym for the set of associated maps, and "attri-
butes" to be a synonym for the set of associated attributes. This is simply a convention which
allows us to access the set of of all associated maps (or attributes) using the association operator

x→maps x→attributes

without having to remember each function name individually.

3.3. Implementing a Hierarchical Model
One common usage of maps is the implementation of set valued attributes, or repeating

groups, that occur in a hierarchical database. The "personnel file" example of section 2.1.3 can
be extended to include a salary history with each record in the file as shown below.

DATA_FIELDS isa SET, of ATTRIBUTE elements

master_rec_data instantiates_a DATA_FIELDS
consisting of { p_nbr, name, age, dept }

salary_rec_data instantiates_a DATA_FIELDS
consisting of { b_date, e_date, salary }

SALARY_REC isa CLASS
having attributes = salary_rec_data

SALARY_HIST isa SET, of SALARY_REC elements

SH_MAP isa MAP, with image SALARY_HIST

salary_history instantiates_a SH_MAP

P_REC isa CLASS
having attributes = master_rec_data,
having maps = { salary_history }

P_FILE isa SET, of P_REC elements,
having attributes = { date_last_mod }

20

This definition is equivalent to the COBOL data definition

01 data record is
02 p_nbr PICTURE.
02 name PICTURE.
02 age PICTURE.
02 dept PICTURE.
02 salary_history OCCURS n TIMES.

03 b_date PICTURE.
03 e_date PICTURE.
03 salary PICTURE.

except that we have omitted the codomain definitions of the individual attributes, p_nbr, ...,
salary which in COBOL would have been handled by the indicated PICTURE clauses. Also our
definition provides for an attribute date_last_mod which is associated with the set (or file) as a
whole, and not with any particular element (or record) in it.

3.4. Implementation of a Network Model
The network model, as defined by the CODASYL/DBTG report [AAA71, NNN73], expli-

citly used the concept of a "set", but only as the set of elements which were the image of a one-
to-many map. But the term "map" was never used. Instead, every set was "owned" by an ele-
ment of some other class.24 That owner element was the pre-image of the map. The CODASYL
(or network) model implements a one-to-many map (for each domain element there is a set (of
many) elements that its owns). ADAMS implements many-to-one maps. Consequently,
ADAMS descriptions must often include the extra class declaration, of a set of image elements.
After this is done simple network models are easy to describe in an ADAMS syntax, using a con-
struction very similar to the hierarchical decomposition of the preceding section.

The following ADAMS statements will declare a CODASYL/DBTG schema

B:(b1,b2)

C:(c1,c2,c3,c4)

A:(a1,a2,a3)

Figure 3-2

where the characteristics of a1, ... ,c4 are defined elsewhere. In this simple network data base,
records of type A "own" sets of type B and of type C. Each record of type B also "owns" records
of type C.

DATA_FIELDS isa SET, of ATTRIBUTE elements

c_fields instantiates_a DATA_FIELDS,

���

24 ADAMS uses a FORWARD construct to allow maps to be defined on a class back into itself.

21

consisting of { c1, c2, c3, c4 }

C_REC isa CLASS, having fields = c_fields

C_SET isa SET, of C_REC elements

C_MAP isa MAP, with image C_SET

c_set instantiates_a C_MAP

b_fields instantiates_a DATA_FIELDS,
consisting of { b1, b2 }

B_REC isa CLASS
having fields = b_fields,
having image_sets = { c_set }

B_SET isa SET, of B_REC elements

B_MAP isa MAP, with image B_SET

b_set instantiates_a B_MAP

a_fields instantiates_a DATA_FIELDS,
consisting of { a1, a2, a3 }

A_REC isa CLASS
having fields = a_fields,
having image_sets = { b_set, c_set }

While the preceding sequence is tedious, it need only be executed once, and thereafter retrieved
from the persistent dictionary. Unlike COBOL, Pascal, or C, such data descriptions are not
included in all subsequent programs — indeed, they cannot be repeated!

At this point the definition of the database structures exist, but no elements of type A_REC ,
B_SET , or C_SET actually exist. Statements of the form

a instantiates_a A_REC
b instantiates_a B_SET
c instantiates_a C_SET

a.b_set ← b
a.c_set ← c

would create actual sets (elements) of B_REC , and C_REC elements, that are initially empty;
then assign b and c as the image of a under the b_set and c_set 25 maps respectively. (That is, a
becomes their owner.) These two sets, b , and c , need not be the only such sets. Subsequent
statements, such as

b2 instantiates_a B_SET
c2 instantiates_a C_SET
c3 instantiates_a C_SET

���

25 Giving a map function the name b_set or c_set is atrocious! We do it only to reinforce the
correspondence with the CODASYL model.

22

would create additional sets of B_REC and C_REC records, which (1) may contain common ele-
ments and (2) may be involved in set manipulation statements such as

c3 ← c2 intersect (a.c_set union c3)

where the second operand in the right hand <set_expression> denotes the current image of the
element a under the c_set map.

In the CODASYL/DBTG report, a set can have several owners provided each owner is of a
different type. In ADAMS, we relax the latter restriction. ADAMS functions can be defined on
distinct sets of the same, or different, class. For example, the map c_set is defined on elements in
either of the classes, A_REC or B_REC . And, c_set is defined on the elements in both b and b 2,
which are sets of the same class, B_REC . Consequently, it is hard to define just what is meant by
the "inverse image" of an element (or subset) in a set of type C under the "c_set" map.

In the network approach to database design, many-to-many mappings were represented by
introducing an extra class of intersection records. Basically, a many to many relationship such as
"enrolled" between STUDENT and COURSE in the complex network, shown in Figure 3-3,

enrolled

instructor

advisor

COURSE:(c_nbr,c_name,term)

STUDENT:(name,major,student_nbr)

FACULTY:(name,rank,dept)

Figure 3-3

must be reduced to two separate one-to-many mappings, "enrolled_in" and "enrollment", as in
Figure 3-4, where in a network implementation ENROLLMENT records would be intersection
records.

(course)(student)

enrollmentenrolled_in

instructoradvisor

COURSE:(c_nbr,c_name,term)STUDENT:(name,major,student_nbr)

ENROLLMENT:(grade)

FACULTY:(name,rank,dept)

Figure 3-4

In this figure we have named both the one-to-many maps enrolled_in and enrollment , together

23

with their many-to-one inverses student and course (in parentheses). In ADAMS, one always
has the option of implementing either the map, its inverse, or both.

Since ADAMS implements its maps as many-to-one functions, it is somewhat easier to
avoid the strict CODASYL analog, and implement the inverse maps student and course on ele-
ments of type ENROLLMENT to elements of type STUDENT and COURSE. Then ENROLL-
MENT elements are truly the ordered pairs of a binary relation. Each element of type ENROLL-
MENT has a student "pointer", a course "pointer", and a grade attribute. A network structure of
this nature could be declared by the following ADAMS statements.26 (This sequence is a frag-
ment of code taken from an actual C program, and various comments have been left in place.
The attributes name , rank , dept , c_nbr , c_name , term , major , s_nbr , grade , and
date_last_mod were previously instantiated as functions with appropriate codomains.)

/* an initial class declaration required */
/* for map functions, ’advisor’, ’instructor’ */

PERSON isa CLASS,
having data_fields = { name, soc_sec_nbr, b_date }

PROFESSOR isa PERSON_REC,
having fac_data_fields = { rank, dept }

FACULTY isa SET, of FACULTY_REC elements,
having { date_last_mod }

/* generic map functions */
$1_MAP isa MAP, with image $1

advisor instantiates_a PROFESSOR_MAP
instructor instantiates_a PROFESSOR_MAP

/* class declarations required */
/* for the following map functions */

STUDENT isa PERSON,
having data_fields = { major },
having maps = { advisor }

STUDENTS isa SET, of STUDENT elements
COURSE isa CLASS,

having data_fields = { c_nbr, c_name, term },
having maps = { instructor }

COURSES isa SET, of COURSE elements
/* Final declaration of many-to many */
/* enrollment relationship */

student instantiates_a STUDENT_MAP
course instantiates_a COURSE_MAP

ENROLL_REC isa CLASS,
having data_fields = { grade },
having maps = { student, course }

ENROLLMENT isa SET, of ENROLL_REC elements

These statements create the class structure illustrated in Figure 3-4. But, no specific sets of type
FACULTY, STUDENT, COURSE, or ENROLLMENT have been created. There could be
several in each class. For example, the ADAMS statements

courses instantiates_a COURSES
enrollment instantiates_a ENROLLMENT
tenured instantiates_a FACULTY
untenured instantiates_a FACULTY
graduate instantiates_a STUDENTS

���

26 This school database structure has been previously described in [PSF88].

24

undergrad instantiates_a STUDENTS

would create an instantiated collection of data sets which are related in the fashion of Figure 3-5.

student

instructoradvisoradvisor

course

enrollment

coursesgrad_studentundergrad_student

untenured_facultytenured_faculty

Figure 3-5

All of these instantiated sets are initially empty. Elements can be inserted into the sets with a
sequence such as

x instantiates_a FACULTY_REC
x.name ← ’Pfaltz’
x.soc_sec_nbr ← ’123-45-6789’
x.rank ← ’professor’
x.dept ← ’computer science’
insert x into tenured_faculty.

y instantiates_a STUDENT_REC
y.name ← ’Smith’
y.soc_sec_nbr ← ’012-34-5678’
y.major ← ’computer science’
y.advisor ← x
insert y into grad_student

which instantiates a specific faculty element, and a student element with an advisor map to the
faculty member. Here x and y would be ADAMS variables; so neither of these two elements are
literally named.

In the examples above we have demonstrated that ADAMS can faithfully represent struc-
tures arising in the CODASYL network model. From this one might conclude that the flexibility
of ADAMS therefore simplifies the task of designing databases. This is not true. Instead, the
flexibility of ADAMS complicates the task of database design. For example, Figure 3-5 is much
more complex that that of Figure 3-4 because we have represented multiple instantiations of the
class STUDENTS as undergrad and grad , and multiple instantiations of the class FACULTY as
tenured and untenured . In the network model (and in most object-oriented models) there is only
one underlying set — that of the entire class STUDENTS or FACULTY.

As another example, consider the arrows representing maps in Figures 3-2 and 3-4. They
are single valued "at one end" and multi-valued "at the other end". What does this mean? What
is the map? In the network model, there is no ambiguity because all maps are really one-to-
many; in the relational model there is also no ambiguity because all relationships are implicitly
many-to-one using key dependencies. We chose to represent the enrolled relationship of Figure

25

3-3 as two many-to-one maps on a set of enrollment elements, with the consequence that the
multi-valued inverse can be exploited only by retrieval operators, such as

{ x in courses | (exists y in) [y.student.name = ’Smith’ and y.course = x] }

to create the set of courses that ’Smith’ is enrolled_in ; or

{ z in grad_student | (exists y in) [y.course.nbr = ’CS662’
and y.course.term = ’S91’ and y.student = z] }

to retrieve the graduate students enrolled in this semester’s CS662 class.

In ADAMS one can easily define "set-valued" maps, such as

class_list instantiates_a STUDENTS_MAP

COURSE isa CLASS
having data_fields = { c_nbr, c_name, term }
having maps = { instructor, class_list }

Now, if we let y denote the element representing CS 662 in the term S91, the simple map associ-
ation operator y.class_list suffices to denote the desired set without a retrieval operation. Now
we have a direct representation of the many-to-many relationship in Figure 3-3; but not one that
is necessarily superior.

The very flexibility with which database relationships can be represented by ADAMS maps
makes sound database design essential.

4. Arrays and Sequences
The preceding sections 2 and 3 have primarily emphasized the SET construct of ADAMS

because existing database models have largely been concerned with sets of data, whether so
named explicitly, or only implicitly implied. In the relational model the schema of a relation is a
set of attributes, and the relation itself is a set of tuples. In the hierarchical model, the children of
a single parent is a set. Sets are explicitly defined in the network model; they are the image of a
one-to-many map — in effect, they are really a functional operator on the owner of the set.

Our emphasis in these sections had been to show that ADAMS constructs can be used to
subsume those in a number of standard database languages. In this section, we briefly explore the
subscripting and sequence constructs which have not customarily been included in database
implementations.27

4.1. Arrays
Values structured as arrays are of great importance in scientific applications. As noted in

section 2.2, the subscript notation of ADAMS does not necessarily denote an array; any element
identifier, including attribute, map, set, and sequence identifiers may be subscripted. But as in
���

27 Several implementations of the relational model have provided extensions which allow array attri-
butes. However, there have always been resulting ambiguities, such as "what does it mean to join over an
array attribute"?

26

mathematics, one may use subscript notation to designate elements of an array. In this section we
will explore two different ways of representing arrays.

Conventionally, one regards an matrix A as an array of subscripted elements of the form

Am ×n =

�����
� am ,1

.

.
a 2,1

a 1,1

am ,2
.
.

a 2,2

a 1,2

am ,3
.
.

a 2,3

a 1,3

. . ..
.

. . .

. . .

am ,n
.
.

a 2,n

a 1,n

� ����
� m ×n

One intuitively natural way of denoting such an array in the ADAMS syntax is

v instantiates_a REAL_ATTRIBUTE

MATRIX_ELEMENT isa CLASS having { v }

a[*, *] instantiates_a MATRIX_ELEMENT

so that the subscripted identifiers a [i , j] denote elements in a matrix. But the elements a [i , j]
are not themselves real values; they are ADAMS elements. One must apply the attribute v to
denote their corresponding values, as in a [i , j].v .

While, the code above is intuitively natural, it is not the only possible approach; nor is it
necessarily the best. A second representational approach involves subscripting the associated
attributes, rather than the "elements" themselves. For example, one could define instead

v[*, *] instantiates_a REAL_ATTRIBUTE

3X3_MATRIX isa CLASS
having { v[1,1], v[1,2], v[1,3],

v[2,1], v[2,2], v[2,3],
v[3,1], v[3,2], v[3,3] }

a instantiates_a 3X3_MATRIX

In other words, an element of the class 3X 3_MATRIX has 9 associated attribute functions, v [1,1]
... v [3,3], defined on it. To denote the value of the 2, 3th value of the matrix a one would use the
expression a.v [2, 3]. To denote the value of the i , j th value of the matrix a , where i and j are
integer variables in the host language, one would use the expression a.v [i , j].

One advantage of this latter representation is that, if inadvertently the expression a.v [i , j]
were to be evaluated with either of its subscripts outside of the range [1, 3], the ADAMS state-
ment would f ail because the indicated attribute is not defined on a .

A second advantage, is the possibility of generic m × n matrix declaration as in

$M_X_$N_MATRIX isa CLASS
having { v[1..$M, 1..$N] }

b instantiates_a 3_X_3_MATRIX

The attribute v had been declared to be an arbitrarily large, doubly subscripted function. The
range subscript notation used in the set enumeration of the class declaration above denotes all
subscripted attributes within the indicated ranges.

27

Yet another advantage of the latter representation is the fact that the matrix itself is
represented as a single ADAMS element. This makes it easy to associate the entire array with
other ADAMS elements by means of a map.

Effective ways of actually implementing these kinds of subscripted representations are
described in [PfF90].

4.2. Sequences
Given a provision for subscripting in the database model, there is no actual need for a

sequence construct. One could define a set of subscripted elements and then manipulate the
integer subscripts to impose a sequential order on the set. For that matter, subscripting itself is
not strictly required, since one could associate integer attributes sub_ 1, sub_ 2, ..., sub_n with an
element to emulate subscripting.28 But subsequent data access and manipulation becomes some-
what convoluted and awkward. The inclusion of subscripted identifiers and sequences in
ADAMS makes it a more "natural" database interface, if not literally more "powerful".

The elements of a set are logically unordered; that is, while the looping construct

for_each <ADAMS_var> in <set> do
.
.

will assign elements to the <ADAMS_var> in some order, it cannot be specified what that order
will be. In particular, the order of elements in the <set> need not be the order in which they were
inserted.

In section 2.1.6 we used the sequence construct to define generic sequential files. As a
second example, assume that the basic elements of a data set correspond to events that must
occur, in some order, in a simulation. Each such event element might belong to the class
EVENT . The set of all events might be instantiated as a set, as in

EVENT_SET isa SET of EVENT elements

all_events instantiates_a EVENT_SET

Specific schedules of these events could then be defined by the statements

SCHEDULE isa SEQUENCE of EVENT elements

sched_1 instantiates_a SCHEDULE
sched_2 instantiates_a SCHEDULE

Event elements could be drawn from the set all_events and appended to sched_ 1 and sched_ 2 to
reflect different execution schedules, which might then be compared with each other. Notice that,
just as an ADAMS element can belong to multiple sets, so can it belong to multiple sequences as
well. Moreover, if it were unknown just how many schedules were to be examined, one might
choose to declare a subscripted identifier, as in

sched [*] instantiates_a SCHEDULE

in which case we have instantiated an indefinite number of schedules.

���

28 This is the mechanism used by many relational models to represent array data.

28

A largely unexplored use of sequence construct is the representation of streams of data
which may be exploited in parallel processing of large data sets.

5. References

[AAA71] CODASYL Data Base Task Group Report, ACM, New York, 1971.

[ACO85] A. Albano, L. Cardelli and R. Orsini, Galileo: A Strongly Typed Interactive
Conceptual Lanugage, Trans. Database Systems 10,2 (June 1985), 230-260.

[BBK87] F. Bancilhon, T. Briggs, S. Khoshafian and P. Valduriez, FAD, a Powerful and
Simple Database Language, Proc. 13th VLDB Conf., Brighton, England, Sep. 1987,
97-105.

[BuA86] P. Buneman and M. Atkinson, Inheritance and Persistence in Database Programming
Languages, Proc. ACM SIGMOD Conf. 15,2 (May 1986), 4-15.

[Car84] L. Cardelli, A Semantics of Multiple Inheritance, in Semantics of Data Types,
Lecture Notes in Computer Science 173, Springer Verlag, June 1984, 51-67.

[CDV88] M. J. Carey, D. J. DeWitt and S. L. Vandenberg, A Data Model and Query Language
for EXODUS, Proc. SIGMOD Conf., Chicago, IL, June 1988, 413-423.

[Cha76] D. D. Chamberlin, Relational Data-Base Management Systems, Computing Surveys
8,1 (Mar. 1976), 43-66.

[Cod70] E. F. Codd, A Relational Model for Large Shared Data Banks, Comm. of the ACM
13,6 (June 1970), 377-387.

[CAD87] R. L. Cooper, M. P. Atkinson, A. Dearie and D. Abderrahmane, Constructing
Database Systems in a Persistent Environment, Proc. 13th VLDB Conf., Brighton,
England, Sep. 1987, 117-125.

[CoM84] G. Copeland and D. Maier, Making Smalltalk a Database System, Proc. SIGMOD
Conf., Boston, June 1984, 316-325.

[GoR83] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation,
Addison Wesley, Reading, MA, 1983.

[GPP68] R. E. Griswold, J. F. Poage and I. P. Polonsky, The SNOBOL 4 Programming
Language, Prentice Hall, Englewood Cliffs, NJ, 1968.

[GrG83] R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice
Hall, Englewood Cliffs, NJ, 1983.

[GrO88] R. E. Griswold and J. O’Bagy, SEQUE: A Programming Language for Manipulating
Sequences, Comput. Lang. 13,1 (Mar. 1988), 13-22.

[Kim79] W. Kim, Relational Database Systems, Computing Surveys 11,3 (Sep. 1979), 185-
211.

[KBC87] W. Kim, J. Banerjee, H. T. Chou, J. Garza and D. Woelk, Composite Object Support
in an Object-Oriented Database System, Proc. OOPSLA ’87, Oct. 1987, 118-125.

[Kim90] W. Kim, Object-Oriented Databases: Definition and Research Directions, IEEE
Trans. on Knowledge and Data Engineering 2,3 (Sep. 1990), 327-341.

[KGB90] W. Kim, J. F. Garza, N. Ballou and D. Woelk, Architecture of the ORION Next-
Generation Database System, IEEE Trans. on Knowledge and Data Engineering 2,1

29

(Mar. 1990), 109-124.

[Mai83] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville,
MD, 1983.

[NNN73] CODASYL Data Description Language, National Bureau of Standards Handbook
113, U.S. Dept. of Commerce, Washington, DC, 1973.

[Pfa88] J. L. Pfaltz, Implementing Set Operators Over a Semantic Hierarchy, IPC TR-88-
004, Institute for Parallel Computation, Univ. of Virginia, Aug. 1988.

[PSF88] J. L. Pfaltz, S. H. Son and J. C. French, The ADAMS Interface Language, Proc. 3th
Conf. on Hypercube Concurrent Computers and Applications, Pasadena, CA, Jan.
1988, 1382-1389.

[PFG89] J. L. Pfaltz, J. C. French, A. Grimshaw, S. H. Son, P. Baron, S. Janet, Y. Lin, L.
Loyd and R. McElrath, Implementation of the ADAMS Database System, IPC TR-
89-010, Institute for Parallel Computation, Univ. of Virginia, Dec. 1989.

[PfF90] J. L. Pfaltz and J. C. French, Implementing Subscripted Identifiers in Scientific
Databases, in Statistical and Scientific Database Management, Z. Michalewicz
(editor), Springer-Verlag, Berlin-Heidelberg-New York, Apr. 1990, 80-91.

[SSE87] A. Sernadas, C. Sernadas and H. Ehrich, Object-Oriented Specification of Databases:
An Algebraic Approach, Proc. 13th VLDB Conf., Brighton, England, Sep. 1987,
107-116.

[Shi81] D. W. Shipman, The Functional Data Model and the Data Language DAPLEX,
Trans. Database Systems 6,1 (Mar. 1981), 140-173.

[Ste90] M. Stonebraker and et.al, Third-Generation Database System Manifesto, SIGMOD
RECORD 19,3 (Sep. 1990), 31-44.

[StW83] Q. Stout and P. Woodworth, Relational Databases, Amer. Math. Monthly 90,2 (Feb.
1983), 101-118.

[Str87] B. Stroustrup, The C++ Programming Language, Addison Wesley, Reading, MA,
1987.

[Str88] B. Stroustrup, What is Object-Oriented Programming?, IEEE Software, May 1988,
10-2.

[Ull82] J. D. Ullman, Principles of Database Systems, 2nd Ed., Computer Science Press,
Rockville, MD, 1982.

[Weg87] P. Wegner, Dimensions of Object-Based Language Design, Proc. OOPSLA ’87,
Oct. 1987, 168-182.

[81] The Smalltalk-80 System, BYTE, Aug. 1981, 36-48.

30

Table of Contents
1. Primitive Concepts in the ADAMS Approach ... 2
1.1. Elements ... 2
1.2. Names and Unique Identifiers .. 3
1.3. Sets and Sequences .. 4
1.4. Codomains ... 5
1.5. Attributes and Maps ... 5
1.6. Concise Summary .. 6

2. ADAMS Data Definition Syntax .. 7
2.1. Class Description ... 7
2.1.1. Associating Attributes and Maps with a Class 8

having clause .. 8
consisting of .. 9

2.1.2. Attribute Denotation Operator .. 10
2.1.3. Predicates .. 10
2.1.4. Class Restriction ... 11

provided clause ... 11
set element clause ... 11

2.1.5. Name Definition .. 11
2.1.6. Parameterized Class Definition ... 12

macro substitution ... 12
2.2. Designators .. 13

names - literal identifiers .. 13
designators .. 13
ADAMS variables ... 13
set designators ... 13

enumerated sets .. 13
retrieval sets ... 14

association operator, → .. 14
subscripted identifiers ... 15

3. Implementation Examples .. 15
3.1. Implementation, Relational Model .. 16
3.1.1. Schema and Relations ... 16
3.1.2. A ’Supplier-Parts-Supplies’ Database .. 17

3.2. Using Maps .. 19
3.3. Implementing a Hierarchical Model .. 20
3.4. Implementation, Network Model ... 21

4. Arrays and Sequences ... 26
4.1. Arrays ... 26

range subscripts .. 27
4.2. Sequences ... 28

5. References ... 29

31

