Ease:
An Environment for Architecture Study and Experimentation

Jack W. Davidson
David B. Whalley

Computer Science Technical Report TR89-08
September 15, 1989

Ease: An Environment for
Architecture Study and Experimentation

ABSTRACT

Obtaining aceurate and meaningful measurements of the execution behavior of instruction set architectures is
difficult, Measurement systems often impose a heavy performance penalty that limits the types of programs
that can be used. Furthermore, meaningful measurements can only be obtained if realistic (not toy) bench-
mark programs are used. Such programs, however, requires high-level langnage compilers to translate the
benrchmarks to machine code. The problem is farther complicated as most machines require “optimizing™
compilers in order for their capabilities to be fully exploited. This paper describes an environment that pro-
vides these capabilities. It allows detailed measurements of the execution behavior of realistic programs to be
generated without incurring a heavy performance penalty. The accompanying compiler technology allows
optimizing compilers to be built that fully exploit the capabilities of the machine. To illustrate the power of
the envirenment, its use in a number of applications Is described.

INTRODUCTION

Gathering detailed measurements of the execution behavior of an instruction set architecture is dif-
ficult. There are two major problems that must be sofved, First, for meaningful measarements o be
obtained, programs that represent typical workloads and instruction mixes must be used. This means that
high-level language compilers for the target architecture are required. This problem is further com-
pounded as most architectures require an optimizing compiler to fully exploit their capabilities. Building

such a compiler is a formidable task in itself.

A second problem is that gathering detailed dynamic measurements of an architecture using typical
user programs reading typical data sets can be quite ime-consuming. For example, a popular way to
gather execution measurements is to simulate the architecture, This is often used when the architecture in
question does not yet exist, or is not yet stable and available for production use. Depending on the level
of the simulation, programs can run 100 to 500 times slower than directly-executed code [HLT87]. If the
architecture being measured exists and is accessible, another popular technique is to instrument the gen-
erated code by inserting code to count the number of times instructions are executed. Done naively this
can result in programs that run 10 to 20 times slower than the code that is not instrumentied. Because of
this large performance penalty, the tendency is to use small programs with small data sets. The relevance

of measures collected this way is always subject to question.

-1-

This paper describes an environment called ease (Environment for Architecture Study and Experi-
mentation) that solves both these problems. It consists of a easily retargetable optimizing compiler that
produces production-quality code. The compiler also supports the generation of instrumented code that
gathers very fine-grained execution statistics. The instrumented code only runs 10 to 15 percent slower
than code generated without instrumentation. The combination of an easily retargetable compiler and an
efficient method of observing the run-time behavior of real programs provides an environment that is
useful in a number of contexts. The paper describes the use of ease to evaluate both existing and pro-
posed instruction set architectures, for determining the effect of various machine features, and for deter-

mining the best strategies for utilizing machine resources.

ENVIRONMENT FOR OBTAINING MEASUREMENTS

ease logically consists of two parts; the set of tools that permit retargetable optimizing compilers o
be built quickly and the tools that produce and analyze the measurements of the execution behavior of the
instruction set architecture. The compiler technology is known as vpo [BeD88, DaF84, Dav86]. It has
been used to build commercial C, Pascal, and Ada ct;mpilers. Tt is the way that the compilers are con-
structed that fets the measurement system gather detailed measurements of how a particular instruction
set architecture behaves at run time. We briefly describe the compiler technology and how its design per-
mits very detailed measurements of the execution behavior of programs to be gathered without substan-

tially increasing the amount of time needed to run the programs being measured.

vpo

The optimizer, vpo, replaces the traditional code generator used in many compilers. vpo is retar-
geted by supplying a description of the target machine. Using the diagrammatic notation of Wulf
[WIW?75], Figure 1 shows the overall structure of a set of compilers constructed using vpo. Vertical
columns within a box represent logical phases which operate serially. Columns divided horizontally into
rows indicate that the subphases of the column may be executed in an arbitrary order. IL is the Inter-
mediate Language. Register transfers or register transfer lists (RTLs) describe the effect of machine

ingtructions and have the form of conventional expressions and assignments over the hardware’s storage

e

cells. For example, the RTL
rf1l} = r[l1] + rf2}; cc = r[1] + xi2] ? 0;

represents a register-to-register integer add on many machines, While any particular RTL is machine-

specific, the form of the RTL is machine-independent. All phases of the compiler manipulate RTLs,

(source languages)
¢ Pascal Ada
Front From Fromt
End End End
1 IL IL
Code Code Code
Expanders Expanders Expanders

register ransfers

Instruction Selection
Evaluation Order
Machine Descriptions Determination
VAX-1l e Local Register
Clipper —————> Machine Basic Allocation
MC68020 > Description Block VPO
I Global)
SPARC . Processor Opls D E Global Reglgt,er
Inte] 386 ——— 1 ata-VIOW Allocation
Analysis
Common
Subexpression
Elimination
Instruction
Scheduling
Object File

Figure 1: Compiler Structure

There are a number of advantages to using RTLs as the basis of the intermediate representation.
Because the form is machine-independent, programs can be constructed that manipulate RTLs in
machine-independent ways, For example, the phase that performs data-flow analysis on RTLs is largely
machine-independent. Because RTLs represent actual machine instructions, specifics of the target
machine are exposed to the various optimization phases resulting in more complete and thorough optimi-
zation. Finally, becanse RTLs are well-defined, it is possible to construct recognizers that can determine
whether an RTL represenis a legal target machine instruction. The ability to determine, at any time,

whether an RTL represents a legal target machine instruction is key to our optimization strategy.

To retarget vpo to handle a new architecture, a description of the architecture’s instruction set must
be written. A machine description consists of a grammar and semantic actions. The grammar is used to
produce a parser that checks the syntax of an RTL, The semantic actions check context-sensitive con-
straints imposed by a particular architecture. Currently, the RTL parsers are constructed using the Unix
parser generator yacc [Joh78)]. There is a certain appeal to the symmetry of using the tool that was used
to construct the front end to help construct the back end. Machine description grammars are relatively
easy to write [Dav85]. The goal is to compose a grammar and semantic actions that produce a parser that
accepts all legal RTLs (instructions) and rejects all illegal RTLs. Our experience is that it is easier 10
write a machine description for an instruction set than it is to write a grammar for a programming
language. The task is further simplified by the similarity of RTLs across machines. This permits a gram-
mar for one machine to be used as the model for a description of another machine. We have used this
technigue to describe the instruction sets of the following machines: YAX-11, Motorola 68020, National
Semiconductor 32016, Concurrent Computer Corporation 3230, Western Electric 32100, Intel 80336,
Harris HCX-9, IBM PC/RT, Intergraph Clipper, SUN SPARC, and the AT&T DSP32. The C compiler

has been ported to new architectures in as little time as two weeks.

statgen

To be able to evaluate an architecture effectively, one must examine its behavior when executing
real programs. To be able to extract this behavior, one must collect measurements from the program’s

execution that can be used to evaluate the influence of specific features of the architecture. An efficient

R

way to collect this data for subsequent analysis is to modify the back end of the compiler to store the
characteristics of the instructions 1o be executed and to produce code that will count the namber of times
that each instruction is executed. These modifications, called statgen, have been implemented in the vpo

compiler system and are described in subsequent sections. The method is itlustrated in Figure 2.

register
transfers
vpo statgen
object file with instruction
frequency counters characteristics

Figure 2: Method for Gathering Measurements

Instruction Characteristics

The first modification to.vpo necessary to collect measurements is to have the compiler save the
characteristics of the instructions that will be executed. As an instruction is parsed, information about the
characteristics of the instruction is collected and used for semantic checks. The semantic checks are now
modified to store these characteristics with the RTL representing the instruction by invoking a machine-
independent routine. The routine is only invoked if the option for collecting data is set and no semantic
errors have occurred. The routine receives the instruction type and the semantic record containing the
fields of the instruction, After all optimizations have been completed, most of the instructions have been
parsed. Those instructions that have not yet been parsed are then parsed and their characteristics stored
with the instruction. The information about each instruction is then written to a file. An example of a

routine that stores information about a Motorola 68020 call instruction is shown in Figare 3.

/*
* gall - check semantics of call
*/
vold cali{il}
struct sem rec *1i1;
{
if {dassem)
printf (*\\tibsr\\t%s\\n", iil->sem,call.addr->asmb);
else 1f {lerflag && swm)
stinstinfo (FSBRI, i1l);

Figure 3: Storing Instruction Information

Frequency Counters

The second modification is to have the compiler generate code to count the number of times each
instruction is executed. This is accomplished after all optimizations have been performed, Within each
function there are groups of instructions, basic blocks, that are always executed the same number of
times. There are also groups or classes of basic blocks that are executed the same number of times and
these are denoted as execution classes. Thus, the code that the compiler generates to count the number of
times that each instruction in an execution class is executed is inserted at the beginning of the first basic

block in the execution class.

An example of inserting frequency counters is given in Figures 4 through 7. Figure 4 contains a C
function. Figure 5 gives the VAX-11 assembly code that would normally be produced by vpo for that C
function. Figure 6 shows the same assembly code broken into basic blocks. Note that although there are
five basic blocks there are only three execution classes ({1, 51, {2, 4}, {3}). Figure 7 shows the modified
Vax assembly code with execution class counters inserted. The name of the file being compiled, test in

this case, is used 10 distinguish counters from other files in the same executable,

Determining whether a block belongs to an execution class is done in three steps. First, the set of
blocks that dominate the current block must be calculated, This information is already available in vpo if
the option to allocate variables to registers has been set. The second step determines if the current block
is always a successor to the blocks within an execution class. This is accomplished by determining if afl

paths from one block eventually lead to the current block. The third step checks if the current block is in

the same set of loops as the blocks in the execution class. The information for this step is also already

available in vpo.

int fool{k)
int k7
{
int &, 3f10)1;

if (k> 5y |
for (1 = 0; 1 < 10; 144}
J{i] = Oy
k = 27

}
return (k) ;

}

Figure 4: C function

Lext
-globl _foo
Jfoor
wWord 0x0
.set k., 4

.set ., 40
subi2 $40,rl4
cmpl k.o (rl2),$5

jleq 14
clr) r2
Li7: clrl Jo{xl3y[x2)
achlss £10,r2,117
movl $2, k. (r12)
Lid: mov] k.o (x12),x0
ret

.data

Figure 5: Vax Assembly Code for Function in Figure 4

subl2 $40,r14
emplk 123,85 | 1
jieq L14

cirlr2 2

ci jArlB)fx2]
aoblss $10x2,117

movi $2k.(r12) | 4

movl k.(e12),00
et

Figure 6: Assembly Code of Figure 5 in Basic Blocks

There is little overhead for collecting data to produce the measurements. For instance, on the
VAX-11 the C benchimarks whetstone and dhrystone were executed with and without data col-
lection, The two benchmarks executed with data collection code inserted required only 6% and 13%
respectively more execution time than they required without data collection instructions. The number of
counters needed for whetstone was fifty—one. If execution classes were not used and counters were

placed at each basic block, whetstone would have required eighty-four counters.

LLexrt
.globl foo
_foo:
word 0x0

. Set k.,4
.Set 3.0
inel _test counts
sull2 $40,rid
cmpl k.{rl2),s$5
jleg Ll4
inci {_test counts + 4}
clrl r2
L17: inecl {_test_counts + B}
clrl 3. {r13) [r2]
acblss $10,r2,L17
movl $2,k.{rl2)
L14: movl ko {rl2},x0
ret
Ldata

Figure 7: Vax Assembly Code with Frequency Counters

Other Modifications

Some types of measurements require additional code to be generated. For instance, the number of
times that conditional branches are taken can be measured by inserting code after each conditional branch
to count the number of times each conditional branch was not taken. This count can then be subtracted
from the number of times that conditional branches are executed to produce the desired measurement.
Other measurements, such as a trace of addresses of instructions or frequencies of pairs of instructions,
require knowledge of the sequence of blocks that are executed. For these types of measurements a rou-
tine written in a4 high-level language can be invoked at the beginning of each basic block with the current

biock number accessible.

Processing the Collected Data

The data that is collected can be stored and then analyzed at a later time. Separating the collection

and analysis of measurements has a number of advantages. If different evaluations of the data are

required, then collection of the data is required only once. If analysis of the execution of several different
programs is needed, then the data can be collected from each program’s execution separately. Finally,
the analysis of the data is separated from the generation of the data and thus requires fewer modifications

1o the back end of the compiler.

At the end of the execution of the program, the number of times that each execution class is exe-
cuted is written to a file. The execution counts and the characteristics of the instructions will then both be
used to produce the dynamic measurements, The characteristics of the instructions can also be used to
produce the static measurements, Figure 8 shows how both static and dynamic measurements can be

obtained.

instrzction static static
characteristics measurer measurements
executable
frequency
program counts dynamic dynamic
instruction measurer mezsurements
characteristics

Figure 8: Producing Reports

APPLICATIONS

ease can be used for several different applications which include:

1. evaluation of existing architectures
2. design of new architectures

3. analysis of code generation strategies
4. automatic optimization of programs

-10-

Evaluation of Existing Architectures

Past architectural studies have suffered from many limitations. Some used a small set of bench-
mark programs due to the difficulty of collecting data. For instance, in the CFA architecture evaluations
[FSB77], twelve assembly language programs were used to evaluate and rank nine different architec-
tures. Most of these programs were less than 200 static machine instructions. Wiecek gathered dynamic
measurements of VAX-11 instruction set usage from the execution of six different compilers [Wie82].
Because she used trace software to trap on ¢ach instruction to generate the trace data, each program com-

piled was small to allow measurements to be collected in a reasonable amount of time.

Many studies that compare architectures do not account for differences in how the machine instruc-
tions are produced. Each test program in the CFA architectural evaluations was hand-coded in the
assembly language of the machine to test a specific feature of an architecture [FuB77]. Thus, the quality
of the test programs depended upon the skill of the programmer and his knowledge of the machine.
Patterson claimed that the different compilers used in his study used the same compiler technology
[PaP82]. The Portable C Compiler (pcc) [Joh79] was ported to the VAX-11 and RISC 1. However, the
quality of the code produced by each pcc compiler depends on the skill of the compiler writer when con-

structing tables for code generation and the patterns for peephole optimization.

This research has eliminated these problems. Using the previously described method for collecting
data, one can use a number of realistic programs and collect the data in a timely fashion. For instance, on
the VAX-11/8600 measurements can be collected from the execution of almost 100 million instructions
in less than ten minutes. Since the code selector and other optimizations are constructed automatically,
the quality of the code generated by vpo for each of the architectures has less dependence on the skill of
the implementors than compilers using other techniques. Retargeting the compiler to a new machine only
requires describing the architecture. Ad hoc case analysis is unnecessary. Thus, the programs compiled

for each of the architectures receive the same degree of optimization,

ease has been ported to ten different machines to compare current architectures. These machines

listed below include three CISCs and three RISCs.

11~

I VAX-11 — DEC VAX-11/8600

2. HCX — Harris HCX-9

3, 3BIS — Western Electric 32100

4, 68020 — Motorola 68020/68881

5. 32016 — National Semiconductor 32016
6. 80386 — Intel 80386/80387

7. 3230 — Concurrent 3230

8. RT - IBMPC/RT

9, CLIP — Intergraph Clipper

10. SPARC - SUNSPARC

Measurements from the execution of a test set of nineteen C programs were obtained for each of the
architectures, The detail and accuracy of the reports produced by ease allowed more insights to be drawn
when analyzing the measurements. For instance, Figure 9 shows the number of times memory was refer-
enced for data (not instruction fetches) by each machine. The number of memory references due to
referencing variables and spills of temporaries is shown in solid lines. The additional number of memory
references due to saving and restoring allocable registers is shown in dashed lines. The additional
number of memory references due to handling function linkage (stack pointer, frame pointer, program
counter, etc.) is shown in dotted lings. Thus, ease not only determines the total number of memory refer-
ences, but also the reason for each memory reference. It is interesting to note that about 25% of the
VAX-11 memory references is due to function linkage. This resuits in functions calls on the VAX-11
being very expensive. The SPARC architecture with its registers windows, however, had very few

memory references due to saving and restoring registers or function linkage.

100

millions 804 .+

of |t .t e e - 3
memory
references 60— ’:_‘l H H s H
40 : J i

i I i
VAX~11 HCX SBIS 68020 32016 80386 3230 RT CLIP SPARC

Figure 9: Number of Memory References

-12-

There are many other detailed measurements that were obtained. The measurements collected

include:

instriction path length

instruction path size

instruction type distribution
addressing mode distribution

memory reference size distribution
memory reference address distribution
register usage

condition code usage

conditional branches taken

average number of instruction between branches
data type distribation

-~ -Ca B L A

me

The measuremenis were sufficiently detailed to determine the number of times each combination of
addressing mode and data type were used for each field of each type of instruction. Results comparing

these architectures appears in Wha89,

Design of New Architectures or Architectural Features

In addition to using ease to evaluate and analyze existing instruction set architectures, it can be
used to help design new machines. There are two problems, however. First, because the machine does
not exist, there is no good way to execute code and see how it performs or to compare different instruc-
tion sets. The solution often nsed is to construct a simﬁlator for the proposed instruction set. A simulator
imitates a machine by interpreting the machine instructions on a host machine [AIW75,BSG77]. The
problem is that these simulators run too slow to be used with real programs. Depending on the level of

simulation, execution times hundreds of times slower than direct execution can be expected.

A second problem is that compilation issues play an important role in the design of a new machine.
Better computer systems (hardware and software) are possible if the architecture is designed to operate
synergistically with the compiler, As examples we point to the IBM 801 [Rad82] and the MIPS proces-
sor [HIB82]. Their designs were influenced to a large degree by the decision to make pervasive use of

high-level languages and powerful compilers.

ease soves both these problems. The compiler problem is largely solved by vpo and the accom-

panying front ends. A full compiler for a new architecture can be constructed in a few weeks. The

13-

problem of slow execution of programs is solved by having vpo emit code for an existing host machine
that emulates the instruction set of the machine being designed. vpo's organization permits this to be

done quickly and easily as follows,

The last siep in the compilation process is the conversion of an RTL 1o assembly language for the
target machine and emitting it to a file that will be processed by the system’s assembler. In order to
evaluate an architecture that does not exist, instead of emitting assembly language for the target machine,
assembly code for an existing architecture is emitted. Information about the effects of the instruction are
emitted as if the target architecture existed. Figure 10 contains the code that allows the VAX-11 incre-

ment instruction to be evaluated on the SPARC.

ease can also be used o measure the influence of adding new architectural features to an existing

machine. For instance, the number of available registers was increased on the VAX-11 architecture to

f*
* hinst ~ check semantlios of binary operation
*/
vold binst (i1}
. struct sem rec *il;
{

/* Emit an inc inst if an add and the increment ts 1 */
1f (t-Pop == *+¢ §& stromp{t->sem.binsti.right->asmb, "$1") == Q)
if (vaxassem)
printf {"\tinckco\tEs\n", typech2(t}, ili->sem.binsti.dst->asmd);
else If (sparcassem)
if (MEM{t->sem.binsti.dst)) { /* g7 exatra register */
printf ("\tld\tss, $%g7\n", il->sem.binsti.dst->asmb);
printf ("\tadd\t%%g7, 1, ¥%g7\n"};
printf ("\tst\t%%g7,%s\n", il~>sem.binsti.dst->asmb);
}
else
print £ (*\tadd\t%s,1,%$s\n", il->sem.binsti.dst->asnmb);

Figure 10: Code to Generate an Increment Instruction

determine its effect. First a set of currently‘ available registers, equal to in number to the maximum
number of unique registers that could be used in one instruction, were reserved. Any references to the
reserved or new registers were replaced by corresponding memory references. If one of these registers
was referenced in an addressing mode, then the value for the register was loaded from memory into a
reserved register previous to the instruction. The reserved register, insicad of the memory reference, was
then used in the instruction. If one of these registers was updated as a side-effect of using the addressing
mode, then the new value for the register was stored after the instruction. These updates were accom-
plished by adding less than fifty lines of code. An example of translating VAX-11 RTLs referencing

additional registers is shown in Figure 11,

r[31] = r[31} + 1; /* RTL referencing a non-existent reglster */
=

1ned R32 (fp} /* becomes memcory reference */

Ri{a[r[31]++]] = 0O; /% RTL referencing a non-existent register */
>

movl R31(fp),x6 /* becomes a sequence of Instructlions */

clirl {ré) +

movl r6, 831 {fp)

Figure 11: Translating Additional Registers

Analysis of Code Generation Strategies

ease has also been used to evaluate calling sequence conventions. By recompiling the source files
from the C run-time library, different calling sequence conventions can be tried. By extracting measure-
ments of the behavior of the code, the effect of any change can be easily observed. For example, one
experiment we tried was varying the partitioning of scratch and non-scratch registers in a callee-save cal-

ling sequence. Using execution times the effects of using different combinations of scraich and non-

-15-

scraich registers was not obvious. However, ease was able to accurately reveal the results of the changes
as shown in Figures 12 through 14. These figures show the effects of changing the partitioning of the
scratch and non-scratch sets of registers on the total instructions, memory references, and static code size

on the VAX-11, These results imply that an inappropriate partitioning may result in poorer performance.

120

millions 118

of
instructions j14 .

114 r—-l

I | f
4 5 6 7

Number of Scratch Registers

Figure 12: VAX-11 Total Instructions

78
millions 76—
of
memory 74
references

72

i I I
4 5 6 7
Number of Scratch Registers

Figure 13: VAX-11 Total Memory References

.16~

315

310
thousands
of 305 -
bytes

300 —

295 I I I |

4 5 6 7

Number of Scratch Registers

Figure 14: VAX-11 Code Size

ease has also been used to perform experiments with other calling sequence conventions, For
instance, five different methods for saving and restoring registers without interprocedural analysis or spe-
cial hardware have been examined. The mechanism used to pass arguments to a function is another cal-
ling sequence convention. The benefits of passing arguments through registers as opposed to passing all
arguments on the stack have been analyzed. Also the use of primitive call and return instructions has

been compared with the use of their more complex counterpart instructions.

Other Applications

ease can be used in other ways. Because ease gathers detailed information about a program’s
behavior with little overhead, it is possibie that this information can be used to antomatically optimize a
program. Most optimizers estimate usage of resources in order to determine what transformations to
make to a program. For example, estimates of the number of references to variables are used by the
optimizer to decide which variables should be placed in registers. Those variables with the highest esti-
mate reference cost are allocated first. Other decisions by the optimizer, such as whether to move code
out of loops, expand function calls inline [DaH88], and how to structure loops are also based on estimates

of the program’s behavior.,

While these estimates work reasonably well, we envision a system where profile data for a pro-
gram collected by ease can be fed back into vpo. Rather than using estimates, the optimizer will have

detailed information about the program’s behavior. Assuming that the programmer uses realistic data to

-17-

collect the execution statistics, such a system should substantially improve the run-time performance of
programs. In some sense, the programs are being ‘“hand-tuned’” automatically. We are currently con-

structing a prototype of this system to determine whether it is effective.

We have also used ease to contrast static and dynamic measurements. By using the measurements
as input to a statistical package, strong linear relationships were found between most of the static and
dynamic measurements [DRW89]. Typicaily static measurements are casier to obiain and dynamic
measurements give more useful information on performance. Regression analysis was used to produce

an equation that estimates each dynamic measurement from its corresponding static measurement.

'CONCLUSIONS

This environment for the collection of architectural measurements has been designed to require 1it-
tle effort when retargeting for a new architecture. Since the code selector and other optimizations are
constructed automatically, the vpo compiler system is casy to retarget. The semantic record constructed
from parsing an RTL representing an instruction is used to produce assembly code for proposed and
existing architectures and to store instruction information for the collection of measurements. Most of
the code to perform the extraction of measurements has also been accomplished in a machine-
independent fashion. The vpo compiler for ten different machines was modified to collect measurements
as specified above, It typically took three or four hours to make the machine-dependent modifications for

the compiler on each machine.

There is not much overhead for collecting data to produce measurements, Typically, the instru-
mented code ran 10 to 15 percent slower than code that was not instrumented. Because the information
about instructions is collected as a side effect of the compiler parsing instructions, ease also only required

15 to 20 percent overhead in compilation time.

The ease environment has been shown to be an efficient tool for architectural evaluation and
design. Since accurate and detailed reports can be produced for a variety of measurements, the impact of
each modification to the compiler or architecture can easily be determined. This allows one to use an

iterative design method for evaluation of performance in a quantiative manner.

18-

ACKNOWLEDGEMENTS

Manuel Benitez implemented the machine-independent portion of the vpe compiler system,

[AIW75]

{BSG77]

{BeD8E]

{DaFg4]
[Dav85]
[Davg6)
{DaH88]
{DRWE89]

{FSB77]

[FuB77]

[BIB82]

[HLT87]

[Joh78]

[Joh79]

{PaP82}

[Rad82]

REFERENCES

W. G, Alexander and D, B, Wortman, Static and Dynamic Characteristics of XPL Programs,
Computer 8,11 (November 1975), 41-46,

M. R. Barbacci, D, Siewiorek, R. Gordon, R, Howbrigg and S, Zuckerman, An Architectural
Research Facility—ISP Descriptions, Simulation, Data Collection, Proceedings of the AFIPS
Conference, Dallas, TX, June 1977, 161-173.

M. E. Benitez and J. W. Davidson, A Portable Global Optimizer and Linker, Proceedings of
the SIGPLAN Notices '88 Symposium on Programming Language Design and
Implementation, Atlanta, GA, June 1988, 329-338.

J. W. Davidson and C. W. Fraser, Code Selection through Object Code Optimization,
Transactions on Programming Languages and Systems 6 4 (October 1984), 7-32.

J. W, Davidson, Simple Machine Description Grammars, TR85-22, University of Virginia,
November 1985.

J. W. Davidson, A Retargetable Instruction Reorganizer, Proceedings of the SIGPLAN
Notices 86 Symposium on Compiler Construction, Palo Alto, CA, June 1986, 234-241,

J. Davidson and A, Holler, A Siudy of a C Function Inliner, Software—Practice &
Experience 18,8 (Angust 1988), 775-790.

J. Davidson, J. Rabung and D. Whalley, Relating Static and Dynamic Measurements,
Technical Report 89-03, University of Virginia, Charlottesville, VA, July 1989,

S. H. Fuller, H. S. Stone and W. E. Burr, Initial Selection and Screening of the CFA
Candidate Computer Architectures, Proceedings of the AFIPS Conference, Dallas, TX, June
1977, 139-146.

S. H. Fuller and W. E. Burr, Measurement and Evaluation of Alternative Computer
Architectures, IEEE Computer 10,10 (October 1977}, 24-35.

J. Hennessy, N. Jouppi, F. Baskett, T. Gross and J. Gill, Hardware/Software Tradeoffs for
Increased Performance, Proceedings of the Symposium on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, CA, March 1982, 2-11.

M. Huguet, T. Lang and Y. Tamir, A Block-and-Actions Generator as an Aliernative (0 a
Simulater for Collecting Architecture Measurements, Proceedings of the ACM SIGPLAN
Notices '87 Symposium on Interpreters and Interpretive Technigues, St. Paul, Minnesota,
June 1987, 14-25.

8. C. Johnson, Yacc: Yet Another Compiler-Compiler, Unix Programmer’'s Manual 2B,19
(July 1978), 1-34,

8. C. Johnson, A Tour Through the Portable C Compiler, Unix Programmer's Manual, 7th
Edition 2B(January 1979), Section 33,

D. A. Patterson and R. S. Piepho, RISC Assessment: A High-level Language Experiment,
Proceedings of the Ninth Annual Symposium on Computer Architecture, Austin, TX, April
1982, 3-8.

G. Radin, The 801 Minicomputer, Proceedings of the Symposium on Architectural Support
for Programming Languages and Operating Systems, Palo Alto, CA, March 1982, 39-47.

-19.

[Wha89] D. Whalley, A Study of High-Level Language Architectures, PhD Dissertation Proposal,
University of Virginia, Charlottesville, VA, 1989,

[WieB2] C, A. Wiecek, A Case Study of VAX-11 Instruction Set Usage for Compiler Execution,
Proceedings of the Sympostum on Architectural Support for Programming Languages and
Operating Systems, Palo Alto, California, March, 1982, 177-184.

[WIW75] W. Wulf, R, K. Johnsson, C, B. Weinstock, S. O. Hobbs and C. M. Geschke, The Design of
an Optimizing Compiler, American Elsevier, New York, NY, 1975.

20-

