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Abstract 

This paper presents a new model for VLSI routing in 
the presence of obstacles, that transforms any rout- 
ing instance from a geometric problem into a graph 
problem. It  is the first model that allows computation 
of optimal obstacle-avoiding rectilinear Steiner trees 
in time corresponding to the instance size (the num- 
ber of terminals and obstacle border segments) rather 
than the size of the routing area. For the most com- 
mon multi-terminal critical nets-those with three or 
four terminals-we observe that optimal trees can be 
computed as efficiently as good heuristic trees, and 
present algorithms that do so. For nets with five or 
more terminals, we present algorithms that heuristi- 
cally compute obstacle-avoiding Steiner trees. Analy- 
sis and experiments demonstrate that the model and 
algorithms work well in both theory and practice. 

1 Introduction 

In VLSI design automation, a fundamental task is 
routing a net. Typically, this routing is performed 
in the presence of obstacles that the wires of the net 
must not intersect, such as logic cells and wires in 
previously routed nets. This problem has been well- 
studied for the case of two-terminal nets. The tech- 
nique of maze routing [IO, 111 optimally routes two- 
terminal nets, but uses time and space corresponding 
to the size of the routing area rather than the size of 
the actual problem instance (the number of terminals 
and obstacle border segments). At the time, these 
demands were reasonable, but presently the routing 
area of typical VLSI instances is quite large. Later 
work [SI reduced these demands, but did not produce 
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optimal solutions, and still later work [3] performs op- 
timal two-terminal routing in the presence of obsta- 
cles, in time corresponding to the size of the routing 
instance rather than to the routing area. 

The problem of optimally routing a multi-terminal 
net in the presence of obstacles has received substan- 
tially less attention. As a result, VLSI designers typ- 
ically use a multi-terminal variant of a maze rout- 
ing algorithm, which incurs the same space demands 
as the two-terminal variety, and usually produces so- 
lutions that are far from optimal. Even in the ab- 
sence of obstacles, multi-terminal routing corresponds 
to the rectilinear Steiner tree (RST) problem, which 
is NP-complete [5]. This suggests that no polynomial- 
time algorithm can solve the RST problem exactly. 
Nonetheless, exponential-time algorithms have been 
devised that can solve the RST problem exactly for 
small instances in reasonable time, as have many ef- 
ficient polynomial-time heuristics that produce good 
suboptimal solutions. The time complexity of the vast 
majority of these algorithms is a function of size of the 
instance, not of the routing area as in maze routing 
algorithms. N o  such algorithms have existed previ- 
ously for computing RSTs in the presence of obstacles, 
a problem that we refer to as the obstacle-avoiding 
rectilinear Steiner tree (OARST) problem. Here, we 
present a theorem, analogous to Hanan’s theorem [6] 
for the standard RST problem, that transforms an in- 
stance of the OARST problem to a graph problem 
whose size is a function of the input size rather than 
the routing area. 

Using the theorem, we present algorithms that effi- 
ciently produce optimal solutions for nets with three 
or four terminals, which comprise the majority of 
multi-terminal routing problems. We also present 
heuristics that produce good but nonoptimal solutions 
for nets with five or more terminals. We present em- 
pirical evidence that these algorithms are, indeed, effi- 
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Figure 1: A routing instance and its escape segments. 

cient, and that they produce good solutions to multi- 
terminal OARST problems. 

2 The Escape Graph 

Figure 1 depicts a custom layout instance and a col- 
lection of escape segments (shown as dashed lines) for 
that instance. These escape segments were first used 
in an optimal two-terminal interconnection technique 
called line intersection roating [3]. The escape seg- 
ments are a generalization of the line search escape 
segments used by Hightower [SI. 

To describe the escape segments, we appeal to an 
analogy to interstate highway travel. An obstacle cor- 
responds to a city. On every side of an obstacle, we 
generate an escape segment that forms a portion of 
the obstacle's beltway. To enable connections between 
obstacles, each beltway escape segment is extended to 
also form a highway escape segment. A highway es- 
cape segment is a maximal segment with respect to 
the routing region, i.e. it ends with its abutment 
to either an obstacle border segment or the internal 
perimeter of the routing region. Finally, we introduce 
segments that extend from the terminals in all unob- 
structed directions. These segments are also maximal 
in a manner similar to the highway escape segments. 
The dashed segments shown in Figure 1 are the escape 
segments for the instance depicted. 

It has been shown that escape segments suffice for 
optimal routing of two-terminal nets [3]. We now show 
that there is an optimal routing for any net with k > 2 
terminals, that uses only escape segments. 

Theorem 1 If an instance of the OARST problem is 
solvable, then there is an optimal solution composed 
only of escape segments. 

Proof: (By contradiction.) Suppose there exists a 
k-terminal problem instance I ,  with k > 2, such that 

all optimal Steiner trees for I contain at least one seg- 
ment that is not an escape segment. 

Let T be an optimal Steiner tree for I that contains 
a minimal number of non-escape segments among op- 
timal Steiner trees for I .  Let segment s be a routing 
segment in T that is not an escape segment. Without 
loss of generality, assume that s is horizontal. 

Let U be the number of orthogonal segments inci- 
dent to s from above, and let d similarly be the number 
of orthogonal segments incident from below. Colinear 
segments incident to s both from above and below are 
considered two distinct segments separated by s. 

If U is equal to d ,  then slide s up until it is colinear 
with some escape segment t .  We know there is room 
to slide, as s is not an escape segment. An escape 
segment t above s must exist, since the routing re- 
gion perimeter is itself inscribed by escape segments. 
Since the length of the segments above s decreases by 
exactly the amount that the length of the segments be- 
low s increases, the tree resulting from this maneuver 
has the same length as r ;  hence, it is optimal. In ad- 
dition, any vertical segment incident to s that was an 
escape segment remains an escape segment. Thus, the 
tree resulting from this sliding maneuver contradicts 
our assumption that T contains a minimal number of 
non-escape segments. 

If instead, U is greater than (less than) d ,  then we 
may slide s up (down), decreasing the length of the 
tree and contradicting its optimality. We again know 
there is room to slide, since s is not an escape segment. 

This completes the case analysis. We have shown 
that every solvable OARST instance has an optimal 

0 solution composed only of escape segments. 

Theorem 1 can be used similarly to Hanan's well- 
known theorem [6] for the standard RST problem, to 
construct a graph representation for a routing instance 
from its geometric description. The vertices of the 
graph are the terminals and the points at which the 
escape segments intersect (which are potential Steiner 
points). An edge exists between two vertices if they 
lie on the same escape segment, and if no other vertex 
lies between them on that same escape segment. The 
weight of an edge is simply the rectilinear distance 
between its endpoints. We call this graph the escape 
graph. It is obvious from Theorem 1 that an optimal 
solution to the Steiner problem on the escape graph 
for a particular routing instance is an optimal solution 
to the original instance. 
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3 Escape Graph Generation 

The generation of the escape segments from a prob- 
lem instance is relatively straightforward and is per- 
formed by a line-sweep algorithm described by Cohoon 
and Richards [3]. Generating the escape segments re- 
quires O(m1ogm) time, where m is the number of 
obstacle boundary segments. 

The intersections of the escape segments are then 
computed. Since the escape segments are readily gen- 
erated in sorted order, the intersections of the escape 
segments are determined in O(m+n) time, where n is 
the number of intersections [2]. If there are m escape 
segments, then n is O(m2) in the worst case. The to- 
tal time complexity of generating the escape graph is 
thus O(max{n, mlogm}). 

It is often possible to eliminate many of the vertices 
in the escape graph, forming a reduced escape graph, 
while still guaranteeing that an optimal solution exists 
that is constrained to this reduced escape graph. For 
net distributions found in practice, experiments show 
that roughly 85% of the vertices can be eliminated on 
average. The reduced escape graph can be generated 
from the escape graph in O(IC2n) time, where IC is the 
number of terminals and n is the number of candidate 
Steiner points. 

4 Exact Algorithms 

Typically, exact solutions to NP-complete problems 
are infeasible in practice. However, it is often the 
case that small instances can be solved practically. 
For the OARST problem, the escape graph model en- 
ables us to compute optimal Steiner trees for three- or 
four-terminal nets (the vast majority of multi-terminal 
nets) as efficiently as a typical heuristic solution. 

For a three-terminal net, an optimal Steiner tree 
can have only one of two topologies: a simple path 
between the terminals, or three terminals connected 
to a single Steiner point. Thus, an optimal OARST 
for a three-terminal net may be computed by explic- 
itly checking each of these topologies. The latter 
topology-where the tree contains a Steiner point- 
dominates the computation time, and is performed 
in O(n) time, where n is the number of candidate 
Steiner points, assuming all-pairs shortest paths in- 
formation is available. Since the escape graph is pla- 
nar, all-pairs shortest paths can be computed in O(n2)  
time by the algorithm of Frederickson [4]. 

Similar observations can be made for four-terminal 
nets. For four terminals, the possible topologies are 
shown in Figure 2 (terminals are depicted as closed 
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Figure 2: The possible topologies for four terminals. 

circles, and Steiner points as open circles). An optimal 
Steiner tree for a four-terminal net can be efficiently 
computed by explicitly enumerating these topologies, 
and returning the shortest tree seen. This computa- 
tion incurs a time complexity of O(n2) ,  dominated by 
checking the H topology. 

It is possible to perform the case analyses and con- 
struct similar explicit enumeration algorithms for ex- 
act solution of instances with more than four termi- 
nals, but the complexity increases exponentially with 
the number of terminals. We recommend a heuristic 
approach for nets with more than four terminals. 

5 Heuristics 

Although exact solution by explicit enumeration is 
impractical for nets with more than four termi- 
nals, heuristics can be used to find good solutions 
for such nets. Given the exact three- and four- 
terminal algorithms in Section 4, a natural approach 
is K-Steineritation. In a K-Steinerization heuristic, 
portions of a minimum spanning tree (MST) that con- 
tain K adjacent terminals are replaced with an opti- 
mal Steiner subtree for those terminals. In light of the 
results in Section 4, we examine heuristics for K = 3 
and K = 4. 

The first heuristic, greedy K-Steinerazation, repeat- 
edly examines vertex subsets of size K ,  Steineriz- 
ing the one that improves the minimum spanning 
tree the most. The Steiner points introduced by the 
Steinerization are candidates for further Steineriza- 
tion in later iterations. For the standard RST prob- 
lem, Richards [9] first investigated 3-Steinerization in 
this greedy form. For the OARST problem, greedy 
3-Steinerization (G3S) has time complexity 0(IC2n). 
Greedy 4Steinerization (G4S) is similar to the algo- 
rithm of Beasley [l], though Beasley’s algorithm com- 
putes a new MST at each iteration rather than locally 
modifying the current MST. For the OARST problem, 
G4S has time complexity O(k3n2).  

We can speed up Steinerization heuristics by a 
batching technique similar to the heuristic of Hasan, 
Vijayan, and Wong [7] for the standard RST prob- 
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Qual. 
8.19 
9.21 
9.12 
9.35 
9.02 
9.33 
9.53 
9.14 
9.40 
9.48 
9.46 
9.43 

- 
k 
4 
5 
6 
7 
8 
9 
10 
12 
14 
16 
18 
20 

- 

- 

Time 
0.44 
1.30 
2.86 
5.33 
8.96 
13.91 
21.59 
40.43 
74.04 
119.4 
181.2 
256.1 

Table 1: Average result quality (percent improve- 
ment over MST) and running time (in seconds) for 
the heuristics. 

lem. In their neighborhood Steinerization heuristic, 
each vertex v is assigned a weight that is the amount of 
improvement over the MST that is gained by Steiner- 
izing v and its neighbors. Since any vertex in an RST 
can have at most 8 neighbors, each Steinerization can 
be performed in constant time. 

Since we cannot efficiently Steinerize large neigh- 
borhoods for the OARST problem, in our heuristic the 
weight of a vertex v is instead the best improvement 
gained by 3-Steinerizing v and any two of its neigh- 
bors in an MST. The heuristic then finds a maximum- 
weight independent set (MWIS) of the tree, which can 
be computed in O ( k )  time by dynamic programming. 
The best 3-neighborhood of each vertex in the MWIS 
is then Steinerized, and the process is repeated for 
the new tree produced by replacing each neighbor- 
hood with its Steiner subtree. The time complexity of 
this algorithm, which we call batched 3-Steinerization 
(BSS) is O ( r k n ) ,  where r is the number of iterations 
required. In the worst case, r is equal to k ,  so the 
worst-case time complexity is the same as for G3S; 
however, empirically it appears that r is O(1og k ) ,  so 
B3S has a time complexity of O(nk  log k )  in practice. 

Table 1 shows the result quality (percent improve- 
ment over the minimumspanning tree) and runtime 
for G3S, B3S, and G4S, for randomly generated in- 
stances containing 10 rectangular obstacles and the 
indicated numbers of terminals. We have found that 
the average improvement of optimal OARSTs over the 
minimumspanning tree is somewhat lower than for the 
standard RST problem, so the improvement values in 
Table 1 should not be compared with those reported 
for standard RST heuristics. 

Note that the worst-case ratio of the length of a 
minimum spanning tree to the length of an optimal 

Steiner tree (called the Steiner ratio) for the OARST 
problem is 2. All three of these heuristics always pro- 
duce trees a t  least as short as the MST, and thus pro- 
duce trees that are no more than twice the length of an 
optimal tree. In practice, of course, their performance 
is rarely that bad. 
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