
113

Routing a Multi-Terminal Critical Net:
Steiner Tree Construction in the Presence of Obstacles

Joseph L. Ganley and James P. Cohoon*
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22903

{ ganley,cohoon}Wirginia. edu

Abstract

This paper presents a new model for VLSI routing in
the presence of obstacles, that transforms any rout-
ing instance from a geometric problem into a graph
problem. It is the first model that allows computation
of optimal obstacle-avoiding rectilinear Steiner trees
in time corresponding to the instance size (the num-
ber of terminals and obstacle border segments) rather
than the size of the routing area. For the most com-
mon multi-terminal critical nets-those with three or
four terminals-we observe that optimal trees can be
computed as efficiently as good heuristic trees, and
present algorithms that do so. For nets with five or
more terminals, we present algorithms that heuristi-
cally compute obstacle-avoiding Steiner trees. Analy-
sis and experiments demonstrate that the model and
algorithms work well in both theory and practice.

1 Introduction

In VLSI design automation, a fundamental task is
routing a net. Typically, this routing is performed
in the presence of obstacles that the wires of the net
must not intersect, such as logic cells and wires in
previously routed nets. This problem has been well-
studied for the case of two-terminal nets. The tech-
nique of maze routing [IO, 111 optimally routes two-
terminal nets, but uses time and space corresponding
to the size of the routing area rather than the size of
the actual problem instance (the number of terminals
and obstacle border segments). At the time, these
demands were reasonable, but presently the routing
area of typical VLSI instances is quite large. Later
work [SI reduced these demands, but did not produce

*The authors gratefully acknowledge the support of National
Science Foundation grants MIP-9107717 and CDA-8922545 and
Virginia CIT award 5-30971.

optimal solutions, and still later work [3] performs op-
timal two-terminal routing in the presence of obsta-
cles, in time corresponding to the size of the routing
instance rather than to the routing area.

The problem of optimally routing a multi-terminal
net in the presence of obstacles has received substan-
tially less attention. As a result, VLSI designers typ-
ically use a multi-terminal variant of a maze rout-
ing algorithm, which incurs the same space demands
as the two-terminal variety, and usually produces so-
lutions that are far from optimal. Even in the ab-
sence of obstacles, multi-terminal routing corresponds
to the rectilinear Steiner tree (RST) problem, which
is NP-complete [5]. This suggests that no polynomial-
time algorithm can solve the RST problem exactly.
Nonetheless, exponential-time algorithms have been
devised that can solve the RST problem exactly for
small instances in reasonable time, as have many ef-
ficient polynomial-time heuristics that produce good
suboptimal solutions. The time complexity of the vast
majority of these algorithms is a function of size of the
instance, not of the routing area as in maze routing
algorithms. N o such algorithms have existed previ-
ously for computing RSTs in the presence of obstacles,
a problem that we refer to as the obstacle-avoiding
rectilinear Steiner tree (OARST) problem. Here, we
present a theorem, analogous to Hanan’s theorem [6]
for the standard RST problem, that transforms an in-
stance of the OARST problem to a graph problem
whose size is a function of the input size rather than
the routing area.

Using the theorem, we present algorithms that effi-
ciently produce optimal solutions for nets with three
or four terminals, which comprise the majority of
multi-terminal routing problems. We also present
heuristics that produce good but nonoptimal solutions
for nets with five or more terminals. We present em-
pirical evidence that these algorithms are, indeed, effi-

114

... "

. I ... i i. ; I

Figure 1: A routing instance and its escape segments.

cient, and that they produce good solutions to multi-
terminal OARST problems.

2 The Escape Graph

Figure 1 depicts a custom layout instance and a col-
lection of escape segments (shown as dashed lines) for
that instance. These escape segments were first used
in an optimal two-terminal interconnection technique
called line intersection roating [3]. The escape seg-
ments are a generalization of the line search escape
segments used by Hightower [SI.

To describe the escape segments, we appeal to an
analogy to interstate highway travel. An obstacle cor-
responds to a city. On every side of an obstacle, we
generate an escape segment that forms a portion of
the obstacle's beltway. To enable connections between
obstacles, each beltway escape segment is extended to
also form a highway escape segment. A highway es-
cape segment is a maximal segment with respect to
the routing region, i.e. it ends with its abutment
to either an obstacle border segment or the internal
perimeter of the routing region. Finally, we introduce
segments that extend from the terminals in all unob-
structed directions. These segments are also maximal
in a manner similar to the highway escape segments.
The dashed segments shown in Figure 1 are the escape
segments for the instance depicted.

It has been shown that escape segments suffice for
optimal routing of two-terminal nets [3]. We now show
that there is an optimal routing for any net with k > 2
terminals, that uses only escape segments.

Theorem 1 If an instance of the OARST problem is
solvable, then there is an optimal solution composed
only of escape segments.

Proof: (By contradiction.) Suppose there exists a
k-terminal problem instance I , with k > 2, such that

all optimal Steiner trees for I contain at least one seg-
ment that is not an escape segment.

Let T be an optimal Steiner tree for I that contains
a minimal number of non-escape segments among op-
timal Steiner trees for I . Let segment s be a routing
segment in T that is not an escape segment. Without
loss of generality, assume that s is horizontal.

Let U be the number of orthogonal segments inci-
dent to s from above, and let d similarly be the number
of orthogonal segments incident from below. Colinear
segments incident to s both from above and below are
considered two distinct segments separated by s.

If U is equal to d , then slide s up until it is colinear
with some escape segment t . We know there is room
to slide, as s is not an escape segment. An escape
segment t above s must exist, since the routing re-
gion perimeter is itself inscribed by escape segments.
Since the length of the segments above s decreases by
exactly the amount that the length of the segments be-
low s increases, the tree resulting from this maneuver
has the same length as r ; hence, it is optimal. In ad-
dition, any vertical segment incident to s that was an
escape segment remains an escape segment. Thus, the
tree resulting from this sliding maneuver contradicts
our assumption that T contains a minimal number of
non-escape segments.

If instead, U is greater than (less than) d , then we
may slide s up (down), decreasing the length of the
tree and contradicting its optimality. We again know
there is room to slide, since s is not an escape segment.

This completes the case analysis. We have shown
that every solvable OARST instance has an optimal

0 solution composed only of escape segments.

Theorem 1 can be used similarly to Hanan's well-
known theorem [6] for the standard RST problem, to
construct a graph representation for a routing instance
from its geometric description. The vertices of the
graph are the terminals and the points at which the
escape segments intersect (which are potential Steiner
points). An edge exists between two vertices if they
lie on the same escape segment, and if no other vertex
lies between them on that same escape segment. The
weight of an edge is simply the rectilinear distance
between its endpoints. We call this graph the escape
graph. It is obvious from Theorem 1 that an optimal
solution to the Steiner problem on the escape graph
for a particular routing instance is an optimal solution
to the original instance.

115

3 Escape Graph Generation

The generation of the escape segments from a prob-
lem instance is relatively straightforward and is per-
formed by a line-sweep algorithm described by Cohoon
and Richards [3]. Generating the escape segments re-
quires O(m1ogm) time, where m is the number of
obstacle boundary segments.

The intersections of the escape segments are then
computed. Since the escape segments are readily gen-
erated in sorted order, the intersections of the escape
segments are determined in O(m+n) time, where n is
the number of intersections [2]. If there are m escape
segments, then n is O(m2) in the worst case. The to-
tal time complexity of generating the escape graph is
thus O(max{n, mlogm}).

It is often possible to eliminate many of the vertices
in the escape graph, forming a reduced escape graph,
while still guaranteeing that an optimal solution exists
that is constrained to this reduced escape graph. For
net distributions found in practice, experiments show
that roughly 85% of the vertices can be eliminated on
average. The reduced escape graph can be generated
from the escape graph in O(IC2n) time, where IC is the
number of terminals and n is the number of candidate
Steiner points.

4 Exact Algorithms

Typically, exact solutions to NP-complete problems
are infeasible in practice. However, it is often the
case that small instances can be solved practically.
For the OARST problem, the escape graph model en-
ables us to compute optimal Steiner trees for three- or
four-terminal nets (the vast majority of multi-terminal
nets) as efficiently as a typical heuristic solution.

For a three-terminal net, an optimal Steiner tree
can have only one of two topologies: a simple path
between the terminals, or three terminals connected
to a single Steiner point. Thus, an optimal OARST
for a three-terminal net may be computed by explic-
itly checking each of these topologies. The latter
topology-where the tree contains a Steiner point-
dominates the computation time, and is performed
in O(n) time, where n is the number of candidate
Steiner points, assuming all-pairs shortest paths in-
formation is available. Since the escape graph is pla-
nar, all-pairs shortest paths can be computed in O(n2)
time by the algorithm of Frederickson [4].

Similar observations can be made for four-terminal
nets. For four terminals, the possible topologies are
shown in Figure 2 (terminals are depicted as closed

................................... - - ~ ~

Path Star Cross T H

Figure 2: The possible topologies for four terminals.

circles, and Steiner points as open circles). An optimal
Steiner tree for a four-terminal net can be efficiently
computed by explicitly enumerating these topologies,
and returning the shortest tree seen. This computa-
tion incurs a time complexity of O(n2) , dominated by
checking the H topology.

It is possible to perform the case analyses and con-
struct similar explicit enumeration algorithms for ex-
act solution of instances with more than four termi-
nals, but the complexity increases exponentially with
the number of terminals. We recommend a heuristic
approach for nets with more than four terminals.

5 Heuristics

Although exact solution by explicit enumeration is
impractical for nets with more than four termi-
nals, heuristics can be used to find good solutions
for such nets. Given the exact three- and four-
terminal algorithms in Section 4, a natural approach
is K-Steineritation. In a K-Steinerization heuristic,
portions of a minimum spanning tree (MST) that con-
tain K adjacent terminals are replaced with an opti-
mal Steiner subtree for those terminals. In light of the
results in Section 4, we examine heuristics for K = 3
and K = 4.

The first heuristic, greedy K-Steinerazation, repeat-
edly examines vertex subsets of size K , Steineriz-
ing the one that improves the minimum spanning
tree the most. The Steiner points introduced by the
Steinerization are candidates for further Steineriza-
tion in later iterations. For the standard RST prob-
lem, Richards [9] first investigated 3-Steinerization in
this greedy form. For the OARST problem, greedy
3-Steinerization (G3S) has time complexity 0(IC2n).
Greedy 4Steinerization (G4S) is similar to the algo-
rithm of Beasley [l], though Beasley’s algorithm com-
putes a new MST at each iteration rather than locally
modifying the current MST. For the OARST problem,
G4S has time complexity O(k3n2).

We can speed up Steinerization heuristics by a
batching technique similar to the heuristic of Hasan,
Vijayan, and Wong [7] for the standard RST prob-

116

Qual.
8.19
9.21
9.12
9.35
9.02
9.33
9.53
9.14
9.40
9.48
9.46
9.43

-
k
4
5
6
7
8
9
10
12
14
16
18
20

-

-

Time
0.44
1.30
2.86
5.33
8.96
13.91
21.59
40.43
74.04
119.4
181.2
256.1

Table 1: Average result quality (percent improve-
ment over MST) and running time (in seconds) for
the heuristics.

lem. In their neighborhood Steinerization heuristic,
each vertex v is assigned a weight that is the amount of
improvement over the MST that is gained by Steiner-
izing v and its neighbors. Since any vertex in an RST
can have at most 8 neighbors, each Steinerization can
be performed in constant time.

Since we cannot efficiently Steinerize large neigh-
borhoods for the OARST problem, in our heuristic the
weight of a vertex v is instead the best improvement
gained by 3-Steinerizing v and any two of its neigh-
bors in an MST. The heuristic then finds a maximum-
weight independent set (MWIS) of the tree, which can
be computed in O (k) time by dynamic programming.
The best 3-neighborhood of each vertex in the MWIS
is then Steinerized, and the process is repeated for
the new tree produced by replacing each neighbor-
hood with its Steiner subtree. The time complexity of
this algorithm, which we call batched 3-Steinerization
(BSS) is O (r k n) , where r is the number of iterations
required. In the worst case, r is equal to k , so the
worst-case time complexity is the same as for G3S;
however, empirically it appears that r is O(1og k) , so
B3S has a time complexity of O(nk log k) in practice.

Table 1 shows the result quality (percent improve-
ment over the minimumspanning tree) and runtime
for G3S, B3S, and G4S, for randomly generated in-
stances containing 10 rectangular obstacles and the
indicated numbers of terminals. We have found that
the average improvement of optimal OARSTs over the
minimumspanning tree is somewhat lower than for the
standard RST problem, so the improvement values in
Table 1 should not be compared with those reported
for standard RST heuristics.

Note that the worst-case ratio of the length of a
minimum spanning tree to the length of an optimal

Steiner tree (called the Steiner ratio) for the OARST
problem is 2. All three of these heuristics always pro-
duce trees a t least as short as the MST, and thus pro-
duce trees that are no more than twice the length of an
optimal tree. In practice, of course, their performance
is rarely that bad.

References

J . E. Beasley. A heuristic for Euclidean and rec-
tilinear Steiner problems. European Journal of
Operational Research, 58:284-292, 1992.

J . L. Bentley and T. Ottmann. Algorithms for
reporting and counting geometric intersections.
IEEE Transactions on Computers, 28~643-647,
1979.

J . P. Cohoon and D. S. Richards. Optimal two-
terminal a-/3 wire routing. Integration: the VLSI
Journal, 6:35-57, 1988.

G. N. Frederickson. Fast algorithms for shortest
paths in planar graphs with applications. SIAM
Journal on Computing, 16:1004-1022,1987.

M. R. Garey and D. S. Johnson. The rectilinear
Steiner tree problem is NP-complete. SIAM Jour-
nal of Applied Mathematics, 321826-834, 1977.

M. Hanan. On Steiner’s problem with rectilinear
distance. SIAM Journal of Applied Mathematics,
14~255-265, 1966.

N. Hasan, G. Vijayan, and C. K. Wong. A neigh-
borhood improvement algorithm for rectilinear
Steiner trees. In Proceedings of the International
Conference on Circuits and Systems, pages 2869-
2872, 1990.

D. W. Hightower. A solution to the line-routing
problem on the continuous plane. In Proceedings
of the Sixth Design Automation Workshop, pages
1-24, 1969.

F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner Tree Problem. North-Holland, Amster-
dam, Netherlands, 1992.

C. Y. Lee. An algorithm for path connections and
its applications. IRE Transactions on Electronic
Computers, 10:346-365, 1961.

E. F. Moore. Shortest path through a maze. An-
nals of the Computational Laboratory of Harvard
University, 30~285-292, 1959.

