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Abstract

Memory bandwidth is rapidly becoming the limiting performance factor for many
applications, particularly for streaming computations — such as scientific vector pro-
cessing or multimedia (de)compression — that lack the locality of reference that
makes caching effective. We describe and evaluate a system that addresses the mem-
ory bandwidth pr oblem for this class of computations by dynamically reordering
stream accesses to exploit memory system architecture and device features. The tech-
nique is practical to implement, using existing compiler technology and requiring
only a modest amount of special-purpose hardware. With our pr ototype system, we
have observed performance improvements by over 200% over normal caching.
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1. Introduction

As has become painfully obvious, processor speeds are increasing much faster than

memory speeds. To illustrate the current problem, consider the multiprocessor Cray T3D

[Cra95]. The peak Dynamic Random Access Memory (DRAM) read bandwidth for each

150MHz DEC Alpha processor [DEC92] of this machine is 320 Mbytes/sec, or about one

64-bit word per four clock cycles. Unfortunately, the actual bandwidth may be as low as 28

Mbytes/sec — in other words, the processors can perform up to 42 instructions in the time

it takes to read a single DRAM location. As Jeff Brooks explains, “the rates you see in [a

T3D] application depend highly on how the memory is referenced” [Bro95].

This variance in performance occurs because the T3D’s DRAMs can perform some access

sequences faster than others. Even though the term “DRAM” was coined to indicate that

accesses to any “random” location require about the same amount of time, most modern

DRAMs provide special capabilities that result in non-uniform access times. For instance,

nearly all current DRAMs (including the T3D’s) implement a form offast-page mode

operation [Qui91,IEE92].

The sense amplifiers in fast-page mode devices behave much like a single line, orpage, of

cache on chip. A memory access falling outside the current page causes a new one to be

loaded, making suchpage misses take three to five times as long aspage hits. On a Cray

T3D system with 16Mbit DRAMs, for instance, each page is 2048 Kbytes, page hits take

about 4 cycles (26 ns), and the additional overhead for page misses takes about 15 cycles

more (for about 125 ns in all) [Pal95,Bro95]. Although the terminology is similar, DRAM

pages should not be confused with virtual memory pages.
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With an advertised bandwidth of 500 Mbyte/s, Rambus is another interesting new memory

technology [IEE92]. These bus-based systems are capable of delivering a byte of data every

2 ns for a block of information up to 256 bytes long. Like page-mode DRAMs, Rambus

devices use banks of sense amplifier latches to “cache” data on chip. Unfortunately, these

devices offer no performance benefit for random access patterns: the latency for accesses

that miss the cache lines is 150-200 ns.

The order of requests strongly affects the performance of other common devices that offer

speed-optimizing features (nibble-mode, static column mode, or a small amount of SRAM

cache on chip) or exhibit novel organizations (Ramlink and the new synchronous DRAM

designs) [IEE92]. For interleaved memory systems, the order of requests is important on

another level, as well: accesses to different banks can be performed in parallel, and thus

happen faster than successive accesses to the same bank. In general, memory system

performance falls significantly short of the maximum whenever accesses are not issued in

an appropriate order. What is needed is a method to reorder the accesses from the natural

order (that in which the processor requests them) to the optimal order for the memory

system.

Caches can help bridge the processor-memory performance gap for parts of programs that

exhibit high locality of reference, but many computations do not reuse data soon enough to

derive much benefit from caching. Codes that linearly traverse long streams of vector-like

data are particularly bandwidth-limited. Unfortunately, this comprises a large and

important class of computations, including scientific vector processing, digital signal

processing, multi-media (de)compression, text searching, and some graphics applications,

to name a few. We describe a system that addresses the memory bandwidth problem for

such streaming computations by dynamically reordering stream accesses to exploit

memory system architecture and device features. The technique is practical to implement,
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using existing compiler technology and requiring only a modest amount of special-purpose

hardware.

We built a “proof of concept” dynamic access ordering system composed of a 40MHz i860

host processor and a daughterboard containing a 132-pin ASIC (of about 71,000

transistors) and associated DRAM memory. In this paper, we describe and evaluate our

implementation of this hardware. Even though this is a reduced-functionality prototype

system, we have observed performance improvements by over 200% over normal caching.

2. The Stream Memory Controller

We describe our approach based on the simplified architecture of Figure 1. In this system,

the compiler must detect the presence of streams (as in [Ben91]) and arrange to transmit

information about them (i.e., base address, stride, length, data size, and whether the stream

is being read or written) to the hardware at run-time. The dynamic access ordering

hardware then prefetches the read operands, buffers the write operands, and reorders the

accesses to get better memory system performance.

Our dynamic access ordering hardware, called a Stream Memory Controller (SMC), is

logically divided into two components: a Stream Buffer Unit (SBU), and a Memory
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Scheduling Unit (MSU). The MSU is a controller through which memory is interfaced to

the CPU. It includes logic to issue memory requests and to determine the order of requests

during streaming computations. For non-stream accesses, the MSU provides the same

functionality and performance as a traditional memory controller. As with the stream-

specific parts of the MSU, the SBU is not on the critical path to memory, and the speed of

non-stream accesses is not adversely affected by its presence.

The MSU has full knowledge of all streams currently needed by the CPU: using the base

address, stride, and vector length, it can generate the addresses of all elements in a stream.

It also knows the details of the memory architecture, such as interleaving and device

characteristics. The access-ordering circuitry uses this information to issue requests for

individual stream elements in an order that attempts to maximize memory system

performance.

The Stream Buffer Unit contains high-speed buffers for stream operands and provides

memory-mapped control registers that the processor uses to specify stream parameters.

From the processor’s perspective, the stream buffers are logically implemented as a set of

FIFOs within the SBU, with each stream assigned to one FIFO. The MSU accesses these

/* tridiagonal elimination: */

for (i = 1; i < n; i++)
x[i] = z[i] * (y[i] - x[i-1]);

/* SMC version: */

streamin(y+1, size, stride, n-1, FIFO0); /* xmit stream params */
streamin(z+1, size, stride, n-1, FIFO1);
streamout(x+1,size, stride, n-1, FIFO2);
reg = x[0]; /* load x[0] */
for (i = 1; i < n; i++) {

reg = *FIFO1 * (*FIFO0 - reg);
*FIFO2 = reg;

}

Figure 2  SMC Programming Model
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buffers as if they were random-access register files, asynchronously filling them from or

draining them to memory. The processor references the next element of a stream via the

memory-mapped register representing the corresponding FIFO head. By memory mapping

the control registers and FIFO heads, we avoid having to modify the processor’s instruction

set. Figure 2 illustrates the SMC programming model for tridiagonal elimination, one of the

Livermore Loops [McM86].

3. Experimental Implementation

In order to demonstrate the viability of dynamic access ordering, we have developed an

experimental Stream Memory Controller system. This proof-of-concept version is

implemented as a single, semi-custom VLSI integrated circuit interfaced to an Intel i860

host processor [Int91]. The SMC ASIC was designed using VHDL for state machine

specification, Mentor Graphics Corporation’s Design Architect for schematic capture, and

Cascade Design Automation’s Epoch tool for hardware synthesis [Cas93,Men93]. The i860

was selected because it is both readily available and it provides the non-caching loads

required for processor accesses to the SBU.

Figure 3 depicts the architecture of our prototype dynamic access ordering system, which

consists of the i860 node and an SMC daughtercard that connects to the motherboard via

an expansion connector. The motherboard contains an i860XP processor, a system boot

EPROM, a memory controller that is optimized for cache-line fills, and 16 MBytes of page

mode DRAM. The daughtercard contains the SMC and its memory subsystem, along with

a pipeline stage needed to meet timing and line-length constraints.
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3.1  Test Board

Each bank of DRAM memory on the daughtercard is composed of two 32 MByte 60 ns

page-mode components with 1 Kbyte pages. The minimum cycle time for fast page-mode

accesses is 35 ns, and random accesses require 110 ns. Wait states make the SMC’s

observed access time for sustained accesses 50 ns (2 CPU cycles) for page hits and 175 ns

for page misses (7 CPU cycles — this includes the time to precharge and set up the new

DRAM page). Since there are two interleaved banks of memory, the SMC can deliver one

data item every 25 ns processor cycle for streams with relatively prime strides.

The processor takes approximately 14 ns to assert its address and cycle definition pins, and

the signals take another 5 ns to propagate to the expansion connector. This leaves less than

6 ns in the current cycle to latch data into or present data from the SMC. In addition, the

Figure 3  SMC System Architecture
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electrical specifications for expansion card connections call for signal line lengths of less

than 1 inch before the first level of logic on the daughtercard. In light of these two

constraints, we added a single-stage, bidirectional pipeline to the daughter board; this

component latches the address, data, and cycle definition signals from the i860 and presents

them to the SMC on the next clock cycle, or latches data from the SMC for use by the

processor on the next cycle.

Our off-chip implementation thus incurs pipeline delays in addition to bus turnaround

delays when switching between reading and writing — delays that would not be present in

an on-chip SMC. Nonetheless, the performance of our prototype SMC represents a

significant improvement over the performance of a non-SMC system for stream accesses.

3.2  VLSI Chip

Our prototype Stream Memory Controller is a 132-pin ASIC implemented in a 0.75µm,

three-level metal HP26B process fabricated through MOSIS. The 40MHz i860 host

processor can initiate a new bus transaction every other clock cycle, and quadword

instructions allow the i860 to read 128 bits of data in two consecutive clock cycles. The

SMC can thus deliver a 64-bit doubleword of data every cycle.

As illustrated in Figure3, the SMC is implemented as a 4-way bit-sliced system. We chose

this organization over a full 64-bit wide version because the latter would have been severely

pad-limited in size. Figure4 illustrates the decomposition of each 16-bit SMC ASIC into

four logical components: the Processor Bus Interface (PBI), the Command Status and

Control (CSC) registers, the FIFO Buffers, and the Bank Controller (BC).
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The PBI state machine shown at the left of Figure 4 provides the logic necessary to

interface the SMC with the i860 processor bus. The PBI manages accesses to the CSC

registers, stream accesses to the memory mapped FIFO heads, and non-stream (scalar)

accesses to the memory subsystem. The CPU transmits the base, length, and stride

parameters for each stream by writing the CSC registers. These registers are implemented

with dual-ported SRAM, allowing both the CPU and the BC to access them simultaneously.

The FIFO component buffers data between the processor bus and the memory system bus,

and can be accessed by both simultaneously. This component is broken down into two

sections: the dual-ported SRAM buffers used to implement virtual FIFOs, and the FIFO

controller state machine (labeled “Stream Machine” in Figure 4), which generates the

addresses for all accesses to the FIFO buffers. The FIFO controller logic provides signals

conveying “fullness” information for each FIFO to both the BC and the PBI. The PBI uses

these signals to determine when a given access can be completed, and the BC uses them in
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its decision of which FIFO to service next. The BC logic handles the interface to the

interleaved memory system and fills or drains the FIFOs as required. The BC also provides

support for scalar accesses to the SMC memory space.

The current version of the SMC, pictured in Figure 5, is 36 square millimeters and about

71,000 transistors. It includes four FIFOs that are 16 doublewords deep and can each be set

to read or write. Future versions will implement adjustable-depth FIFOs that are software-

programmable. The prototype SMC’s Memory Scheduling Unit implements a very simple

ordering policy: the BC considers each FIFO in round-robin order, performing as many

accesses as it can for the current FIFO before moving on to the next. The decision of which

FIFO to service next is made concurrently with the memory accesses for the current FIFO.

Figure 5  SMC ASIC Layout
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Despite its simplicity, this ordering strategy works well in practice; for uniprocessor

systems, its performance is competitive with that of more sophisticated policies. More

intelligent schemes are required to achieve good performance on computations involving

streams with strides that do not hit all memory banks, and on multiprocessor systems in

general [McK95b].

Further details of the design, implementation, and testing of the SMC ASIC and daughter

board can be found elsewhere [McG94,Lan95].

4. Performance

Figure 6 lists the benchmark kernels used to generate the results presented here. Daxpy,

copy, and scale are from the BLAS (Basic Linear Algebra Subroutines) [Don90], and

tridiag is tridiagonal gaussian elimination, the fifth Livermore Loop [McM86]. Vaxpy

denotes a “vector axpy” operation that occurs in matrix-vector multiplication by diagonals:

a vector a times a vector x plus a vector y. For our purposes, the actual computation in these

loops is unimportant. We focus instead on the access pattern, and these benchmarks are

representative of the access patterns found in real codes. For instance, copy and scale are

the memory access patterns of JPEG and MPEG operations in multimedia applications.

kernel operation types of streams

copy for (i = 0; i < N; i++)
y[i] = x[i];

1 read
1 write

daxpy for (i = 0; i < N; i++)
y[i] = a * x[i] + y[i];

1 read
1 read-modify-write

scale for (i = 0; i < N; i++)
x[i] = a * x[i];

1 read-modify-write

tridiag for (i = 1; i < N; i++)
x[i] = z[i] * (y[i] - x[i-1]);

2 read
1 write

vaxpy for (i = 0; i < N; i++)
y[i] = a[i] * x[i] + y[i];

2 read
1 read-modify-write

Figure 6  Benchmark Algorithms



Evaluation of Dynamic Access Ordering Hardware

11

We present our results both as apercentage of peak bandwidth —i.e., that which would be

achieved if the CPU could perform one memory access each processor cycle — and as the

average number of cycles per access. The vectors we consider here are of equal length, unit

stride, share no DRAM pages in common, and are aligned to begin in the same bank. In

order to put as much stress as possible on the memory system, arithmetic computation is

assumed to be infinitely fast, and is abstracted out of each kernel. We execute each loop

prior to beginning our measurements so that the experiment can run entirely out of the

instruction cache. All stream references use non-caching loads and stores.

Figure7 illustrates the measured performance of our prototype system on each of the

benchmark kernels on vectors of 16 to 8192 elements. The graphs on the left show the

percentage of the peak system bandwidth exploited for each benchmark. Those on the right

present the same information in a complementary format that helps put the bandwidth

percentages into perspective for this particular machine: the average number of processor

cycles per stream access. The dashed lines labeled “attainable bandwidth” indicate

performance limits due to SMC startup costs, unavoidable page misses, or the cost of

moving data between the SMC and CPU chips (see [McK95b] for derivations of

performance bounds), and the solid lines indicate the performance of our access ordering

hardware. The dotted lines indicate the performance measured when using “normal”

caching load instructions to access the stream data in the i860’s own cache-optimized

memory; and the dot-dash lines indicate the performance measured when using the i860’s

non-caching pipelined floating point load (pfld) instruction.
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Performing the computation in the natural order with caching accesses yields less than 32%

of the system’s peak bandwidth for all access patterns. The effective bandwidth delivered

by the SMC for these kernels is between 202% and 305% of that delivered by normal

caching. Looking at it from a different perspective, the SMC brings the average cycles per

memory access very close to the minimum one cycle for long-vector computations. In

contrast, the average number of cycles per access when using the cache is more than three.

The disparity between SMC and cache performance would be even more dramatic for non-

unit stride computations, since in this case each cache-line fill would fetch unneeded data.

For instance, at a stride of five, the SMC could deliver 12 times the effective bandwidth of

the cache (for an average of one cycle for each element accessed via the SMC, versus over

12 cycles for each one accessed through the cache).

When non-caching instructions are used (e.g., if the programmer does not want stream data

to entirely fill the cache), performance is generally even worse than when using caching

loads. The exception to this is thescale benchmark, results for which are shown in

Figure7(g) and (e). This kernel operates on a single vector, thus it accesses every element

in a single DRAM page before switching to a different page. In contrast, each cache-line

fill incurs a DRAM page miss for the first word in the line, regardless of whether or not it

is on the same DRAM page as the previously loaded cache line. Performance of the

benchmarks using thepfld instruction could take more advantage of fast-page mode — and

thus improve performance — by unrolling the loops and grouping accesses to each stream,

so that several accesses that hit the current page are issued after every DRAM page miss

(see Section 5 for more details).

The patterns of the performance curves in graphs for different benchmarks are almost

boringly similar. Our results indicate that variations in the processor’s reference sequence

have little effect on the SMC’s ability to improve bandwidth. The slight dips in the SMC

performance curves at 32-element vectors for thetridiag andvaxpy kernels occur because
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of an interaction between the number of streams, the vector length, and the FIFO depth.

Exactly when the DRAM page misses happen depends on all these parameters, and the

shorter the vectors are, the greater the impact each page miss has on overall performance:

amortizing the last page miss over just a few more accesses can make a noticeable

difference. The result is that when we plot points for vectors of every length, we see a saw-

tooth shape, the “teeth” of which get smaller as vector length grows, i.e., as DRAM page

misses are amortized over more total accesses. Figure 8 shows this detail in the bus-level

simulation performance for the copy benchmark.

Even an SMC with only a small amount of buffer space can consistently deliver over 80%

of the peak system bandwidth. When we take each kernel’s inherent bandwidth limits into

account, these SMC performances represent between 89% and 98% of the attainable

bandwidth for vectors over 128 elements. Our simulation studies indicate that SMCs with

deeper FIFOs can exploit nearly the full system bandwidth for long-vector computations

[McK95b].
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5. Related Work

The notion that performance of memory-intensive applications can be improved by

reordering memory requests has been demonstrated before. Unique to our work is the

premise that, for stream-like reference patterns, access ordering:

- should be performed to exploit both memory system architecture and device
component capabilities, and

- should be done at run-time, when more information is available on which to base
scheduling decisions.

Our confidence that the SMC could be implemented efficiently was based on the fact that

similar designs have been built. For instance, the organization of the SBU is almost

identical to the stream units of the WM architecture [Wul92], and the SMC may be thought

of as a special case of a decoupled access-execute architecture [Goo85,Smi87].

More complex stream buffers have been evaluated in other contexts. Jouppi performed

simulation studies of stream buffers used to prefetch successive cache lines on a cache miss

[Jou90], and Palacharla and Kessler investigate the use of a set of stream buffers as a

replacement for secondary cache [Pal94]. Although the latter scheme generally increased

the cache hit rates of the benchmarks they simulated, these improvements were achieved at

the expense of increased main memory bandwidth requirements. In contrast, our approach

attempts to exploit the existing memory bandwidth as much as possible, without increasing

bandwidth requirements.

It is often possible to take advantage of memory component features by reordering memory

accesses at compile time. For instance, the compiler optimizations of Alexander, et al., for

wide-bus machines [Ale93] have the side-effect of exploiting DRAM features like fast-

page mode. Moyer unrolls loops and groups accesses to each stream, so that the cost of each

DRAM page-miss can be amortized over several references to the same page [Moy93].

Lee’s subroutines to mimic Cray instructions on the Intel i860XR include another purely
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compile-time approach: he treats the cache as a pseudo “vector register” by reading vector

elements in blocks (using non-caching load instructions) and then writing them to a pre-

allocated portion of cache [Lee93]. Meadows describes a similar scheme for the PGI i860

compiler [Mea92], and Loshin and Budge give a general description of the technique

[Los92]. A subset of these authors measured the time to load a single vector via Moyer’s

and Lee’s schemes on a node of an iPSC/860, observing performance improvements

between about 40% to 450% over normal caching, depending on the stride of the vector

[McK95a].

Another option is to augment the purely compile-time approach with a hardware assist.

Palacharla and Kessler [Pal95] investigate code restructuring techniques to exploit fast-

page mode DRAMs via a hardwareread-ahead mechanism on the Cray T3D. On a cache

miss, the memory controller first performs the cache-line fill, then the read-ahead hardware

automatically prefetches the next consecutive cache line and stores it in a stream buffer

inside the memory controller. If the next cache miss hits in the stream buffer, the entire line

is transferred to cache, and the next cache line of data is prefetched. If the next cache miss

misses in the stream buffer, the buffer’s contents are discarded, the desired line is fetched

for the cache, and the subsequent line is prefetched. Palacharla and Kessler measure a

performance improvement of up to 75% in two, three, and four-stream examples on a Cray

T3D [Pal95], and Brooks demonstrates a factor of 13 improvement (from 3.5 Mflops to

51.6 Mflops) in T3D performance after applying access ordering to a 3x3 matrix

multiplication routine used in Quantum Chromo Dynamics (QCD) codes [Bro94].

The benefits of compile-time ordering schemes can be substantial, but their performance

cannot rival that of a hardware scheme such as the one discussed here. The compiler cannot

generate the optimal access sequence without the address alignment information that is

usually only available at run time. For this reason, Palacharla and Kessler generate code to

decide at run-time the extent to which their optimizations should be applied. And for
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systems with fast-page mode DRAMs, the compiler cannot determine where stream data

crosses DRAM page boundaries. Even bigger limitations are that any scheme using the

cache to load stream data suffers from cache conflicts, and any scheme loading the data

directly to registers suffers from register pressure.

6. Lessons Learned

Some of the results of our studies verified our expectations, while others initially surprised

us. For instance, we proved (as expected) that the SMC can be fabricated with synthesis to

meet its timing requirements and that it performs as expected: the SMC delivers over 90%

of the attainable bandwidth for long-vector computations, even though it resides on a

separate chip from the CPU. We verified that the SMC yields two to three times the

effective bandwidth delivered by the i860’s own (cache-optimized) memory system. In

addition, we reaped the benefits of a multifaceted approach to modeling and simulating our

design before committing it to silicon. We employed five different models (two analytic

models, one functional simulator, one gate-level hardware simulator, and one petri-net

based system model) designed for different purposes by three different teams of people in

two different academic departments [McK95c]. The common starting point was a

description of the hardware interface and high-level (functional) behavior.

These models helped us to refine and validate each stage of our design, but several of their

results were unexpected. First, FIFO depth must be tailored to the parameters of a particular

computation. Long-vector computations benefit from very deep FIFOs, whereas

computations on shorter streams require shallower FIFOs. We have derived algorithms that

compilers can use to calculate an appropriate FIFO depth for a particular computation on a

given system [McK95b].

The need for adjustable FIFO depth comes from the start-up cost associated with using the

SMC. At the beginning of a computation reading s streams, the processor will stall waiting
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for the first element of stream s while the MSU fills the FIFOs for the first  streams.

By the time the MSU has provided all the operands for the first loop iteration, it will also

have prefetched enough data for many future iterations, and the computation can proceed

without stalling the processor again soon.

This means that deeper FIFOs cause the processor to wait longer at startup. On the other

hand, deep FIFOs allow the SMC to amortize page-miss costs more effectively. Figure 9

shows the net effect of these competing performance factors for vaxpy on vectors of length

100 and 10,000. If the vectors in the computation are sufficiently long, as in Figure 9(b),

the initial delay becomes insignificant. Short vectors afford fewer accesses over which to

amortize startup and page-miss costs, and thus for the vectors of Figure 9(a), initial delays

represent a significant portion of the computation time.

We were also surprised to discover that, in many cases (particularly for uniprocessor SMC

systems), a relatively naive access-ordering policy performs competitively with a more

sophisticated heuristic. Furthermore, the programmer or compiler can often arrange to

avoid the situations in which a simple policy would perform poorly.

Finally, we did not expect the need to pipeline the hardware so much in order to meet timing

requirements.

s 1–

Figure 9 vaxpy SMC Performance as FIFO Depth Grows
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7. Conclusions

By combining compile-time detection of streams with execution-time selection of the

access order and issue, we achieve near-optimal bandwidth for vector-like accesses

relatively inexpensively. This technique complements more traditional cache-based

schemes, so that overall effective memory performance need not be a bottleneck.

The dynamic access ordering hardware described here is both feasible and efficient to

implement. The SMC neither increases the processor’s cycle time nor lengthens the path to

memory for non-stream accesses. The hardware complexity is a function of the number and

size of the stream buffers (implemented as FIFOs) and SMC placement (whether or not it

is integrated into the processor chip). Using commercially available memory parts and only

a few hundred words of buffer storage, our proof-of-concept system demonstrates that an

SMC system can deliver nearly the full memory system bandwidth. Moreover, it does so

without heroic compiler technology. The current version uses about 71,000 transistors and

features four moderate-size FIFOs; this is a relatively modest number of transistors when

compared to the 3-10 million used in current microprocessors. SMC complexity is expected

to scale linearly with increasing FIFO depth.

This prototype version places the SMC on a separate board from the processor, but for best

performance, we believe the dynamic access ordering hardware should be integrated onto

the processor chip, at the same level as an L1 cache. The next stage of the project targets

building an SMC system in which the stream buffers reside on-chip with a high-speed

microprocessor.

We have implemented dynamic access ordering within the context of memory systems

composed of fast page-mode DRAMs, but the technique may be applied to other memory

systems, as well. In addition to taking advantage of memory component features (for those

devices that have non-uniform access times), prefetching read operands, and buffering
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writes, the SMC provides the same functionality as the conflict-avoidance hardware used

in many vector computers (in fact, the SMC is more general, delivering good performance

under a wider variety of circumstances). Furthermore, the SMC can achieve vector-like

memory performance for streamed computations whose data recurrences prevent

vectorization.

Preliminary investigations indicate that the SMC concept can be effectively applied to

shared-memory multiprocessor systems, but that a sophisticated ordering strategy is

required for such systems to achieve uniformly high performance. Long-range plans

involve building an experimental multiprocessor SMC system to validate these findings.
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