ANALYSIS OF THE AGGRESSIVE GLOBAL WINDOWING ALGORITHM

A Thesis

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfiliicent

of the Requirements for the Degree

Doctor of Philosophy { Computer Science)

by

Phillip Mathew Dickens

January 1993

TABLE OF CONTENTS
T IEFOQUCTION oottt et b vt st s e e s s ssaesesa s ne o s e e e e emns reeesheenns smnesesesboesanns snesan
1.1. Background and Motivationci i s
1.2. Dissertation Organization ... et
2. BACKGIOUNT ..o e e c e s ec et s b s vt s sb bbb s h s e b e n e e e ek aebe e s
2.1, SHNUIBHON MOOBE .ottt e et et et e
2.2. Synchronization Problems of PDES ... e,
2.3, Bynchronizalion ProlOCOIS ...ttt ccas s b
2.3.1. Protocois That Are Accurate, Non-aggressive and Without Risk ...
2.3.2. Protocols That Are Aggressive, With Risk and Potentially Inaccurate
2.3.2.1. Use of Knowledge About the System ...,
2.3.3. Protocols That Are Accurate, Aggressive and With Risk ..o e
2.3.4. Global Windowing AlGOrthms et e
2.4. Problems of Existing PDES Synchronization Protocols ...,
2.4.1. Protocols Which Blend Aggressive and Non-Aggressive Behavior

2.5, ANAIVHIC BESUIRS oottt et e b e e

2.5.1. Models Involving TIMe WAID ... ettt A

252, Model Comparing Null Message Protocol and Time Stepped ...

2.5.3. Analysis of Global Windowing Algorithms ...,

3. The Aggressive Global Windowing Protocol ..o
3.1. The Aggressive Global Windowing Algorithim ...,

B2, MOUEBL ..o e e R R s p e s
T2 T T4 1114 oY LT O A S OSSOSO

3.2.2. Number of Messages in Aggressive Window at the Synchronization Point

...

10

12

13

16

17

18

20

24

26

28

29

32

33

38

39

41

44

50

3.2.2.1. Complete_Service MeSSAZe ...

3.2.3. Distribution of Arrival MEsSageS ... e

3.2.4. Timestamp Distribution ... e

3.2.4.1. Probability of an Nth Generation Arrival Message ..o,

3.2.4.2. Timestamp Distribution Approximation ...

3.2.5. Using the Expected Value for L ..o e e

3.2.6. Probability of @ FAURccooiier ettt e

3.2.7. Number of Messages Successfully Completed ...

3.3. Scalability of ProtoCOlcvivvereereeciree e et s e

3.4. Simulation Results .

3.4.1. Predictive Power of Model When Assumptions Are Not Met ...,

3.5, LIMITAtIONS Of RESUMS oo reie i irerveisreresareesreesriseee s s e s s s s arasasananasanes

3.6. Conclusions

4. Error Correction MECHANISITI ...t eeeeee e rereesteess revrrieeseresessssnssssessiesessesaesaeesressnnetones

4.1. Correction of Causality EFfOrSvvvvvveereermne e et e

4.2, Costs of AQGressive ProCESSING ..oovovrevieirr et it sssssinne s s saas

4.2.1. Probability of Generating an Anti-Message ..o,

4.2.2. Higher Order Generation Anti-MesSages ..ot

4.3, Simuiation Results ..
4.4. Scalability Issues ...

4.5 Conclusions

...

5. Analysis of an Open SYSIEIM ..o it e s e

5.1. Model of Open SYSIEIM .. e s sesn e e e saenes

5.2. Distributions

5.2.1. Total input Rate

ii

53

55

57

61

64

68

69

71

74

79

80

83

85

86

87

92

92

96

99

103

108

107

108

109

110

5.2.2. Number of Messages in the Aggressive Window at the Synchronization

5.2.3. Complete_Service MESSagecocoiiiii i,

5.2.4. Distribution of Arrival MESSAQOSceverviervieeniane e snvesse e et ee s sen e s s

5.3. Probability of a Fault at a GIWVENLP ...

B.3.1, SIMUIBHON RESUIS oot st b e n it e ey een e e e et eneneseaes

5.4. Anti-Messages

5.5, Overview of the Probability of Producing an Anti-Message ..o

5.6. Simulation Results .

5.7. Discussionc..u.....

..

6. System Level PErOIIANCE ..o et e st st s e s s

6.1. Modelovvvevveeenenns

6.2. Costs of Non-Aggressive PrOCESSING ..ev it cresnnee s nasesrns s nnneens

6.3. Costs of Aggressive

PTOCESSING .ooovvevieeeeee e ccestretvcn st ssaeser et e e s snsstsasneasensan

6.3.1. Overview of System Level Performance ..o iervernmn e siicessnnns

6.3.2. Workioad of the

DOMINAME LP oooioiceriieeirerrvrmrnrrasrecrrasseeemran st asnsnesseaeasseaeaserasins

6.3.3. Events Within the lookahead WINAOWoovveoire et

6.3.4. Arrival Message

2 U

6.3.5. Maximum RolHback ChEIN .ot eaees et s var et v va srs s en s e e e ean

6.4. Theoretical Results

6.5. Simulation Resulis .

..

6.5.1. Behavior of Dominant LP as Workload INCreéases ..o eeceeesesinieeer e

6.6. Discussionc.......
7. Conclusionscccveveeveevnees

7.1. Summary of Results

..

..

...

i

i1t

114

116

117

120

121

124

128

130

132

133

135

138

138

139

141

142

146

1562

155

163

164

165

165

T2, FULLIE BRESBATCI oovei i eeceeeeeieisesiesssttreeas e bebesessasbrrassatasseessiasassssreneesssneneessnsnnsinarennsrs

7.3. Concluding REMATKSccoeiiiiiiciiiinin et s s s bbb

8, Bibliography

9. APPENDIX

..

iv

167

168

169

179

LIST OF FIGURES

Figure 2.1 - Example of Event Dependenciesc.veomenimrimsennismssos e 10
Figure 3.1 - The Aggressive WIRHOWcocveninniinmnnin it snisssses st st sesssassesssesss 40
Figure 3.2 « EVERE LASE OF LP} oot ebebi st nem s sm bbb s b b s shsos b b s s b 47
Figure 3.3 - EVENL LiSt OF LP; oo cresistaniessansarsnssissossrssnsassssasssassssesssses 48
Figure 3.4 - Complete Service MESSAZES ..o sasnssssssssassssssaeasn 59
Figure 3.5 - Probability of a First Generation Arrival ... 66
Figure 3.6 - Probability of a First or Second Generation Arrivaliicvnniinininnn 66

Figure 3.7 - Probability of a Fault a8 AL (N)=30 ..ccnivncnrinnncsnsssensscnensssssasses s 76

Table 3.1 - VAIIE OF N .ooccououmereueneenrsssessre s st essssssssssesessasesssmsssesssesssssssessstomsenesasnessssmssssssssnses 78
Figure 3.8 - Probability of a Causality Error oo 80
Figure 3.9 - Potential Expected Improvement in Parailelism ..o 81
Table 3.2 - Effects of Various Communication Topologiescevcvrrminrinnncesennsesonsesessnaees 82
Figure 4.1 - Probability of Producing a First Generation Anti-Messagecccoorererenenenas 101

Figure 4.2 - Probability of Producing a First Generation Anti-Messageoinninviinins 102

Table 4.1 - Highest Order Generation Anti-Message Observed in the Systemccovennnes 103
Figure 4.3 - Probability of Producing an Anti-Message as N —00 .o 105
Figure 5.1 - Probability of a Fanlt in an Open SyStem ...t 121
Figure 5.2 - Probability of an Anti-Message in an Open SYStemcoooveeerrrvrcrnencncnencnininens 129

Figure 6.1 - Theoretical Improvement, A = 1009 MST ..ot 153
Figure 6.2 - Theoretical Improvement, A = 50% MST ... e 153
Figure 6.3 - Theoretical Improvement, A = 109 MST ... e 154
Figure 6.4 - Number of Messages Processed by Dominant LP ... 156
Figure 6.5 - Expected improvemént, Random Communication Paterncoovvenrcenenenne 157

Figure 6.6 - Expected Improvement, Nearest Neighbor Communication Pattern 158

Figure 6.7 - Expected Improvement, Hot Spot (1%) Communication Pattern
Figure 6.8 - Expected Improvement, Hot Spot (5%) Communication Pattern

Figure 6.9 - Expeeted Improvement, Hot Spot (8 %) Communication Pattern

........................

Figure 6.10 - Expected Improvement, 2048 LPs (Random Communication Pattern)

Table 6.1 - Critical State Saving Values for Various Communication Patterns

vi

159

159

160

162

162

CHAPTER 1

Intreoduction

The sheer magnitude of many discrete event simulation problems makes the use of conventional
sequential techniques impractical. For this reason researchers have turned to the use of multiprocessor
architectures to provide the power necessary to simulate these large systems. Unfortunately, after fifteen
years of research there is very fittle analytic work that allows us to understand under what conditions cer-

tain approaches to parallel discrete event simulation (PDES) perform well - or not so well.

Recently, there has been much interest in the paratlel simulation community in a new class of syn-
chronization protocols which blend aspects of existing aggressive and non-aggressive mechanisms. The
goal of this research is t0 maximize the advantages, and minimize the disadvantages, of each approach.
Preliminary studies have suggested this approach to synchronization offers the potential for excellent per-

formance.

This dissertation significantly broadens and extends the body of analytic results established in
PDES by providing the first in-depth analysis of the costs/benefits of this new approach. Our research
demonstrates this type of approach offers a significant increase in the level of paralielism over non-
aggressive approaches, Also, we have developed a set of theoretical results which represent a significant
step towards proving system-level scalability. Further, the results of our simulation studies closely maich
the predictions of our analytic model, even when the simulated application does not meet some of the
major assumptions of our model. We discuss these ideas more fully after providing the context for this

research.

1.5. Background and Motivation

In a parallel discrete event simulation (PDES) the physical system is partitioned into a set of physi-
cal processes (PP) and each PP is modeled by a corresponding logical process (LP). Logical processes

communicate through the use of timestamped messages where each message represents a change to the

state of the system being simulated. The timestamp of the message represents the time the system state is

changed.

Paralle] discrete event simulation poses very difficult synchronization problems due to the underly-
ing sense of logical time. Each LP maintains its own logical clock representing the time up to which the
corresponding PP has been simulated. The fundamental synchronization problem in PDES is in the deter-
mination of when it is permissible for an LP to advance its fogical clock. If an LP advances its logical
clock too far ahead of any other LP in the system it may receive a message with a imestarp in its logical
past. When an LP receives a message with a timestamp in its logical past it is termed a cqusality error Or

Sault and may lead to incorrect results,

Most of the synchronization protocols developed for parallel discrete event simulation fall into two
basic categorics. One category (using the terminology developed by Reynolds 1988) is protocols that are
accurate, non-aggressive and without risk {also known as "conservative" protocols, e.g. Chandy and
Misra 1979, Lubachevsky 1988, Nicol 1993 and Peacock, Manning and Wong 1978). The second
category is protocols that are accurate, aggressive and with risk, also known as "optimistic”, e.g. Time
Warp (Jefferson 1985). Protocols that are non-aggressive and without risk do not allow an LP to process
a message with timestamp ¢ if it is possible that it will receive another message with a timestamp less than
¢ at some point in the future. Protocols that are aggressive aliow an LP to process any event it receives,
and any causality errors that result from this aggressive processing are corrected through a rollback

mechanism.

There has been much debate in the literatare about which is the best approach for parallel simula-
tion. Empirical results suggest both approaches perform well in certain situations. Non-aggressive
approaches tend to perform well when information about the simulation problem can be exploited by the
protocol. Aggressive approaches have been shown to perform well when state saving costs are low and/or

there is hardware support for saving state.

Both approaches have inherent problems however. Non-aggressive protocols are criticized for not
allowing a computation to proceed because there exits the possibility of a causality error. Thus computa-

tions that can possibly result in an error, but generally do not, will not be allowed to proceed. This tends

to leave processors idle due o the overly pessimistic synchronization constraints. Aggressive protocols
are criticized for the high overhead costs associated with siate saving and rollback, and because of the
possibility of cascading rollbacks, a situation where one rollback causes a chain of rollbacks and the
number of participants increases without bounds (Lubachevsky ef gl. 1989). Thus aggressive processing

can lead to thrashing due to an overly optimistic view of synchronization requirements.

Throughout this debate there have been few theoretical results to help predict, explain or bound the
behavior of either approach. Many of the models involving Time Warp assume a two processor system
(e.g. Lavenburg, Muntz and Samadi 1983, Mitra and Mitrani 1984, Felderman and Kleinrock 1991, Feld-
erman and Kleinrock 1992), Other models assume the cost of saving state and rollback are free (e.g.
Felderman and Kleinrock 1991a, Gupta, Akylidiz and Fujimoto 1991, 1in and Lazowska 1990). While
these resulis give some usefut insights into the performance of aggressive protocols, they are clearly lim-

ited by the size of the system they model and/or the lack of overhead costs.

Most of the analyses of non-aggressive approaches have been of synchronous protocols (e.g. Nicol
1993, Lubachevshy 1988, Lubachevsky 1989a). These studies have established the very important pro-
perty that this type of protocol scales well as the size of the problem and the architecture grow. It is
important to note that these are the only studies which have shown important scalability results when the
cost of the synchronization mechanism is included in the model. We discuss this important point in detail
befow. Other studies of non-aggressive approaches include a two processor model (Felderman and
Kleinrock 1992), and a study of non-aggressive protocols for systems with no lookahead, which is the

ability of a logical process to predict its future behavior (Lin er al. 1990a

Also, there have been some analytic studies which compare the two basic approaches. Many of
these studies do not include the costs of either approach (e.g. Lin and Lazowska 1990}, include only some
of the costs (e.g. Mizell and Lipton 1990), or are restricted to a two processor system (Felderman and
Kleinrock 1992). Nicol (1991) gives the only analysis which includes most of the overhead costs of each
approach. This analysis however is in the context of a selfinitiating model where a logical process
schedules 1fs own times to re-evaluate its state rather than doing so in response to the receipt of an event

from some other logical process in the system.

Given the inherent limitations of both approaches, researchers have begun to investigate other pos-
sible approaches for the synchronization of parallel simulation. Reynolds (1988) was the first to demon-
strate that the aggressive/non-aggressive dichotomy is too restrictive a view of parallel simulation.
Rather, there exists a spectrum of options which includes, but is not limited to, these two approaches.
More recently, researchers have investigated the benefits of adding aggressiveness to existing non-
aggressive protocols in order to maximize the advantages, and minimize the disadvantages of each
approach (Dickens et al. 1992, Turner and Xu 1992, Steinman 1992, Madisetti et al. 1992, Dickens and
Reynolds 1991, Dickens and Reynolds 1990, Lubachevsky et al. 1989). This research is focused on
increasing the amount of parallelism of a non-aggressive protocol, and decreasing the thrashing of an

aggressive protocol.

One of the primary motivations of this research is to decrease the thrashing behavior of a fully
aggressive protocol. Thus one important goal of this research is to theoretically demonstrate that cascad-
ing rollbacks will not develop in a system with limited aggressiveness. A related issue is the relationship
between the level of aggressiveness and the probability of a rollback. Another motivation for this
research is the need to increase the amount of parallelism available in a non-aggressive protocol. Thus an
important issue is the extra parallelism made available as a function of the level of aggressiveness.
Perhaps one of the most important feature of any synchronization mechanism is how well the protocol

scales as the size of the application and the architecture increase.

Some of these issues have begun to be addressed in the literature, but a number of important issues
have not yet been addressed and are the focus of this dissertation. We define a new protocol, the Aggres-
sive Globat Windowing Algorithm, which adds aggressiveness to an existing class of non-aggressive pro-
tocols. The class of protocols chosen for this new approach is known as the Global Windowing Algo-
rithms, and this class is chosen because it is the only one for which important scalability results have been

established (Nicol 1993, Lubachevsky 1989, Lubachevsky 1989a).

We define a simple mechanism, the aggressive window, to control the level of aggressiveness exhi-
bited by the system. Then we develop an analytic model to predict the increase in parallelism as a func-

tion of the level of aggressiveness. Further, we develop our model to predict the probability of a causality

error also as a function of the level of aggressiveness, This is the first time the relationship between the
level of aggressiveness and the expected improvement in parallelism, and the increase in the probability

of a causality error, has been established.

This research gives theoretical and simulation results which strongly suggest that our aggressive
algorithm maintains the important scalability properties of the non-aggressive protocol. We demonstrate
that the probability of a causality error at a given LP does not increase as the number of LPs approaches
infinity. Further, we show that the probability of a given LP starting a rollback chain does not increase as
the number of LPs approaches infinity. Even though these results apply only to a given LP, we believe

they represent a significant step towards proving system-level scalability.

The research presented here is one of only two studies which compares the performance of two
protocols and includes the major costs of each approach (the other being Nicol 1991). As discussed, the
major cost of an aggressive protocol is saving state and the potential for cascading rollbacks. A major
cost of a synchronous algorithm such as a Global Windowing Algorithm is the cost of global synchroni-
zation. In our model we derive the expected improvement in performance as a funciion of the cost of
saving state and the cost of global synchronization. Thus our model studies the improvement in perfor-
mance as a function of the costs of each approach and the level of aggressiveness. Overall, the rescarch
presented in this dissertation makes a significant contribution to the small but growing set of analytic

results for parallel simulation.

1.2. Dissertation Organization

In this dissertation we develop an analytic model to examine the costs and benefits of adding
aggressiveness to an existing non-aggressive synchronization mechanism for paraliel discrete event simu-

lation. We now describe the major contribution of each of the remaining chapters.
Chapter 2:

In this chapter we build the foundation for our work by developing the model for paraliel discrete
event simulation. We describe the problems encountered in moving from a sequential to a parallel simu-

lation, and discuss the various approaches to solving these problems. Finally, we give a detailed review

of the major empirical and analytic results accomplished thus far in order to put our work into perspec-

tive.
Chapter 3:

This chapter lays the groundwork for all of our subsequent analyses. We define our approach of
adding aggressiveness to an existing non-aggressive protocol through a mechanism we term the aggres-
sive window. We develop a preliminary analytic model under the assumption of a closed queueing sys-
tem which is heavily loaded. We use this model to investigate the probability of a causality error (at a
given LP), and the upper bound on the expected improvement in performance, as a function of the level
of aggressiveness. Also, we prove that the probability of a causality error at a given LP does not increase

as the number of LPs approaches infinity.

The results given in this chapter are preliminary in that we do not define a mechanism to correct
causality errors that occur as a result of aggressive processing. For this reason we do not include the cost
of such a mechanism in our model, and the results therefore represent an upper bound on the potential

improvement.
Chapter 4:

In this chapter we define a simple state saving and rollback mechanism to correct the causality
errors that occur as a result of aggressive processing. We discuss one component of this correction
mechanism, the anti-message, which is a necessary ingredient in a rollback chain. We extend our model
to predict the probability that a given LP will produce an anti-message as a function of the level of
aggressiveness. We then demonstrate that the probability of a given LP producing an anti-message does
not increase as the number of LPs approaches infinity. Finally, we extend our model to predict the proba-

bility a given LP produces an Nt generation anti-message as a function of the level of aggressiveness.
Chapter 5:

In this chapter we relax our assumption of a closed queueing system that is heavily loaded, and
extend our model to include an open system which can be lightly loaded. The analysis presented in this

chapter is important for two reasons. First, it allows us to extend our analysis to a lightly loaded system.

Second, it demonstrates how quickly our analysis becomes intractable as we move away from a system

that allows us to make many simplifying assumptions.
Chapter 6:

The analysis in all of the preceding chapters examines the behavior of a "typical” LP in a system
using our synchronization mechanism. In this chapter we extend our analysis to investigate system level
performance rather than the behavior of a "typical" LP. We define the processing cost of the two
approaches as the number of messages that must be processed in order to complete one unit of logical
time. Note that this processing cost includes the cost of global synchronization and the cost of saving
state. Our model makes a set of best case assumptions for the non-aggressive version of the protocol, and
a set of pessimistic assumptions for our protocol which permits limited aggressive processing. Also, we
show the expected improvement in performance as a function of the cost of global synchronization, the
cost of saving state and the level of aggressiveness permitted by our protocol. Finally, we investigate the
expected improvement in performance given communication topologies other than the one assumed in

our model.
Chapter 7:

In this chapter we give our conclusions and our thoughts for future research.

CHAPTER 2

Background

In order (o establish a better understanding of the context of our research we provide a detailed
description of the issues encountered in parallel simulation, and the mechanisms developed to deal with
these issues, We begin this review by describing the model of parallel simulation. Then we discuss the
issues which make parailel discrete event simulation such a difficult problem, followed by a review of the
synchronization mechanisms developed to solve these problems. Where available, we discuss the empiri-

cal studies which investigate the performance of these various protocols.

We follow the review of synchronization mechanisms with a discussion of the theoretical results
which have been developed for parallel simulation. As will be seen, most of the earlier analytic studies of
a given protocol did not include the primary costs of the synchronization mechanism. Many other models
are limited to two processor systems. More recently however there have been some theoretical results
which include the cost of the protocol being studied. There have been no studies however that deal with
the issue in which we are interested: the expected increase in parallelism, and the probability of a causal-
ity error, as a function of the level of aggressiveness. We begin our review with a description of the

model for parallel discrete event simulation.

2.1. Simulation Model

The following model of a simulation is given by Misra (1986). A physical system to be simulated is
modeled as a set of communicating physical processes that interact with each other through messages.
Each physical process (PP) represents some component of the physical system. The messages exchanged
between the PP’s represent changes to the state of the system, and each message contains a timestamp
that represents the time the change to the state of the system occurs. These messages that represent such

changes are called events. Note that we frequently use the terms messages and events interchangeably.

Once the system has been modeled as a set of physical processes, there are two basic approaches to
simulation. Common to both approaches is a clock which holds the time up to which the system has been
simulated. In a time-stepped simulation, at each step the clock is incremented by one tick where a tick is
one unit of time in the simulation. As an example, if the system being simulated is a computer chip, one
tick may represent a pico-second. At each tick all of the events scheduled to occur at that time are simu-
lated. The simulation is driven by advancing the clock by some preset, fixed amount and simulating the

activity at each time step.

The problem with a time-stepped simulation is that there may be many ticks of the simulation clock
for which no events are scheduled to occur. An approach that deals with this problem is discrete event
simulation, where the clock is set to the time of the next event in the system rather than being incre-

mented by some fixed amount. This work is concerned only with discrete event simulation.

In a sequential discrete event simulation, all events to be processed are maintained in a data struc-
ture called the event list, Ateach step of the simulation the event with the smallest timestamp is removed
from the event Hst, the clock is set to the time of the event, and the effects of the event are simulated.
The simulation of an event may cause other events 1o be added to the event list, or previously scheduled
events to be removed from the event list. Simulation of an event may also cause the state variables of the
simulation to be modified. The state variables represent the state of the system being simulated. As an
example, if the system being simulated is a logic network, the state variables would include the current
state of all input lines and all outputs of the gates in the network, An event may represent a change to the

state of one of the lines in the system.

In a parallel discrete event simulation (PDES) each of the physical processes is modeled by a
corresponding logical process (LP). The LP simulates the activity of the associated PP. The LP’s are con-
nected through logical communication channels or links such that if PP, can send a message to PPJ. inthe
physical system, then there is a link between LP, and LPJ. in the simulation. The messages sent between
LP’s contain a timestamyp indicating the time when the event specified by the message is scheduled to

OCCut.

10

Each LP maintains its own logical clock representing the time up to which the corresponding PP
has been simulated. It is assumed that LP, can correctly simulate the activity of PP, up to any time £,
given that LP, knows the initial state of PP, and all of the messages received by the PP up to time ¢. Stated
another way, an LP can only guarantee that it can correctly simulate the corresponding PP up to time ¢ if
it knows all of the messages received by the PP up to time ¢. Knowing when it is permissible to advance
the clock of an LP is a very difficult problem. In the next section we give a brief discussion of the

difficulties associated with PDES.

2.2, Synchronization Problems of PDES

In the traditional approach to parallel discrete event simulation there is no global clock synchroniz-
ing all of the LPs. Each LP maintains its own logical clock representing the time up to which the
corresponding PP has been simulated. It is therefore likely that, at any instant, the LPs will have pro-
gressed up to different points in the simulation. This asynchronous approach leads to difficult synchroni-
zation problems.

The fundamental synchronization problem of PDES is that it is very difficult to know if the execu-
tion of event A on LP, will, in some way, affect an event B scheduled on some other LPJ.. As discussed
by Fujimoto (1990), the scenario in which one event may affect another event may be quite complex.
Further, whether one event affects another event is dependent upon the timestamps of the events. To see

this consider the following example.

A » B — C

Figure 2.1 - Example of Event Dependencies

11

The system being modeled is a simple queueing network with three servers and their associated
queues. Figure 2.1 shows the three LPs; the arcs between the LPs represent the inputs and outputs of the
server. An input of a server represents LPs that may send it a message. An output of a server is an LP to
which the server may send messages. Recall that a message is an event with a timestamp signifying when
the event is to occur, An event in this system is either the arrival of a "job" at a server, or the completion
of service for a job. Completion of a job may cause zero or more jobs to be scheduled at the current
server, or at one of the other servers, The service discipline is FCES. Assume that LP, has a job
scheduled to begin service at logical time ten (event,), that LPp has a job to begin service at logical time
fifteen (event,) and LP. has a job scheduled to begin service at logical time twenty five (events). Further
assume that the execution of event; causes the scheduling of a job to arrive at LFy at time thirteen
(event ,), and that event, in turn schedules a job to arrive at LP at time twenty one (events). As can be
seen, it would be incorrect for the three LPs to execute their initial events concurrently. Consider LPg. If
it immediately simulates the effects of event, and advances its simulation time to fifteen, it will at some
Jater point receive event 4 with a timestamp of thirteen. At the point LP B receives the event with a times-
tamp of thirteen, it will recognize that it has incorrectly simulated the behavior of the PP it is modeling
since it has serviced the jobs in the wrong order. It recognizes its error when it receives an event that
occurs in its past. Note also that LP must wait before simulating event ;. It will, at some point, receive

event s which must be serviced before event ;.

As can be seen, the scenario in which one event may affect another can be a complex chain of
events. In the above example, event affects event, by scheduling event 4 at LPp, which in turn schedules
events at LPc. It may also have been the case that none of the events would have had an effect on each
other. If event, were scheduled to occur at logical time sixteen instead of at logical time thirteen, and
events were scheduled at logical time twenty eight rather than at logical time twenty one, then there
would have been no violation of event dependencies and the events could have all been executed con-
currently. In general it is very difficult to determine which events can in some way affect other events

and thus it is very difficult to determine which events may be executed in parailel.

12

In a sequential simulation all of the event dependencies are automatically maintained since the
event with the smallest timestamp is always chosen for execution. All events are therefore executed in the
correct order. In a similar fashion a parallel simulation will correctly maintain all event dependencies if
each LP executes all of its events in non-decreasing timestamp order. Fujimoto (1990) terms this the
local-causality constraint and discusses how it is a sufficient condition for correct execution, This is a
difficult problem as there is not necessarily any correlation between the timestamps of events received by
an LP and the real time order in which the events are received. In the next section we discuss the syn-

chronization protocols that have been developed to solve this problem,

2.3. Synchronization Profocols

Most researchers classify synchronization protocols as either conservative or optimistic. As shown
by Reynolds (1988), this classification is too narrow and there exists a spectrum of options. Reynolds
developed a set of design variables and used these variables to classify existing synchronization protocols

and o explore new approaches.

Although Reynolds defined ten design variables, three of these are most pertinent to the current dis-
cussion. These are accuracy, aggressiveness and risk. A parallel simulation is accurate if the results of
the simulation are the same as those produced in a sequential simulation. An accurate protocol ensures
that all event dependencies are maintained. A protocol that is aggressive allows an LP to process mes-
sages based on incomplete information. That is, the LP is allowed to process a message and advance its
clock even though it may at some later point receive a message in its past. If a protocol is to be accurate
and allow aggressive processing, there must be some kind of state saving and roliback mechanism to
ensure accuracy. We discuss state saving and roliback in some detail below. Risk has to do with passing
computation based on aggressive processing to other LPs. Thus a protocol that is aggressive but without
risk (Dickens and Reynolds 1990, Steinman 1992) allows locally aggressive processing, but requires that

the results of this aggressiveness not be passed along until # can be goaranteed to be correct.

13

2.3.1. Protocols That Are Accurate, Non-aggressive and Without Risk

What is generally considered as conservative protocols are accurate, non-aggressive and without
risk. A non-aggressive LP cannot advance its simulation time until it can be guaranteed that it will not
receive a message in its logical past. This can be guaranteed if two conditions are met. First, it is required
that all messages sent between any pair of LPs be in non-decreasing timestamp order. Second, it is
required that an LP block until it has received a message from each of the LPs which may send it a mes-
sage. Once it has received a message from each of its input LPs, the LP may choose the message with
the smallest timestamp and safely process this message. This is because it has received a message from
all of its input L.Ps, and none of these input LPs may send a message with a smaller timestamp than one
already sent. The LP will therefore never receive a message with a smaller timestamp than the one it

chooses to process.

Even though this approach guarantees accuracy, it can lead to deadlock since a cyclic waiting con-
dition can arise where each LP in the cycle is blocked waiting to receive a message from some other LP
in the cycle, Much of the early research in parallel discrete event simulation focused on the deadlock

issue. We briefly present the results of that early research.

Peacock ef al (1979) showed that two conditions are necessary for deadlock to occur. Before these
results are given, some definitions are needed. A link is a communication channel between two LPs. The
link time of a given fink is defined as the timestamp of the last message sent along that link. An empty
link is one where there is no message waiting to be consumed by the receiving LP. We now give the

results established by Peacock et af (1979).

Theorem. A deadlock exists if and only if there is a cycle consisting of empty links which all have the
same link time, and nodes which are all blocked because of these links.

This theorem establishes that deadlock will not occur if there are no cycles in the communication
links. Even if cycles do exist, deadlock will not occur unless all of the links have the same link time.
Thus one way to avoid deadlock is to ensure that all of the links in a cycle do not have the same link time.
This can be guaranteed if, when an LP receives a message with imestamp ¢, any message that it sends in

the future will have timestamp at least ¢ + & where & > 0. This requires that an LP that has received the

14

messages of the corresponding PP up fo time ¢ be able to predict the behavior of the PP up to some time
greater than ¢ This ability to predict the future action of the PP is termed lookahead. An example of a
system with the ability to look ahead is a non-preemptive FCFS queueing simulation where there is some
minimum service time M > 0, Once the LP begins servicing a job at logical time ¢, it can predict that it

wilt generate no events before logical time (434,

Our discussion of the deadlock problem is by necessity brief. A thorough discussion of this issue
can be found in Misra (1986) or Chandy and Misra (1979). Detailed examples of how deadlock occurs

can also be found in Peacock ef ol (1979) or Peacock et al (19793).

The non-aggressive, accurate protocols that we discuss in the remainder of this section are based
upon the results established above. It is important to note that protocols based on these results require
that the communication links be static and known a priori since an LP must know all LPs that may send it
a message. I the communication links contain cycles, then the system must possess lookahead capabili-
ties. These two factors restrict the class of problems for which this type of protocol may be used. For
example, if the communication links contain cycles, then a queveing simulation with a minimum service
time of zero may deadlock using this approach. This is because such a system has no lookahead capabili-

ties.

For a system with no cycles in the communication graph (feedforward system), an LP can block
until it has received a message from all of its input LPs without deadlock occurring. In Kumar (1986}, a
simple protocol based on this idea is presented. Even though deadlock cannot occur using this scheme,
each LP must have infinite buffer space as there is no way o predict how many messages must be buf-
fered until a message is received from each input LP. Further, the parallelism of the system may be
greafly reduced if many of the LPs remain blocked for long periods of time waiting for messages from
some of its input LPs. The authors developed an analytic model showing that the system can attain good
speedup over sequential simulation. The model assumes however a high message flow rate to each LP

thus assuring that the probability that any LP will have empty input links is low.

1f the network topology does contain cycles, and the syﬁchronization protocol is non-aggressive

and accurate then there must be some mechanism to either avoid or detect and resolve deadlock. One

15

approach is to send non-event messages to help the LPs advance their simulation time. A non-event mes-
sage is any message not sent in the physical system being simulated. Two protocols that are accurate and
non-aggressive that employ non-event messages are the Null Message protocol (Bryant 1977, Chandy
and Misra 1979) and the Link Time protocol (Peacock 1979). In these protocols, non-event messages
convey information pertaining to the logical time of the LP sending the message. This information is used
by the receiving LP to advance its simulation time. The primary problem with this type of approach is

that the message traffic can be dominated by the non-event messages.

Peacock (1979) also introduced the Blocking Table algorithm that is accurate and non-aggressive.
The major distinction of this approach is that non-event messages are sent only upon demand. An LP is
defined as blocked if it has any empty communication links. Each blocked LP, determines all LPJ. such
that there is a path of empty communication links from LPJ. to LP.. LP, sends a request to each such I“Pj’
and remains blocked until it receives a response from each LPJ. stating that it is permissible to proceed.
Each LP repeats this algorithm every time it becomes blocked. As can be seen, even though non-event

messages are sent only upon demand, the communication costs of this algorithm can be extremely high.

The appointment protocol (Nicol 1984, Nicol and Reynolds 1984, Nicol 1988) is also demand
driven. In this approach a writer (an LP that sends a message to another LP) establishes an appointment
with its readers (LPs with which the writer communicates). The appointment is the greatest lower bound
on the logical time of the next message transmission from the writer to a reader. When a reader becomes
blocked it demands an appointment from its writers to help it advance its simulation time (another
approach is to have the writer maintain appointment times without the reader demanding it, see Nicol
1984 and Nicol and Reynolds 1984). As we discuss below, the performance of this type of protocol is

governed by how well the writer can predict its future behavior,

In Chandy and Misra (1981), the authors propose allowing the simulation to deadlock and then
detect and resolve the deadlock. This protocol was introduced in response to studies { cited in their paper)
indicating that the number of non-event messages generated using the Null Message approach is unac-
ceptably high. While this approach allows accuracy and non-aggressiveness without the use of non-event

messages, its performance is obviously dependent upon how often the simulation deadlocks and how

16

expensive it is to detect and break deadlock.

In Lin and Lazowska (1990a), it is shown that systems without lookahead capabilities using the
deadlock detection and resolution algorithm will resuit in a partial deadlock after each message pro-
cessed. For these types of systems the authors describe a method of transforming such a network into a
feedforward network thus avoiding deadlock (recall that a cyclic network is required for deadlock to
occur). Once the network is a feedforward network, each LP simply blocks until it receives a message
from all of its input LPs, Other approaches to deadlock detection and resolution can be found in Liu and
Tropper (1990), Groselj and Tropper (1988), Groselj and Tropper (1989) and Wagner and Lazowska

(1989).

2.3.2. Protocols That Are Aggressive, With Risk and Potentially Inaccurate

At least two researchers (Reynolds 1982, Sokol et al 1988) have investigated synchronization pro-
tocols that are aggressive, use risk and potentially inaccurate, The potential inaccuracies arise because no
rollback mechanism is used to correct any out of order message processing that occurs as a result of the

aggressive processing.

In SRADS (Reynolds 1982), an LP makes two aggressive assumptions. The first is that messages
will arrive only at regularly occurring intervals. Using this assumption an LP will only synchronize with
another LP that may send it a message at predetermined intervals. In between these intervals (referred to
as the polling interval) LPs progress at their own rate. The second aggressive assumption is that it is per-
missible o advance the time of an LP to the next anticipated message arrival time. Thus if an LP has no

more work to perform at the current time it will assume it can safely advance its clock.

In Moving Time Window (Sokol 1988), all events falling between the lower and upper bounds of a
chosen time interval are available for execution. Events with timestamps outside of the window are not
considered for execution, The aggressive assumption in Moving Time Window is that it is acceptable to
process all of the events in the window interval concurrently. As there is no synchronization for the exe-
cation of events within the window interval it is easy to demonstrate that inaccuracies can occur. The

authors point out however that by choosing the window interval to be small enough such that it is less

17

than the time between any two events in the sequential simulation, that no inaccuracies will occur.

Whether the potential inaccuracies are acceptable depends upon the system being modeled. In
Theofanos (1984), it was shown that the inaccuracies in SRADS had little effect on mean value statistics
for queueing models. In Sokol (1988), the authors discuss the tradeoffs between accuracy and speed of
execution. Both of these potentially inaccurate protocols have introduced versions that are guaranteed to

be accurate (Nicol and Reynolds 1984, Nicol 1984, Sokol 1990).

2.3.2.1. Use of Knowledge About the System

An important issue is how and whether knowledge about the system being simulated is embedded
in the simulation, and how knowledge about the state of the simulation is shared throughout the logical
system. In preceding sections we discussed the necessity of lookahead in preventing deadlock in proto-
cols that are accurate, non-aggressive and without risk. The calculation of the lookahead value requires
an LP to be able to predict its future behavior and thus involves knowledge about the system being
modeled. Research has clearly demonstrated that the better the lookahead value, and thus the more
knowledge about the system being modeled is exploited, the better the performance of these protocols

(Fujimoto 1988, Fujimoto1989, Lin and Lazowska 1989).

As an example consider the appointment protocol discussed above. This protocol employs the use
of knowledge in that the appointment is calculated based on the writer’s knowledge of the system being
simulated. For FCFS queueing network models, Nicol (1988) introduced the futures list as a way of
obtaining a much better lookahead value. This allows the LP to calculate a sharper lower bound on the
next message transmission time. The technique is based on the writer’s knowledge of the service discip-
line employed in the network. As discussed by Nicol, the use of this knowledge about the system greatly
enhanced performance. In Wagner and Lazowska (1988) and Lin and Lazowska (1989), the futures list

technique is expanded to include a wider class of service disciplines.

An in depth discussion of the role of knowledge in parallel simulation is beyond the scope of this
review. An excellent analysis of knowledge in parallel simulation can be found in Chandy and Misra

(1987). Reynolds (1988) gives an in depth discussion of the use of knowledge in existing synchronization

18

protocols. Nicol and Reynolds (1984) and Lin er ol (1988) discuss using knowledge about the system
being simulated in the simulation protocol. Chandy and Sherman (1989) introduce a protocof based on
converting conditional knowledge into unconditional knowledge. Wagner and Lazowska (1988) give a

good summary of optimization techniques based on knowledge of the system being simulated.

Before leaving this section it should be mentioned that there are disadvantages to employing
knowledge about the system being modeled in the simulation protocol. If the protocol requires that infor-
mation about the simulation problem be exploited, then the protocol is obviously restricted to classes of
problems where such information is available. As discussed by Fujimoto (1990), information about
behavior such as minimum timestamp increments may be difficult to derive for some complex simula-

tions.

It should also be noted that the types of information required by some of these protocols cannot be
obtained for all applications. As an example, the futures list technique requires the presampling of service
times. There are some applications which do not lend themselves to this presampling. One such applica-
tion is a queneing network where the service time is dependent upon the state of the LP at the time the
job enters service. In the next section we discuss Time Warp which is a much more general protocol.

The generality of Time Warp is regarded as a strength by its designers.

2.3.3. Protocols That Are Accurate, Aggressive and With Risk

The accurate and non-aggressive algorithms discussed above use blocking to guarantee that no syn-
chronization errors can occur. As discussed, the blocking mechanism can lead to deadlock, and solutions
to the deadlock problem are expensive. An alternative approach is to allow an LP 10 aggressively process
any message it receives, and to then use a rollback mechanism to correct any synchronization errors that
occur as a result of this aggressive processing. This is the approach taken in the Time Warp protocol
introduced by Jefferson (1985). Time Warp is accurate, aggressive and uses risk. It is generally con-
sidered an optimistic protocol in the literature because it optimistically processes any message it receives

without any blocking.

19

Time Warp uses state saving and rollback to ensure accuracy. An LP periodically saves its state,
When a synchronization error is discovered, the LP restores a previous state that was saved before the
synchronization error occurred. The restoration of a previous state is termed a rollback. Once the previ-

ous state hag been restored the LP again begins processing forward in time.

If an LP discovers a synchronization error at Iogical time 4, then any messages it has sent with a
timestamp £ > ¢ areK potentially in error. To ensure accuracy, any erroneous messages must be cancelled.
This is done through the use of anii-messages. 1f a message sent at logical time ¢ with content ¢ sent {0
LP, is found to be incorrect, then an anti-message with logical time ¢ and content ¢ is sent to LP, to cancel
the original message. This anti-message may cause the receiving LP to rollback, which may in turn cause
it to send anti-messages causing other roHbacks. Thus one rollback may cause a cascade of rollbacks. An
LP will never rollback past the Global Virtual Time, defined as the minimum logical time over all logical
clocks in the system and all events that have been sent but not yet received (Jefferson 1985). In Chapter

4 we discuss anti-messages in relation to our synchronization mechanism.

Two types of anti-message schemes have been investigated. Aggressive Cancellation is the sending
of an anti-message as soon as the synchronization error is discovered. Using lazy cancellation the LP that
is in error waits to send the anti-message until it is sure that it will not produce a message that is the same
as the one to be canceled. If the LP does indeed produce the same message as the one to be cancelled,
then this message will have been sent ahead of schedule. In effect the right message has been sent for the
wrong reason, and sent ahead of schedule. Thus performance is enhanced (Lin and Lazowska 1990). The
disadvantage is that it delays the cancellation of incorrect messages thus allowing the LP to continue to
process incorrectly for a longer period of time. The two rollback mechanisms are studied in Lin and

Lazowska {198%a) and Gafni (1988).

a

Time Warp requires more memory than non-aggressive protocols due to state saving. The cost of
performing state saving is very expensive. Fujimoto (198%a} found that as state size is increased by two
kilobytes, the performance of Time Warp is degraded by 50%. For this reason hardware support has been

suggested for state saving and rollback (Fujimotot 1988a, Buzzel et al 1990},

20

As discussed by Lubachevsky (1989), no theoretical arguments have been presented to show that
Time Warp is scalable. That is, it is not known whether as the size of the simulation problem grows the
frequency of rollbacks will increase at a greater rate. Protocols that limit the aggressiveness of Time

Warp in order to reduce the frequency of rollbacks are discussed below.

2.3.4. Global Windowing Algorithms

All of the protocols discussed above, with the exception of Moving Time Window, are asynchro-
nous. That is, the LPs never synchronize globally and there is no attempt to bound the difference in logi-
cal times between the various LPs in the system. Several researchers have investigated protocols that are
loosely synchronous (see Fox et al 1988): The LPs proceed asynchronously for some time and then syn-
chronize (Nicol 1993, Lubachevsky 1988, Ayani 1989, Chandy and Sherman 1989). These protocols are
often referred to as windowing algorithms since the LPs cooperatively define a simulation window as we

discuss below. In this section we briefly discuss the most important windowing algorithms,

The windowing algorithms under consideration proceed iteratively, most of them consisting of
three phases. In the first phase the LPs cooperatively determine the minimum event in the system, and
ther determine which events are eligible to be considered for processing. In the next phase some mechan-
ism is used to determine which of the eligible events are safe (o process. By safe we mean the event can
be processed without any possibility of a causality error. In the third phase the events determined to be
safe are processed concurrently. Each of the phases is separated by a barrier synchronization. The pri-
mary difference between any of these windowing algorithms is the method used to determine which

events are safe to process concurrently.

The Bounded Lag algorithm (Lubachevsky 1988) uses what Lubachevsky terms the bounded lag
restriction, This restriction is that the difference between the times of any events processed concurrently
is bounded from above by a known constant, the bounded lag. The algorithm progresses in the three
phases described above. The events that are eligible to be considered for execution are those that fall
within the simulation window, where the floor of the window is the smallest timestamp among all events

in the system and the ceiling of the window is the floor plus the bounded lag. The purpose of the bounded

21

lag is to restrict the amount of computation that must be performed to determine which of the eligible
events are safe to process. Lubachevsky (1988) gives an excellent discussion of how the bounded lag

reduces the computation required to determine which events are safe to process.

Chandy and Sherman (1989) developed a protocol that is based on the idea of converting condi-
tional evenis into unconditional events. A conditional event is one that will occur as long as no other
events that can affect it are received. An example of a conditional event is the departure of a low priority
customer in a preemptive queueing neiwork. The job will depart at the scheduled time as long as no
higher priority job is received before the time of the departure. An unconditional event is one that will

occur regardless of any other events received,

The basic algorithm consists of three steps. First, the LP computes all unconditional events possible
given its conditional events and all messages it has received. In the next step the LP sends a message
eqch of the other LPs. This message contains the LPs minimal event time, as well as any definite events it
has computed. The LP then blocks until it has received a similar message from all other LPs. Given that
all LPs have exchanged messages, and that each message contains the time of the earliest event of the
sending LP (as well as all definite events computed), each LP can determine the earliest event time in the
system. This earliest event time, as well as knowledge about all definite events that have been produced
in the system, allows the LPs to convert conditional events into unconditional events. The way this is
done is very application dependent. For any simulation problem however, the LP with the earliest event

in the system can always safely process that event.

Ayani (1989) introduced a synchronization algorithm based on the distance between objects. The
distance between objects is essentially the same concept as lookahead discussed above. The distance
algorithm consists of three phases. In the first phase the earliest event in each LP is marked as a candidate
for execution. In a sense this establishes a time window where the floor of the window is the smallest
event time in the system and the ceiling is the maximum event time over all of the minimum events of the
LPs. Note that each LP has exactly one event eligible for execution. In the next phase each LP examines
the possible effect of executing its candidate event on all other candidate events. If its event can affect

another event (i.e. potentially lead to a causality error), that event is marked as no longer being a

22

candidate for execution. Note that in the Bounded Lag approach an LP determines if its events are safe o
process. In this algorithm an LP determines if the events of other LPs are safe to process. An LP assumes
its candidate event is safe to process if no other LP has marked it as unsafe. In the third phase all events

that are stiil eligible for execution are processed concurrently.

Note that in this version of the algorithm each LP checks its candidate event against all other LPg
candidate events. Thas the complexity of this operation is O(N?) with N LPs. It also requires that each
LP maintain the minimum propagation delay between itself and all other LPs. Due to these costs, Ayani
modified the algorithm so that each LP maintains the minimum propagation delay between itself and its
immediate successors only. When an LP determines if its candidate event can affect other events, it ini-
tially only searches the events of its immediate successors. Only if it can affect events on these LPs does

it continue the search for other LPs the candidate event may affect.

The windowing algorithm developed by Nicol (1993) is the algorithm on which we base our
research. We give a brief description of his algorithm in this section and discuss it in more detail in the
next chapter. It is similar to Lubachevsky’s algorithm except for the mechanism used to determine which
events are eligible for processing. As discussed by Nicol, it is also a specific application of the condi-

tional event approach, with a different mechanism to convert conditional into unconditional events.

Nicol’s approach cénsists of three phases. In the first phase the LPs synchronize and determine the
simulation window. The floor of the window is the minimum event time in the system. Given this
minimum event time the LPs determine the ceiling of the simulation window. This ceiling is chosen such
that all events between the fioor and ceiling can be executed concurrently without the possibility of any
causality errors. In the second phase of the algorithm, the LPs concurrently process all of their events
with timestamps falling within the simulation window concurrently, In the third phase the LPs receive
any messages generated by the processing of these events. Note that we term the simulation window
defined by Nicol’s protocol the lookahead window, since it is defined such that there will be no event

dependencies within the window.

The ability to determine this lookahead window requires three assumptions about the system being

modeled. First, when an event begins service at an LP, any events caused by the completion of the given

23

event must be known. The serving LP must inform the LPs that will receive such caused events at the
time service begins. To clarify this idea assume that LP, is to begin processing evens 1 at logical time .
Further assume the completion of event 1 will cause event 2 to be scheduled for LPy at logical time t+x.
The protocol requires that LP4 inform LPp that it will receive event 2 at logical time t+x at the real time
at which LP 4 begins processing event 1. We term these messages sent to inform an LP of a future event a
"pre-sent” completion message, and note they are important in the definition of our aggressive windowing
algorithm. This ability to inform an LP of a future event requires that routing decisions be made at the
time an event begins service. Thus this protocol cannot be used in systems where this routing decision is
somehow dependent on the events enqueued at the LP when service is completed. The second assump-
tion required by the protocol is that when an LP is informed that it will be receiving an event, it must be
able to determine a lower bound on the service time {or the service time itself) for the event at the time of
this notification. Third, it is assumed that once an event begins service, no other event in the system can
affect its completion time. This implies that the protocol cannot be used to simulate a preemptive'queue—

ing system.

Nicol (1992) extends his basic algorithm to include preempiive gueueing systems under cerfain
conditions, The requirement is that each job in the network belong to one of C priority classes, and that a
job never changes its class as it moves between queues. Nicol is able to obtain the powerful lookahead
required by his algorithm by concurrently simulating different job classes in non-overlapping regions of
simulation time. Higher priority jobs are not affected by lower priority jobs, and thus can be simulated far
into the future, This implies that when a lower priority job enters service, the behavior of higher priority
jobs that will affect it is already known, The protocol still requires however that the destination queue be

known at the time a job enters service, and that its service time can be presampled when it enters a queue.

This concludes our review of the synchronization protocols which, with the exception of Moving
Time Window and SRADS, would be categorized as either aggressive or non-aggressive. We now dis-
cuss some of the problems associated with these protocels. In the final section we discuss the most
current research, including the research presented in this dissertation, which is investigating the blending

of aggressive and non-aggressive protocols.

2.4. Problems of Existing PDES Synchronization Protocols

Each of the approaches discussed above has its own problems that make it ineffective when used to
simulate some systems. Before leaving this section on the synchronization mechanisms it is important o
point out the major weaknesses of the various approaches. It is beyond the scope of this review to give
an in-depth critique of each synchronization protocol. The interested reader is directed to Fujimoto

{1990} for an excellent discussion.

Protocols that are non-aggressive and accurate require that an LP not process an event until it can
be guaranteed that no other event can possibly affect it. If there is any possibility that one event will
affect another event, the two events must be executed sequentially. As discussed by Fujimoto (1990), if it
is the case that two events that can affect each other rarely do, then most of the time sequential execution
is unnecessary. An LP that blocks even though it could proceed without compromising the integrity of
the simulation is, using Reynolds® (1982) terminology, artificially blocked 1t is blocked unnecessarily
because it has insufficient information to determine it can safely advance its clock. This artificial block-

ing can greatly redace parallelism.

Another criticism of non-aggressive and accurate mechanisms is that knowledge about the system
being modeled often needs to be used by the synchronization mechanism in order to achieve good perfor-
mance (Fujimoto 1990). As discussed above, research has clearly demonstrated that the better the looka-
head value, and thus the more knowledge about the system being modeled that is embedded in the proto-
col, the better the performance. This has two implications. First, the simulation programmer must be con-
cerned with details of the synchronization mechanism. Second, if the system contains inherently poor

lookahead ability, these protocols will not perform well (Fujimoto 1990).

Proponents of aggressive and accurate protocols argue that the simulation programmer should not
have to deal with issues of the synchronization mechanism (Fujimoto 1990). Time Warp (Jefferson 1985)
does not require that the simulation prograniner be nearly as concerned with this level of detail, It should
be noted however that the programmer is not completely alleviated of concern with low level details
using Time Warp. The programmer must ensure, for instance, that the machine has enough resources

(such as memory) to support the application.

25

Another advantage of Time Warp is that research has demonstrated that good lookahead is not
necessary in order to achieve good performance (Fujimoto 1990a). Further, Time Warp does not suffer

from artificial blocking; it never blocks if there is any work to do.

Time Warp does however suffer three primary problems. First, state saving is an expensive opera-
tion. As discussed above, Fujimoto (1989a) found that as the size of the state increased from 100 bytes to
2000 bytes, performance was degraded by 50%. While several performance studies have shown Time
Warp to perform well (Presiey 1989, Wieland es 4! 1989, Ebling er al 1989), none of these authors
discusses the size of the state vector for the given problems. Hardware support for saving state has

become available (Buzzell et al 1990, Fujimoto ef al 1988a),

The second problem with Time Warp is the possibility that it can become very inefficient due to
echoing or cascading rollbacks (Lubachevsky ef al 1989). Echoing is a pattern of self-perpetuating roll-
backs where the amplitude of the rollbacks increases without bound. That is, a pattern is established
where LPs are constantly resynchronizing each other, and the amount of logical time that an LP must roll
back increases with each resynchronization. Cascading is a situation where one rollback causes other
rollbacks, and the number of participants increases without bound. If either of these phenomena occur in
a simulation, Time Warp will make very very little forward progress. Turner and Xu (1992) have
reported cascading rolthacks and echoing which significantly degraded performance in their telephone
switching network simulation, and Lubachevsky (1989), Mitra and Mitrani (1984) and Aashiad and

Brown (1988) have all developed models to show that echoing can occur,

The third problem with Time Warp is it requires much more memory than other protocols in order

to save state and to save copies of messages that have been sent.

As discussed, non-aggressive protocols saffer from artificial blocking and high costs for deadlock
prevention, and aggressive protocols suffer from excessive rollbacks, high state saving costs and large
memory requirements, We now review current research which combines these two approaches in order to

improve performance.

26

2.4.1. Protocols Which Blend Aggressive and Non-Aggressive Behavior

As noted, there are problems inherent in a protocol which is purely aggressive or purely non-
aggressive. For this reason researchers have begun to investigate protocols which blend aspects of both
approaches. The goal of this research is to maximize the advantages, and minimize the disadvantages of

each approach.

Reynolds (1988) was the first to suggest that the aggressive/non-aggressive dichotomy is too res-
trictive, and showed that there exists a spectrum of options for parailel simulation. As an outgrowth of
this research, Dickens and Reynolds (1990) developed the SRADS with Local Rollback protocol. The
concept behind a protocol with local rollback is that an LP can perform aggressive computation, but the
results of this computation cannot be sent until it can be determined that the compatation is correct. Thus
if a computation is found to be incorrect, the LP will perform a local rollback but the error will not spread
through the system, This allows an LP to perform potentially nseful processing when it may otherwise be
blocked due to synchronization constraints. More recently, Steinman (1992) has modified his non-

aggressive Time Bucket Synchronization algorithm to include local roliback.,

Tumer and Xu (1992) have developed the Bounded Time Warp Algorithm to address the problem
of excessive roliback of unbounded Time Warp. The Bounded Time Warp protocol defines a simulation
window in which the LPs can process aggressively, and does not allow an LP to process beyond this
upper bound. In this sense it is similar to a global windowing algorithm, but uses a two phase token pass-
ing mechanism rather than a barrier synchronization to synchronize the LPs. The authors developed this
protocol in response to the problem of excessive roflbacks when they simulated a telephone switching
system using unbounded Time Warp. The authors note that in a large telephone switching system, it took
much longer to perform a single run (from say logical time 0 to logical time 500), then it did to cover the
same virtual time period in five separate runs (i.e. 0-100, 100-200,300-400,400-500). This degradation in
performance was due to excessive rolibacks. The aothors noted an improvement of up to 78% when they

bounded the aggressiveness of Time Warp.

The Bounded Time Warp protocol is similar to the Filtered Rollback algorithm developed by

Lubachevsky ef @l (1989). This algorithm is essentially an aggressive version of the Bounded Lag

27

Algorithm discussed above, where the simulation window may be defined such that all processing within
the window is not gonaranteed to be correct. Any causality errors are corrected through the Time Warp
state saving and rollback mechanism. The goal of this algorithm is two fold. First, it decreases the
amount of blocking that may be required in his non-aggressive version of the algorithm. Second, it
decreases the probability of cascading rollbacks in an unbounded Time Warp. Lubachevsky developed a
model to show that the Filtered Rollback algorithm maintains the important scalability properties of the

Bounded Lag algorithm,

Madisetti, Hardaker and Fujimoto (1992) developed the Mindix Operating System which blends
characteristics of aggressive and non-aggressive protocols. The synchronization mechanism uses what
they term probabilistic synchronization, where resynchronization messages are periodically sent through
the system according to some probability distribution. When an LP receives a resynchronization message,
it deletes all of its input and output with a timestamp greater than that of the resynchronization message.
This mechanism is used to keep the LPs from getting too far out of synchronization with each other, thus
avoiding cascading rollbacks. This mechanism is not a windowing mechanism in that the LPs are not
forced to block at the end of a simulation window. Rather, the LPs are allowed to continue processing
without blocking, but are forced to resynchronize periodically. The authors give empirical results which
demonstrate that keeping the system loosely synchronized can offer on the order of a magnitude of

speedup over unbounded Time Warp.

As can be seen, there is much interest in biending aspects of aggressive and non-aggressive proto-
cols, The research presented in this thesis builds on the windowing algorithm developed by Nicol (1993),
where we define a mechanism to add aggressiveness to his non-aggressive protocol. We give the details
of this new algorithm in the next chapter. Our algorithm is similar to the other such algorithms discussed
ahove, and is most closely related to the Bounded Time Warp algorithm introduced by Turner and Xu
(1992), and the Filtered Rollback algorithm developed by Lubachevsky ef al. (1989). Thus we do not

claim that our algorithm is unique.

What separates our research from the other research discussed above i our analysis of this new

approach. We derive the expected improvement in performance of the aggressive windowing algorithm

28

compared with the non-aggressive version of the algorithm as a function of the level of aggressiveness.
Further, we derive the probability of a causality error, the probability that a given LP starts a roilback
chain by issuing an anti-message, the number of times an LP must save state, the expected number of
messages that must be reprocessed due o rolibacks and the probability that the longest rollback chain
observed in the system reaches depth D =d as a function of the level of aggressiveness. Thus while
many researchers have now accepted the idea of blending aspects of aggressive and non-aggressive pro-
tocols, this is the first time the relationship between the level of aggressiveness and these various perfor-
mance characteristics has been established, Also, the research presented here is one of only two models
(the other being Nicol 1991) which compares the performance of two competing approaches and includes

the major costs of each approach,

In the next section we review the other important analytic results which have been established for

parallel simulation.

2.5. Analytic Results

There is a small but growing set of analytic results for the expected performance of parallel simula-
tion protocols. It is generally agreed that this is a difficult problem, particularly as it relates to asynchro-
nous protocols. Much of the early modeling of Time Warp assumed a two processor system. Recent
work inclades the developmeht of maltiprocessor models to predict the behavior of Time Warp, but these
models generally assume negligible overhead costs. Other models have compared the performance of the
Chandy/Misra/Bryant Null Message protocol (a non-aggressive protocol) with Time Warp, and still oth-
ers have investigated optimality results for Time Warp. Again however these studies tend to assume
negligible overhead costs and are therefore of limited utility. In this section we review the major analytic

results established for parallel simulation.

As discussed by Lubachevsky (1989), a very important issue is if, as the simulation problem grows,
the overhead associated with the synchronization protocol grows at a much faster rate. Obviously models
that exclude or minimize overhead costs cannot answer this question. As pointed out by Lubachevsky

both Time Warp and the Chandy/Misra/Bryant Null Message protocol have the potential for explosive

25

overhead costs: Time Warp because of the potential for cascading rollbacks and increasing state saving
costs, and Null Messages because of the potential for an explosion of null messages. As mentioned
above, these types of scalability issues have been addressed for only a narrow class of synchronization

protocols.

2.5.1. Models Involving Time Warp

Mitra and Mitrani (1984) developed a two processor model to study the behavior of Time Warp. A
two processor model is chosen so as to avoid the complications of cascading rollbacks. In their model
rollback costs are assumed 1o be proportional 10 the rollback distance and the cost of state saving is not
considered in the model. Based on their model the authors conclude that if the rollback cosis are
sufficiently high, the optimal decision is to not perform the task at all. Also they show that as the costs of
roliback get more expensive there is more incentive to slow down the faster of the two processors. This

model has not been extended to more than two processors.

Aahlad and Browne (1988) develop a model showing that the echoing phenomenon can occur in
Time Warp. In their study an expression is derived showing the relationship between the cost of rollback
and forward processing that will lead to echoing. Their model is based on the assumption that the cost of
rollback is proportional to the rollback distance. Only when the roliback cost is sufficiently high will

echoing occur.

Lubachevsky (1989) developed an example using three processors demonstrating the echoing
phenomenon. He showed that as the example simulation progresses, the lengths of simulated time inter-
vals that must be rolled back and the number of incorrect messages processed also increase. Thus as the
simulation progresses, the amount of logical time advanced per unit of physical time decreases.
Lubachevsky assumes the cost of rofling back a process is the same as forward computation. Also he

ignores the cost of state saving during forward computation.

As noted in the last section, these models showing that echoing can occur have been validated in

studies by Turner and Xu (1992) where this phenomenon has been observed.

30

Other studies involving Time Warp assume either zero or negligible overhead costs. As would be

expected, these studies show the potential for excellent performance for Time Warp.

Lin and Lazowska (1990) present a model comparing the performance of Time Warp and the Null
Message protocol. State saving and rollback costs are assumed to be zero. Before giving the results of
their analysis three definitions are needed. A simulation is conservative optimal if it completes in the
time given by the critical path of the event-precedence graph. True computation is correct computation
and false computation is incorrect computation caused by aggressive processing. Assuming no overhead
cost, and assuming that true computation is never rolled back by false computation, the authors show that
Time Warp is conservative optimal using aggressive cancellation. They extend these results to show that
Time Warp using lazy cancellation can out-perform conservative optimal. This is because some correct
computation may be performed ahead of schedule due to aggressive computation. In essence correct
computation is performed for the wrong reason. The authors then relax the assumption that no correct
computation is ever rolled back by incorrect computation, but maintain the assumption of no overhead
costs. Under these assumptions they show that Time Warp always out-performs Null Messages for feed-
forward networks. Finally the authors prove that Time Warp out-performs the Null Message protocol in
most feedback networks without lookahead. However, as noted, they assume zero cost for rollback and

state saving.

Mizell and Lipton (1990) construct a model to perform a worst case analysis between Time Warp
and the Null Message protoco. The model assumes the state of an LP is saved after every message pro-
cessed, bat there is no state saving cost in the model. The cost of rolling back a process is assumed 1o be
constant and independent of the rollback distance. Using this model they show that there exists a simula-
tion such that Time Warp can arbitrarily out-perform the Null Message protocol. According to the
author’s definition Time Warp arbitrarily out performs the Null Message protocol if, in a simulation
involving P processors, Time Warp is proportional to P times faster than the Null Message protocol. The
authors then prove that the converse is not frue: There is no simulation problem such that the Null Mes-

sage protocol arbitrarily out-performs, in the same sense, Time Warp.

31

Madisetti, Walrand and Messerschdmitt (1990) develop a model for an optimistic system similar to
Time Warp in order to derive the average rate of progress of the system. In this model LPs are categor-
ized as either fast or slow, where the fast LPs progress at a rate at least twice as fast as the slow LPs.
Thus their model describes a highly unbalanced system. They study two rollback techniques: successive
and concurrent rollback. In the concurrent rollback scheme, when an LP in the fast set is rolled back by
an LP in the slow set, all other LPs in the fast set are also rolled back. This is done so as to avoid cascad-
ing roltbacks. The successive roflback scheme is the basic Time Warp approach where LPs are resyn-
chronized through the use of antimessages. They assume rollback costs are constant and independent of

the roilback distance.

The anthors assume that any rollbacks caused by an LP in the fast set communicating with another
LP in the fast set takes no time. Given this assumption, the authors state that resynchronizations among
the LPs in the fast set has no effect upon the rate of progress of the system. Using this model the authors
show that it is advantageous to force the fast set of LPs to resynchronize concurrently when one of the

members of the set is resynchronized by a slow LP.

Felderman and Kleinrock (1990) derive an upper bound on the improvement of Time Warp over a
time stepped simulation. In the model it is assumed Time Warp incurs no state saving or rollback coss.
The model of the time stepped simulation assumes that each LP has an event to process at each time step.
Thﬁs there are no idle processors at the beginning of any time increment. Under these assumptions the
authors show that, when the event computation time is exponentially distributed, the maximum improve-
ment of Time Warp over time stepped simulation is In (P) with P processors. When event computation
time is uniformly distributed the maximum speedup is shown to be approximately two, independent of

the number of processors.

Felderman and Kleinrock (1991) studied the improvement in performance of a two processor Time
Warp system over a single processor using the probability of an interaction between the processors as a
parameter to the model. Also, they added state saving costs to this model and derived the conditions
under which Time Warp would out-perform a sequential simulation. In this model they did not include

message queveing, and thus any messages received in the logical future of an LP are discarded. This two

32

processor model was extended to include message queueing in Feldermnan and Kleinrock (1992a). Also,
the authors (Felderman and Kleinrock 1992) develop a two processor model for a non-aggressive syn-

chronization mechanism and use their two processor mode} of Time Warp to compare the approaches.

Felderman and Kleinrock (1991a) develop a multiprocessor model to study the behavior of Time
Warp in the context of a self-initiating system with no lookahead. A self-initiating system is one where
the LP itself determines when it will re-evaluate its state, it is not determined by the receipt of external
messages. In the self-initiating model assumed by the authors, messages are used only for synchroniza-
tion purposes and do not carry any work. Thus when an LP receives a message in its logicat past it per-
forms a roliback, and when it receives a message in its future the message is discarded. Under these
assumptions, and the assumption of no state saving costs, the model predicts the rate of progress of a
Time Warp system. Under these same assumptions the authors demonstrate that the rate of progress of
the system scales well as the number of processors is increased. This represents the first scalability argu-
ment for Time Warp, but as noted the model does not include state saving costs and the messages

exchanged between the LPs do not contain any work.

Gupta, Akylidiz and Fujimoto (1991) develop a model to derive various performance measures for
Time Warp under the assumption of negligible overhead costs. They derive measurements such as the
fraction of processed events that are committed, the probability of a roliback, the expected length of a
rollback, and the fraction of time a processor remains idle. They then compare their results with an opera-
tional Time Warp system. The authors note that this is the first time the comparison between a model and
an actual implementation has been performed. The results obtained in their analysis are validated by their

empirical results.

2.5.2. Model Comparing Null Message Protocol and Time Stepped

Bailey and Snyder (1989) develop a model to compare the asynchronous Null Message protocol
(Chandy and Misra 1979) and a synchronous (time stepped) algorithm for parallel logic-level simulation.
Using their model they show that the asynchronous approach will always complete in time at least as fast

as the synchronous approach.

33

Bailey and Snyder state also that they use their model to compare Time Warp with the asynchro-
nous and synchronous approaches. They do not do this directly, but rather point to the Lin and Lazowska
paper discussed above (Lin and Lazowska 1990). Bailey and Snyder state, for a certain class of circuits,
that Lin and Lazowska proved the optimality of Time Warp. The class of circuits they discuss are those
without cycles, and thus fall into the general category of feedforward networks discussed by Lin and
Lazowska (1990). These results were established under the assumption of no overhead costs for Time
Warp for state saving and rollback, and assuming unlimited processors. Bailey and Snyder do develop an
example to show, without unlimited processors, that either the Null Message protocol or Time Warp can

complete faster depending on event scheduling.

2.5.3. Analysis of Global Windowing Algorithms

As discussed above an important question is whether the overhead associated with a given protocol
grows much faster than the size of the simulation problem. An important question pertaining to the win-
dowing protocols that are accurate and non-aggressive is whether a window that is small enough to
exclude event dependencies admits enough events to keep processors busy (Nicol 1993). In this section
we discuss analytic results that answer these questions for two iterative algorithms. Then we discuss other

important results established for one of the algorithms in this class.

Lubachevsky proved analytically two important properties of his Bounded Lag Algorithm. In
Lubachevsky (1988), it was shown that given P processors, the average number of instructions executed
for each event processed is O(log P). This includes the synchronization time of the P processors, as well
as all idling and busy waiting. Thus the amount of overhead associated with processing each event goes

up very slowly as the size of the architecture increases.

Also, Lubachevsky (19892a) addresses the issue of the scalability of the Bounded Lag Algorithm.
Before reviewing the results, it is important to state the major assumptions of his analysis. First, it is
assumed that given K nodes, on average at least an order K nodes have events within the window per
iteration. Second, it is assumed that the total number of events to be processed in the simulation run is

0 (X)) for K processors. Using these assumptions, as well as other less important assumptions, Lubachev-

34

sky proves the scalability of the Bounded Lag approach. It is shown that if it takes time T to complete a
simulation on one processor, then to simulate a K times Jarger problem using K processors it will take
O(T log K) time to complete. Thus the proof is addressing the situation where both the problem size and
the size of the architecture grow proportionately while other system parameters such as event density

remain constant,

Lubachevsky et al (1989) extend these scalability results to the Filtered Rolflback algorithm, which
as discussed in the previous section, adds aggressiveness to the Bounded Lag Algorithm. The authors
develop a model of a rollback tree in order to derive conditions under which cascading rollbacks will not
occur. They use these resuits, and the results established for the Bounded Lag algorithm, to demonstrate
that the Filtered Rollback algorithm maintains the log scalability features of the non-aggressive version of
the algorithm, They make no theoretical comparison of the performance of the Bounded Lag algorithm

with that of the Filtered Rollback algorithm.

Nicol (1993) also demonstrates the scalability of his windowing algorithm, but in the context of a
fixed size architecture. He shows as the problem size grows relative to a fixed architecture, the per event
overhead approaches O (log T) where T is the total number of events in the system. The event overhead
includes synchronization costs, event list manipulation, lookahead calculation and processor idle time due
to synchronization constraints. Thus the overhead of this method approaches the overhead of a sequential

simulation as the problem size increases.

Also Nicol demonstrates analytically that as the problem size grows the number of events available
for execution in a given iteration also grows. Given some constant minimum delay greater than zero, the
average number of events processed per window grows at least linearly as the total event rate in the simu-
lation increases. As pointed out by Nicol this shows that for large problems executed on medium size

machines there will generally be enough work to keep most processors from being idle.

Nicol (1991) gives an in-depth study of his iterative algorithm in the context of self-initiating simu-
lation models. Recall that a self initiating model is one where the LP itself determines when it will re-
evaluate its state, it is not determined by the receipt of external messages. For this class of simulations

Nicol develops upper and lower bounds on optimal performance, as well as upper bounds on Time

35

Warp’s performance and lower bounds on the iterative algorithm’s performance. The analysis of Time
Warp includes state saving and rollback costs. Also Nicol investigates the impact of message fan-out,
tookahead ability and the time-increment distribution on performance. To the best of our knowledge this
is the first paper to compare Time Warp and a non-aggressive protocol that includes most of the overhead
associated with both approaches. Also it is the first paper to give an in-depth analytic study of the sensi-
tivity of the protocol to factors such as message fan out and lookahead ability. For this reason we feel itis

important to outline the main results of the paper. We begin by describing the model.

In the model an LP advances its simulation time by executing some simulation activity termed a
cycle. At the end of one cycle the LP schedules the end of the next cycle. This scheduling is done
without regard to any messages received from any other LPs. After execution of a cycle the simulation
time is advanced by a random amount drawn from some probability distribution. For purposes of this dis-
cussion this probability distribution is termed the time-increment distribution. After an LP re-evaluates its
state it sends its new state to other LPs. The message fan-out is the number of LPs to which any given LP
may send its new state. The type of lookahead discussed in the paper is termed full lockahead meaning
that both the time and the content of the message can be predicted in advance. As pointed out by Nicol
the results established can be extended to systems with only time-lookahead where the time of the mes-

sage, but not the content, can be predicted.

The first result pertains to the effect of message fan-out for time-increment distributions such as ex-
ponential plus a non-negative constant, The first results are obtained under the assumption that no looka-
head is available. He shows the optimal processor utilization is SU/K where K is the message fan-out. If
the time-increment distribution is geometric with mean 1/p, thenas (1~p ¥ 50, processor utilization is

<p. If however one cycle full-lookahead is available, and the time-increment distribution is exponential

plus a constant, then processor utilization is 571.:. Thus it can be seen that both the message fan-out and
K

the ability to lookahead can dramatically affect performance.

Lower bounds for the performance of the iterative algorithm are given assuming the lime-

increment distribution is constant plus an exponential and one cycle full-lookahead is used. The cost of

36

global synchronization is excluded for these results. It is shown that if the ratio of the constant (o the
mean of the distribution is 0.25, the lower bound on performance is 20% processor utilization. If this ratio

is 1 then processor utilization is 50% and if it is 10 processor utilization is at least 91%.

Nicol also established an upper bound for the performance of Time Warp for this model. It is as-
sumed that Time Warp saves state before every cycle, that no lookahead is used, that rollback costs are
constant and that the costs of cascading rollbacks are ignored. It is shown that the upper bound on proces-

sor utilization under these assumplions is

N S
(C5(Crit 1K)

where C, is the cost of siate saving, Cpy, is the cost of rollback divided by two and K is the message fan-
out. Then Nicol uses the upper bound for Time Warp and the lower bound for the conservative protocol

to establish conditions under which the conservative protocol will out-perform Time Warp.

This is a very important paper in that it develops non-trivial upper bounds for the performance of
Time Warp while including the costs of state saving and roflback. Also is is important because guarantees

are developed for minimum performance of the iterative protocol.

As we have demonstrated, there is still much to be accomplished in the development of analytic
models for parallel simulation. The model developed in this dissertation makes a significant contribution
to this small set of analytic results. First, we develop an analytic model to compare the performance of
the non-aggressive version of Nicol's algorithm with our aggressive version. Our model is developed
under the assumption of a message-initiating model where an LP updates its state based on the receipt of
external messages. Thus in our model external messages carry work to be performed, and messages with
a timestamp in the logical future are queued for later processing. As discussed, we include the major
costs of both approaches in our model, and this represents the first time this is done for a message-
initiating simulation model. In fact, we compare the two approaches as a function of the primary costs of

each approach.

Another unique feature of this analysis is that we investigate the improvement in parallelism as g

function of the level of aggressiveness. As the level of aggressiveness increases, it is expected that the

37

costs associated with aggressive processing (such as causality errors and state saving costs) will increase.
We develop our model such that we can determine the relationship between the level of aggressiveness
and the costs associated with aggressive processing. This too is the first time this issue has been ad-

dressed.

In this analysis we make significant progress towards extending the scalability results obtained by
Nicol (1993) to the aggressive version of the algorithm. We theoretically demonstrate that the probability
of a causality error at a given LP, and the probability that an LP initiates a rollback chain by producing an
anti-message, do not increase as the number of LPs approaches infinity. Finally, we give simulation

results which agree with the predictions of our model.

In the next chapter we define the Global Windowing algorithm, and develop a preliminaty model to
study its performance. Also, we derive resulis which represent an important step towards proving
system-level scalability of our algorithm. Then we give simulation results which support the predictions

of our analytic model.

CHAPTER 3

The Aggressive Global Windowing Protocol

In the previous chapter we discussed the difficult synchronization issues encountered in parallel
discrete event simulation. Also, we discussed the various approaches developed to deal with these
difficult issues. As noted, a purely non-aggressive or a purely aggressive mechanism has inherent limita-

tions which we seek to overcome by developing a protocol which blends aspects of both approaches.

In this chapter we investigate the improvement in parallelism that is possible when aggressiveness
is added to an existing non-aggressive windowing algorithm. We define a simple mechanism, the aggres-
sive window, to introduce aggressiveness into the Global Windowing Algorithm. We study two basic is-
sues. First, we look at the extra parallelism made available by adding aggressiveness. Clearly this extra
parallelism is not as valuable if the aggressive processing leads to causality errors. For this reason we
also investigate the probability of a causality error as a result of aggressive processing. We do not define
a protocol 1o correct causality errors that occur as a result of this aggressive processing. This is done in
later chapters. In this chapter we develop an analytic model to show that significant gaing in parallelism
are possible given ¢ very limited amount of aggressive processing. Also, we show that the probability of a

causality error at a given LP is low because of the limited amount of aggressive processing we allow.

The rest of this chapter is organized as follows. In section 3.1 we give a brief description of non-
aggressive Global Windowing Algorithms and discuss the modifications required to make them aggres-
sive. In section 3.2 we develop our model to evaltuate the performance of our approach. In section 3.3 we
calculate the probability of a fault at a given LP. In section 3.4 we calculate the expected improvement in
parallelism as a result of aggressive processing. In section 3.5 we derive results which represent a
significant step towards proving the scalability of our approach. In section 3.6 we give simulation results

which test the predictive power of our model and in section 3.7 we give our conclusions.

38

39

3.1. The Aggressive Global Windowing Algorithm

As discussed in previous chapters, if events are not processed in correct timestamp order it is possi-
ble that dependencies among the events are violated. We say possible because it is not necessarily the
case that two events processed in non-increasing timestamp order have any dependence relationship.
Since it is not known a priori whether out of order processing results in a violation of event dependen-
cies, we make the worst case assumption that in each such case it does. Recall that we term this out of
order processing a causality error or fault. In previous chapters we have described many of the ap-
proaches used to prevent the violation of event dependencies, and other approaches that correct these vio-
lations when they occur. In this section we begin by describing the approach used by one class of syn-
chronization protocols, the Global Windowing Algorithms, to ensure that all event dependencies are

maintained. Then we describe how to modify this basic algorithm in order to enhance paralleiism.

The windowing protocols under discussion generally proceed in three phases. In the first phase, the
LPs cooperatively determine the synchronization window, The floor of the window is the minimum
timestamp over all unprocessed messages in the system. The ceiling of the window is chosen such that
all messages within the window can be executed concurrently without any possibility of a causality error.
We term this simulation window defined by the protocol the lookahead window and again note that it is
defined such that all events within the window can be processed concurrently without violating any event
dependencies. In the second phase, each LP executes all of its events with timestamps falling within the
lookahead window. In the third phase, the evenis generated as a result of execution within the lookahead
window are exchanged. Each phase is separated by a barrier synchronization. The primary difference
among the various windowing protocols is the mechanism used to determine the lookahead window.
Only those messages with timestamps falling within the lookahead window (where there is no possibility

of a causality error) are considered for execution.

Windowing algorithms, as all non-aggressive protocols, are criticized for not fully exploiting all of
the parallelism available in the simulation application (Fujimoto 1990). This is because an event will not
be executed if it is possible that some other event in the system can affect its execution. Thus if it is pos-

sible that one event’s execution can affect another event, but rarely does so, then the two events will be

40

executed sequentially even though most of the time they could be execuied concarrently.

One way to gain more parallelism in a windowing protocol is to extend the lookahead window and
allow the execution of conditional events, that is, those events that may have some event dependencies.
The benefit of this approach is that events that may affect each other, but rarely do, can be executed in
parallel, These events would be excluded from concurrent execution by the basic windowing algorithm
because of the possibility of an error. The disadvantage of this approach is that there must be some
mechanism to correct causality errors that do occur as a result of processing conditional events. Before
investigating the probability of a causality error we describe the modifications to the basic Global Win-
dowing Algorithm to allow aggressive processing: the processing of events that may lead to a causality

erTor.

Our approach is to extend the simulation window past the lookahead window established by the
non-agggessive protocol. Assume the system is synchronized at logical time T where T is the current win-
dow floor. The non-aggressive windowing algorithm defines the Jookahead window from logical time T
to logical time T+L, where L is the width of the lookahead window. Our modified algorithm defines an
extended simulation window from the upper bound of the Iookahead window (logical time T+L) to logi-
cal time T-+L+A. We term this extension to the lookahead window the aggressive window and note that it

has a length of A logical time units.

In our aggressive algorithm we allow events with timestamps falling within the aggressive window
to be processed as well as those events with timestamps falling within the lookahead window. This is

shown in Figure 3.1
.

nﬂln .4

T Til TeleA

A A A LY

Figure 3.1 - The Aggressive Window

41

Our modified windowing algorithm proceeds in two phases. In the first phase the LPs synchronize
to determine the lookahead window and the aggressive window. In the second phase, the LPs process all
events concurrently within these two windows. When an LP completes ail of its processing within both
windows it blocks waiting for other LPs to similarly complete.” As a result of processing within the loo-
kahead and the aggressive windows an LP may generate events o send to other LPs. We assume that
these events are sent as soon as they are generated. Further note that Nicol’s algorithm (and other win-
dowing algorithms) can also be defined to proceed in two phases rather than three by sending new events

as soon as they are generated,

As discussed above, all processing within the lookahead window is guaranteed to be correct. This
occurs because the window is constructed such that no LP will receive an event with a timestamp falling
within the lookahead window. Thus there can be no possibility of a causality error. Processing within the
aggressive window however (recall that we term this aggressive processing) can lead to causality errors.
This is because an LP can receive events with timestamps falling within the aggressive window such that
the timestamp of the received event is less than the timestamp of an event already processed. If errors do
oceur as a result of processing within the aggressive window there must be some mechanism to correct
the errors. We defer this important issue until Chapter 4 where we give a detailed description of our pro-

focol.

Given this brief description of our approach, we are able to develop our analytic model to investi-

gate the performance issues in which we are interested. We do this in the following sections.

3.2. Model

We are interested in the possible increase in available parallelism as a result of extending the loo-
kahead window to allow aggressive processing. When we discuss the improvement in parallelism we are
referring to the extra amount of processing that can be obtained between synchronization points with this

extension to the lookahead window. We define the parallelism of the non-aggressive protocol as the ex-

“We are temporarily ignoring the important issue of how an LP determines it has completed all of its processing within the
aggressive window. Further, we are temporarily ignoring how to implement a barrier synchronization given that an LP may discover
that it has not performed all of its processing and thus needs to pull out of the bartier. These issues are discussed in detail in
subsequent chapters.

42

pected number of messages processed within the lookahead window. We define the parallelism of the
modified algorithm as the expected number of messages processed successfully (i.e. processed without
later being invalidated by the receipt of another event with a smaller timestamp) in the aggressive win-
dow plus the number of messages processed in the lookahead window. We define the expected improve-
ment in paralielism as the ratio of these two quantities. Note that this measure does not include the cost of
correcting causality errors that occur as a result of aggressive processing. We modify our model to in-

clude this cost in the next chapter,

We are interested in two primary measurements. First, we seek the expected improvement in paral-
lelism as a function of the size of the aggressive window. Second, we are interested in the probability that
an event dependence is violated (i.e. a causality error) as we begin to process outside of the lookahead
window. We are interested in this error probability as a function of the size of the aggressive window.
This study represents the first time a model has been developed to study the expected increase in parallel-

ism and the probability of a causality error as a function of the level of aggressive processing.

The model developed in this chapter investigates the possible improvement in paralielism and the
probability of a causality error af a given LP. Thus the analysis in this chapter is not directly applicable
to the more complicated issue of system-level performance. We note however that the analysis presented
in this chapter is important in that it lays the foundation for the analysis of system-level performance

which is addressed in subsequent chapters.

Our model is closely related to the one developed by Nicol (1993) although he has not studied pro-
cessing outside of the Jookahead window. Also his model is more general than the one presented here in
that his captures general message exchange distributions. Our model is also closely related to the models
developed by Akyildiz et. al. (1992) and Gupta et. al. (1991), and uses the same assumptions. Akyildiz
and Gupta however are investigating the behavior of Time Warp which does not limit aggressive process-

ing as we are proposing.

We analyze our model as a collection of servers where activities occur, There are N LPs, one
server per LP and one LP per processor. The assumption of one LP per processor can be modified

without difficulty. An activity begins, ends and upon its completion canses other activities, In our model

43

each completion causes exactly one other activity. We assume the completion causes an activity at a
server that is picked at random where each server is equally likely to be chosen. This equally Likely as-
sumption is a common assumption in the modelling community and is used to make the analysis tractable

(Felderman and Kleinrock 19914, Gupta e/. al. 1991, Nicol 1991, Akyildiz et. al. 1992).

The delay in simulation time between when an activity begins and ends is called the duration of the
activity. We assume each server chooses the duration of an activity from an independent, identically dis-
tributed exponential distribution with mean 1/A. Our assumption of one server per LP implies that each

LP will impose some queueing discipline.

The model presented in this paper assumes a closed queueing system. Also we assume the system
is heavily loaded such that the probability of a server being idle is very close to zero. In Chapter 5 we re-

lax the assumption of a closed system and model an open system with external Poisson arrival streams.

The width of the lookahead window (L) at a given iteration of the protocol is a random variable.
We state without explanation that under our assumptions Z is closely approximated by the minimum of N
gamma distributed random variables, where each gamma is the sum of two independent, identically dis-
tributed exponential random variables with mean 1/ (see Nicol 1993). In the analysis to follow we treat
L as a constant equal to its expected value rather than as a random variable. This expected value can be
obtained analytically or through sample simulation runs. Below we demonstrate analytically why using
the expected value of L in our equations is very reasonable. Simulation studies support that using the ex-

pected value of L in our model provides excellent results.

As discussed above, there are two primary results in which we are interested. First, we seek the
probability of a fault {at a given LP) as a function of the aggressive window size. Second, we seek the ex-
pected possible increase in the level of parallelism due to aggressive pro'cessing as a function of the size
of the aggressive window. Before we are able to derive the results of interest it is necessary to develop

the terminology we will use in the remainder of this chapter.

44

3.2.1. Ferminoclogy

Recall that the lookahead window is the simulation window defined by the basic windowing proto-
col, and is defined such that all events within the window can be computed concurrently without possibil-
ity of a causality error. This is guaranteed because the window is constructed such that an LP will never
receive an event with a timestamp that falls within the lookahead window. When an LP completes com-
putation all of its events within the lookahead window it blocks waiting for all other LPs to similarly
complete. We define the aggressive window in order to increase the amount of processing the LPs per-
form before they enter ir_ato a global synchronization. While it is clear that a fully aggressive protocol al-
lows the most processing (since it never blocks if there is processing to perform), we are also interested
in maintaining the important scalability properties of the Global Windowing Algorithms. Also we are in-
terested in minimizing the overhead costs associated with state saving and rollback. Thus as discussed
above, we are interested in maximizing the advantages and minimizing the disadvantages of both the ag-
gressive and non-aggressive approaches. For this reason we allow some aggressive processing, but place

bounds on the level of aggressiveness.

Our analytic model focuses on the events within the aggressive window that an LP is allowed to
process aggressively. As discussed above, these events are not processed in the non-aggressive version of
 the algorithm (at least not until the events fall within a lookahead window established at a later time}. The
processing of events within the lookahead and aggressive windows may result in the generation of new
events. We make the assumption that an LP processes all of its events within both the lookahead and ag-
gressive windows before receiving any events from the other LPs. This assumption may not be strictly
true, but seems reasonable given a small aggressive window. Further, as we discuss below, this represents

the worst case assumption in terms of the amount of damage created by a causality error.

We need to define several terms used in the remainder of the analysis. First we define the term
"synchronization point" which is used frequently in our analysis. This refers to to the point in real time
when all of the LPs have completed their processing within the previous simulation window, the LPs
have synchronized globally and defined a new simulation window, and the LPs are ready to begin pro-

cessing in the new simulation window. We often refer to the logical time of this global synchronization

45

(i.e. the ceiling of the most recently processed simulation window and the floor of the new window being

established during the global synchronization) as logical time 7.

Also we often make statements such as "the events in the lookahead (aggressive) window at the
synchronization point". By this we are referring to those events with timestamps falling within the new
lookahead (aggressive) window just established during the global synchronization. These events will not
have been processed yet as they fall within the simulation window defined during the current global syn-
chronization. As noted above, we frequently use the term logical time T to denote the floor of this new

simulation window.

In order to define the other terms we frequently use it is necessary to discuss the aspects of Nicol’s
synchronization protocol that are critical to our analysis. In Nicol’s protocol each LP "pre-sends” its
completion messages. That is, the completion time of the activity, and the LP to receive this activity upon
its completion, are both calculated at the time an activity enters into service. The LP to receive this activi-
ty upon its completion is notified of this future arrival af the time the activity enters into service. Thus for
example assume activity A enters into service at LP; at logical time ¢ At the point when the activity is
taken off of the event list (or off of the server gueue) and placed into service the completion time of the
activity is computed. Assume this completion time is s = ¢ + d. At this same time the LP determines the
next 1P to receive this activity upon its completion (fogical time 5). Assume the LP to receive this activi-
ty at logical time s is LP;. At the wall-clock time that activity A is entered into service LP; sends a mes-
sage to LP; with timestamp s. This message informs LP; of the future arrival of activity A at logical time
5. The message sent from LP; to LP; to inform it of the future arrival is termed a "pre-sent” completion
message. Note that in our model these "pre-sent” completion messages are the only messages exchanged

by the LPs.

In our model there are only two types of events. One is the "pre-sent” completion message
described above which represents an arrival of an activity at a given LP. The other type of event is the
"complete_service" message which we describe in detail below. Even though there are only two distinct
event types in our system it is important to consider issues such as the real time these events are received

by an LP, and into which simulation window (i.e. the aggressive or lookahead window) the timestamp of

46

a particular event falls into. For this reason we define terminology to classify events based on these types

of considerations.

We refer to those events with timestamps that fall within the aggressive window at the synchroni-
zation point as aggressive messages. These are the events processed between global synchronization
points in the aggressive version of the algorithm that are not processed in the non-aggressive version of
the algorithm. As discussed above, new events (i.e. "pre-sent" completion messages) may be generated as
a result of processing within the lookahead and the aggressive windows. Due to the construction of the
lookahead window it is guaranteed that none of these new events will have a timestamp which falls
within the lookahead window. It is possible however that a newly generated event will have a timestamp
that falls within the aggressive window. Recall these events are sent at the physical time they are generat-
ed. Thus it is possible that an LP will have completed the processing of its events within the aggressive
window, and then at a later point in real time receive another event (i.e. a "pre-sent” completion message)
with a timestamp that falls within the aggressive window. We define an arrival message as an event gen-
erated as a result of processing within the simulation window (and given that all events are sent as soon
as they are generated this event will be received by some LP in the system) such that the timestamp of the
event falls within the aggressive window. Arrival messages are important because it is possible to receive
such a message with a timestamp less than that of an event processed aggressively. Thus the receipt of
the arrival message may constitute a causality error (i.e. out of order processing has occurred). An exam-

ple should help clarify these ideas.

Assume the LPs are processing concurrently within the simulation window defined in the previous
global synchronization. We show the event lst of some LP; in Figure 3.2. Note that the "X" represents an
event and the number under the event represents its timestamp. Also we show the logical time of the
current simulation window floor (fogical time ten), the upper-bound of the lookahead window (logical
time twelve), and the upper bound of the aggressive window (logical time fifteen). L; processes all of its
evenls with timestamps between logical time ten and logical time fifteen (the lookahead and aggressive
windows), but does not consider the events with timestamps greater than fifteen for execution. In the

non-aggressive version of the algorithm LP; would process only the event with timestamp eleven. Furth-

47

T T+ Talsh

| 13 |16 18 21
10 12 15

Figure 3.2 - Event List of LP;
er, all events with timestamps less than ten will have been processed in previous iterations of the proto-
col. Assume LF; has completed processing all of its events with timestamps between logical time ten and

logical time fifteen, and is blocked waiting for the other LPs to similarly complete.

Assume some other LP in the system LP; places an activity into service at logical time eleven
which completes service at logical time fourteen. Further assume LP; is to receive this activity upon its
completion. When LP; places the activity into service it calculates the completion time of the activity and
the LP to receive the activity upon its completion. Thus LF; will send a "pre-sent” completion message to
LP; with timestamp fourteen af the time LP; enters the activity into service. The "pre-sent” completion
message informs LP; of this future arrival, Assume also that some LP, sends LF; a "pre-sent” completion

message with timestamp twenty two.

The “pre-sent” completion message received by LP; with timestamp fourteen is an arrival message
because the timestamp of the message falls within the current aggressive window. While it is certainly
possible that an arrival message can lead to a causality error this particular message does not since its
timestamp is greater than any events processed aggressively. Thus no out of order processing has oc-
curred. The "pre-sent” completion message sent by LP, is not an arrival message since its timestamp
falls outside of the current aggressive window. Purthermore, LP; processes the arrival event when it is re-

ceived (and the event from LP, is not processed in this iteration of the algorithm).

Now assume the LPs have all completed their processing within the simulation window and have
synchronized globally to determine the next simulation window. We term this the synchronization point,
and the logical time of this synchronization is logical time fifteen, the upper bound of the previous simu-

lation window (and the lower bound of the new simulation window to be defined). Assume the new loo-

48

kahead window extends from logical time fifteen to logical time seventeen and thus has a width of two
logical units. Further assume the aggressive window extends from logical time seventeen to Jogical time
nineteen. Now that the new simulation window is defined we refer to the floor of this new window as

logical time 7. Thus logical time T=15 in this iteration of the algorithm. This is shown in Figure 3.3.

At this point the LPs have synchronized globally, defined the new simulation window and are
ready to begin processing concurrently. Note LP; has one event within the new lookahead window and
one event within the new aggressive window. These are the events we refer to as "being in the lookahead
(aggressive) window at the synchronization point (or logical time T)". That is, these are the events with
timestamps that fall within the new lookahead (aggressive) window just defined during the global syn-
chronization. The event with timestamp eighteen is also referred to as an aggressive message since its
timestamp falls within the aggressive window. It is termed an aggressive message because the (aggres-
sive) processing of this event may result in a causality error. After the new simulation window is defined,

the LPs again process their events with timestamps falling within the new simulation window.

Recall our assumption that all events within the aggressive window have been processed by the
time an LP receives its first arrival message. This is the worst case assumption as we now demonstrate.
Assume an LP has two events within the aggressive window, one with a timestamp of twelve, and one
with a timestamp of fifteen, Purther, assume the LP receives an arrival message with a timestamp of thir-
teen. If the LP has processed both aggressive messages before receiving the arrival message, then the
event with timestamp fifteen will be invalidated. If we do not assume all aggressive messages are pro-

cessed before the LP receives its first arrival message, then the LP may receive the arrival message before

T T+b TalsA

16 | 18 1 22
B 17 0

Figure 3.3 - Event List of LP;

49

the event with a timestamp of fifteen is processed. In this case the arrival message would be processed
first, and then the event with timestamp fifteen would be processed. Thus the receipt of the arrival mes-
sage would not result in a causality etror, and the event with a timestamp of fifteen would not have to be
reprocessed. Since we cannot determine the real time order in which aggressive messages will be pro-
cessed and the arrival messages received, we make the worst case assumption regarding this real time
order. Now that we have defined our terminology, and clarified our assumptions regarding the real time

ordering of events, we can proceed with our analysis.

In order to calculate the expected number of aggressive messages processed without a causality er-
ror, and to calculate the probability of a causality error at a given LP, there are several steps that must be
accomplished. First, we need to determine the distribution of the number of messages in the aggressive
window at the synchronization point (logical time 7). This is the number of messages that an LP can pro-
cess aggressively and represents the extra processing performed in the aggressive version of the algo-
rithm between global synchronization points. Second, we need to determine the distribution of the
number of messages in the lookahead window at logical time T. This determines the number of messages
processed in the non-aggressive version of the algorithm between global synchronization points. Third,
we need the distribution of the number of messages that subsequently arrive in the aggressive window
(i.e. the arrival messages). As mentioned above, these messages are important because the receipt of such
a message can potentially result in a causality error. Fourth, we need the distribution of the timestamps
of messages in the aggressive window at logical time 7. That is, we need to determine how the times-
tamps of messages in the aggressive window at the synchronization point are distributed within the win-
dow. Finally, we need the distribution of the timestamps of arrival messages. This tells us how the
timestamps of arrival messages are distributed within the aggressive window. The timestamp distribution
of the aggressive messages and the arrival messages determine the probability that an arrival message in-
validates a message processed in the aggressive window. In the following sections we determine the dis-

tributions of each of these items.

50

3.2.2. Number of Messages in Aggressive Window at the Synchronization Point

For our analysis, the important aspect of the "pre-sending” of completion messages is that there
will be one "pre-sent” completion message for every LP that is busy. Further, if the system is synchron-
ized at some logical time T, each such "pre-sent" message will have a timestamp greater than or equal to
T. This is because Nicol’s algorithm (as well as our modified algorithm) guarantees that once the system

synchronizes at logical time T, there are no unprocessed events in the system with imestamp less than T.

For the remainder of this chapter we define K as the random variable representing the number of
"pre-sent” completion messages received by a given LP, Our first task in determining the distribution of
the number of messages in the aggressive window at logical time T is to determine the probability that a
particular LP receives K=k "pre-sent” completion messages. Recall the assumption that the probability
of an idle server is very low. This implies that with high probability each LP is busy with an activity that
began service at logical time s < T, completes setvice at logical time T" > T, and whose completion mes-
sage wag pre-sent. As discussed above, this "pre-sent” completion message represents the completion
time of the activity currently receiving service (and thus the time the activity will arrive at the given LP).
Due to the assumption that each LP is equally likely to receive a given "pre-sent” completion message the

number of such messages received by a given LP is binomially distributed.

3.1

1y N !
P{ LP receives k completion messages } = (L/N)* ((NN 1)) N

kN K

In Equation (3.1) there is a large number of independent trials (N) and the probability of success
(P) at any trial is small (1/N). Let A; = NP = 1, the probability of success at any trial times the number of
trials. As shown by Breiman (1986), the Binomial distribution is approximated very closely by that of the
Poisson distribution (with rate A; = NP) in the case where P is small and N is large. This is the case in
Equation (3.1) and we conclude that the probability of a given LP receiving k pre-sent completion mes-
sages is closely approximated by the Poisson distribution with rate A;=1.

-1

e (3.2)

P [LP receives k completion messages } =

Now consider the distribution of the timestamp of a "pre-sent” completion message that has been

received by a given LP up to the time the LPs synchronize at logical time T. Due to the memoryless pro-

51

perty of the exponential distribution, the residual service time of the activity is also exponentially distri-
buted. Thus the distribution of the timestamp of a "pre-sent” completion message, given that the times-
tamp is greater than logical time T, is also exponentially distributed. This implies we can view the system
as probabilistically restarting at logical time T”. For this reason in the equations that follow we define the
aggressive window as falling between logical times L and L+A rather than as falling between logical
times T+L and T+L+A (ie. we set T=0). Similarly, we often set L = 0 when we are discussing events
that occur within the aggressive window. Thus we often define the aggressive window as falling in the in-

terval O .. A rather than in the interval L .. L+A.

Given the timestamp distribution of "pre-sent” completion messages, and the distribution of the
number of such messages received, we can compute the distribution of the number of messages with
timestamps falling within the aggressive window (L,L+A4). Consider the probability that exactly one of
the k "pre-sent” completion messages received by an LP falls within the aggressive window. In order for
this to occur, exactly one of the &k messages received by the LP must have a timestamp within the aggres-
sive window, and all of the other k—1 messages must have timestamps outside of the aggressive window.
Given that we know the timestamp distribution of "pre-sent” completion messages we can calculate the
probability that such a message falls within the aggressive window. The probability that a "pre-sent”
completion message with timestamp X = x falls within the aggressive window is

P (x in Agg. Window) = ™™ — g ML) 3.3)
The probability that X =x falls outside of the aggressive window is one minus the proability that it falls
within the window.

P (x not in Agg. Window) = 1—(e M—g=hL+a)y (3.4)
Let / be the random variable representing the number of messages received by a given LP with times-
tamps which fall within the aggressive window. The probability that I = i messages fall within the aggres-

sive window given that an LP receives X =k messages is

*We note that logical time T is defined by the protocol and thus it is an approximation to state that the system
probabilistically restarts at logical time T. As will be seen however this approximation provides excellent results. Nicol (1993) may
be consulted for a discussion of why this is an approximation.

52

k!
ik-Dt

In Equation (3.5), the (¢ —e)Y (erm is the probability of i independent messages falling

P =i K=k)= (e Mg MR (1ogPlyp MLy (3.5)

within the aggressive window. The (I—e*4e &) term is the probability that the other k—i mes-

!
sages fall outside of the aggressive window. The ﬁ{i\:—l)‘ term is the number of combinations of i mes-

sages out of & total messages that can fall within the aggressive window.
Equation (3.5) gives the probability of /=i messages falling within the aggressive window given
that & messages are received. In order to uncondition this expression we need to sum over all possible

values of K times the probability of K=£.

N -1 . R
P{i messages in Agg. Window) = Z%(e'”—e‘m’*““)‘ (1—e‘“~é~e”1{"+”‘))""‘ﬁ-(~f«3w5?. (3.6)
kmi . - ey -

We can rewrite Equation (3.6) in the following way.

-1 Ny ehL =MLYy
P{i messages in Agg. Window} = e,—‘(e“7“"—«2“"?‘“r""“"))z ¥ (e +f. ") 3.7
[k=i (k l‘)'
Let j = k—{ and rewrite the summation.
% (1_6—3\11 +€~?\.(L+A))Fc»i _ N”(l——e'”‘%— e—?»(L+A))j (3 8)
ot (k=D = j! '
Recali the following identity.
Jl j!
Thus as N goes to infinity (and i<N), we have
N—i AL —ALAA)Y
(1-e + ¢ Yoo g~ Mg MEAA)

We use this resulf as an approximation.
oo
Equation (3.9) is very good for large N because ¥, »fw;» converges to e* very quickly when x<1. In
j=0 I

Bquation (3.8) 1—e *4¢ M%) g less than one as it represents the probability of an exponential random

variable being outside of 2 given range.

53

Rewrite Equation (3.7) using the approximation given in Equation(3.9).

(e R -?L(L+A)): . (gAY

- 3.10)
i}

P{i Messages in Agg. Window}=
We conclude that a very reasonable approximation of the probability distribution for the number of mes-

sages in the aggressive window at time T is the Poisson distribution with parameter ¢™— g+,

Also we are interested in the number of messages in the lookahead window at the synchronization
point. Given (our approximation) that the system probabilistically restarts at Jogical time T, we can view
the lookahead window as extending from logical time 0 .. L. To compute the number of messages in a
window extending from logical time 0 .. L we substitute 0 for L, and L for A in Equation (3.10). After
making this substitution we see that a reasonable approximation for the number of messages in the looka-

head window at the synchronization point is the Poisson distribution with parameter 1-¢,

VAN .
e t;! Yo - e (3.11)

P {j messages in lookahead window}

3.2.2.1. Complete_Service Message

In the sections above we derived the probability distribution of the number of "pre-sent” comple-
tion messages in the aggressive window at logical time 7. In addition to pre-sending the completion mes-
sage 1o the receiving LP, an LP also schedules a completion message on its own event list. This second
type of event we refer to as a "complete_service” message. This event represents the completion of the
service requirements of the activity currently receiving service. The processing of the
"complete_service” message consists of determining the next activity to receive service, determining the
LP to receive this next activity upon its completion, sending the "pre-sent” completion message to the LP
which will receive this activity upon its completion, and any statistics gathering required for the simula-
tion. Thus for every server that is busy there is one "pre-sent" completion message (sent to the LP to re-
ceive the activity upon its completion) and one "complete_service” message scheduled on its own event
list to signify that the activity has completed its service requirements. Note that since LPs "pre-send” their
completion messages, there is no need to send another message when the "complete_service" message is
processed. This is because the "pre-sent” completion message has already informed the LP to receive this

activity upon its completion ion the future arrival.

54

Consider the "complete_service” message. If the timestamp of this message falls within the ag-
gressive window it affects the number of messages processed aggressively. If it falls within the Tooka-
head window it affects the number of unconditional messages processed. Due to the relatively smail
number of messages processed per window (per LP) it is important to consider the effects of the

"complete_service” message.

Recall our assumption that the probability of an idle server is very low. Therefore it is with high
probability that each LP will always have a "complete_service” message scheduled somewhese on its
event list, Our analysis of the closed system assumes this will always be the case. As will be seen in
Chapter 5, this assumption can be modified to reflect the probability of a “complete_service” message

(i.e. the probability that a server is busy) without difficulty.

Due to the memoryless property of the exponential distribution, the residual service time of the ac-
tivity receiving service at the synchronization point is also exponentiaily distributed”. Thus the times-
tamp of the "complete_service” message denoting this service completion is exponentially distributed
from logical time T. The probability that the "complete_service” message falls within the lookahead win-
dow (given that the timestamp of the message is greater than T) is 1 M and the probability that it falls
within the aggressive window is ¢ M—e ™ Given this, we can recompute the distribution for the

number of messages within the aggressive window at the synchronization point for a given LP.

Let J as the random variable representing the total number of messages within the aggressive win-
dow at the synchronization point, including the “pre-sent” completion messages and the
“complete_service” message. In order to have J =0 messages in the aggressive window the LP must have
no “"pre-sent” completion messages and the "complete_service" message must fall outside of the aggres-
sive window. We give this probability below.,

P(I=0)= P (i=0,C) = ™€~ (g Mgty (3.12)
In Equation (3.12) the P (i=0) term is the probability of having zero "pre-sent” completion messages in

the aggressive window (this probability is given in Equation (3.10)). The C term is the probability of the

* We again note that it is an approximation to state that the residual service is exponentially distributed. This is because the
synchronization point 7' is chosen by the protocol, and thus there is some conditioning. As will be seen however the approxhnation
is quite good,

55

"complete_service” message falling outside of the aggressive window.

Now consider the probability of J = j messages within the aggressive window where j = 1.. One
way this can occur is for the LP to have i=j "pre-sent" completion messages within the aggressive win-
dow, and not have the "complete_service” message fall within the aggressive window, Alternatively, the
LP may have i=j—1 "pre-sent" completion messages and the "complete_service” message within the ag-

gressive window. This probability is given below.

P(I=f,j>0)=P (i=j-1,C) + P(i=},C) = (3.13)
(Mg ML+~ o) AL)
j-1
.\ (e—u.,_e‘MLM))j em(e_uwemm.m})(1_6,_%_6_1&4_‘4))‘
J!

In Equation (3.13) /=i is the number of "pre-sent” completion messages within the aggressive window

and C is the probability that the "complete_service” message falls within the aggressive window.

Similar arguments show that the probability of M =0 messages in the lookahead window is
P (M=0)=¢~0=" (1—¢), (3.14)
The probability of M 21 messages in the lookahead window is

P(M:m,mzl); M}i e"(l—evm') e"‘a-[d + w_:.{m

p — e ™Y (e, (3.15)

It is important to remember that Equation (3.13) gives the probability of M =m messages (events) in
the aggressive window at the synchronization point. These messages are important because they
represent the extra processing between global synchronization points performed in the aggressive version

of the algorithm that are not performed in the non-aggressive version.

3.2.3. Distribution of Arrival Messages

As discussed in previous sections, the non-aggressive algorithm guarantees that once the lookahead
window is defined an LP cannot receive an event with a timestamp that falls within the lookahead win-
dow. As noted, this implies that all LPs can process concurrently all events within the lookahead window
without any possibility of a causality error. It is quite possible however that events processed within the

lookahead window will generate events with timestamps that fall within the aggressive window. It is also

56

possible that processing events within the aggressive window will generate events with timestamps that
again fall within the aggressive window. In either case, events that are received by an LP with a times-
tamp that falls within the aggressive window are termed arrival messages. We now determine the distri-

bution of the number of arrival messages received by a given LP.

The duration of an activity at a server is exponentially distributed with mean 1/A. Due to our as-
sumption of a heavily loaded system we know that the output of a given server is a Poisson process with
rate A. Due 1o the independence of the N servers in the system, the system output will be the merging of
N independent Poisson streams. Thus the system output rate will be Poisson distributed with rate NA. As

each LP is equally likely to receive an activity upon completion the system output stream forks into N in-

dependent Poisson streams. The input rate to any given LP is therefore Poisson with rate —A—% = A.

We now have enough information to determine the probability distribution of the number of arrival
messages. As discussed above, the total input process into a given LP is Poisson with rate A. The aggres-
sive window has a width of A logical time units, and thus the total number of messages that will fall
within the aggressive is Poisson distributed with rate AA. There are two ways in which messages can
land within the aggressive window. First, messages can be present in the aggressive window at the syn-
chronization point. Recall in Equation (3.10) we showed that the number of messages present in the ag-

“AL_p=ML+4) - Second,

gressive window at the synchronization point is Poisson distributed with rate ¢
messages can arrive into the aggressive window as a result of the LPs processing through the aggressive

window (i.e. the arrival messages).

Let X be the random variable representing the total number of messages that fail within the aggres-
sive window, let ¥ be the random variable denoting the number of messages in the aggressive window at
the synchronization point, and let Z be the random variable representing the number of arrival messages.
Then X =Y + Z. By the additive property of the Poisson distribution, X is Poisson distributed with a rate
equal to the sum of the rates of Y and Z. We know 7 is Poisson distributed with rate e e 20 Let

Aarrivat b€ the rate of Z. Then

A A = gyrivay + (¢ Mg MEHAY) (3.16)

57

We now solve for Ayrivar-

;\'Arrival =A A_[BMM~EWK(L+A}] (3 1?)
We conclude that the distribution for the number of arrival messages is Poisson with rate
A A—(e Mg L)y et J be the random variable representing the number of arrival messages. Then

(M _ (e_',u, _ e-«';\,(L-!—A)))] e"(M ..(e““—e“m"”"’))
J1

P(J=f)= (3.18)

3.2.4. Timestamp Distribution

In this section we derive the timestamp distribution for the aggressive messages: those events with
timestamps that fall within the aggressive window at the synchronization point. Also, we derive the
timestamp distribution for arrival messages. We need these distributions in order to predict the probabili-
ty of a causality error, and in order to predict the expected improvement due to aggressive processing.
We begin by examining those events with timestamps falling within the aggressive window at the syn-

chronization point,

We seek the timestamp distribution for the events within the aggressive window at logical time 7.
As discussed above, there are two types of events that may be in the aggressive window. First, there may
be “pre-sent” completion messages representing the future arrival of an activity. The other type of event
is the "complete_service" message which the given LP has scheduled on its own event list, Recall that
this event denotes the completion of the activity currently receiving service at the given LP. We first
consider the "pre-sent” completion messages, representing the future arrival of an activity to the given

LP.

As noted, a "pre-sent” completion message (in the aggressive window at the synchronization point)
represents the completion times of some activity that began service at logical time s < T and completes
setvice at logical time T° > T. We are interested in the distribution of the residual service time given that
the activity is stifl in service at logical time T. Recall that alf service times are iid exponential random
variables with mean 1/A. Due to the memoryless property of the exponential, the residual service time
will also be exponentially distributed. Thus if the timestamp of the "pre-sent” completion message falls

within the aggressive window it will be a conditional exponential. That is, the timestamp is exponentially

58

distributed conditioned on being within the aggressive window. This distribution is given below,

~hx
pdf (x tLgxsmA)uﬁ% (3.19)

Equation (3.19) is obtained from the definition of conditional probability. The numerator s the ex-
ponential density function, and the denominator is the probability that an exponentially distributed ran-
dom variable falls within the aggressive window (given that it is greater than the synchronization point

T}, If we Iet L = 0 in Equation (3.19) we can rewrite the pdf in the following way.

Ae ™M

pdf (x 10sxsA) = =Y
- e

Given the memoryless property of the exponential, we can use this alternate form of the pdf when we
know that the timestamp in question lies within the aggressive window. We generally use this form of the

pdf in the analysis that follows.

This same analysis applies to the timestamp of a "complete_service” message that falls within the
aggressive window (at the synchronization point). The "complete_service” message represents the com-
pletion of an activity that begins service at logical time s < T, and completes service at logical time
T’ > T. Given that the service time is exponentially distributed, the residual service time is also exponen-
tially distributed. Thus if the completion time of the activity falls within the aggressive window, the
timestamp of the "complete_service” message denoting this completion will be a conditional exponential,
again conditioned on being within the aggressive window. The timestamp distribution of a
"complete_service" message that falls within the aggressive window will therefore also have the distribu-

tion given in Equation (3.19).

The timestamp distribution of an arrival message is more difficult to determine. Recall that an ar-
rival message is a "pre-sent” completion message received by an LP such that the timestamp of the mes-
sage falls within the aggressive window. An example should serve to demonstrate the timestamp distribu-

tion of an arrival message.

Assume LP; has a "complete_service” message with timestamp ¢, that falls within the lookahead
window. As discussed, this "complete_service” message represents the completion time of the activity

currently receiving service at LP;. Assume LP; processes the "complete_service” message with times-

59

tamp ¢, and that there exists another activity, A,, to enter into service. The processing of the
"complete_service” message involves (among other things) determining the LP to receive activity A
upon its completion, The completion time of activity A ; is the sum of logical time ¢, (the logical time it
enters into service) and an exponential random variable with mean 1/A, Let £ =¢; -+ & be the completion
time of activity 4|, where £ is an exponential random variable with mean 1/A. Assume this completion
time falls within the aggressive window. As discussed, one result of processing the "complete_service”
message is that LP; will send a "pre-sent” completion message with timestamp ¢, 1o the LP to receive ac-
tivity A, upon its completion. A}sé, LP; will schedule another "complete_service” message on iis own

event list with timestamp ¢, denoting the service completion of activity A). This is shown in Figure 3 4.

Note the "pre-sent” completion message sent by LP; (with timestamp ¢,) will be an arrival message
to the LP which receives this message. We seek the timestamp distribution of this arrival message, or al-
ternatively, we seek the distribution for timestamp 5. We know ¢, falls within the aggressive window.
Due to the memoryless property of the exponential, we know that the distribution of £,, given that it falls
within the aggressive window, is a conditional exponential, conditioned on being within the aggressive
window. We define a first generation arrival message as an arrival message with a timestamp that is tfie
sum of a) the timestamp of a "complete_service" message that falls within the lookahead window, and b)
an exponential random variable with mean 1/A. Note the timestamp distribution of a first generation ar-
rival message is the same as that given in Equation (3.19). Clearly the "complete_service" message with
timestamp ¢, (the "complete_service" message which produced the first generation arrival message) has

this same timestamp distribution. Also we term a "complete_service” message with a timestamp that is a

T T T+L+h

Figure 3.4 - Complete Service Messages

60

conditional exponential a first generation "complete_service” message. Thus first generation arrival mes-
sages (and first generation "complete_service” messages), and events with timestamps that fall within the

aggressive window at the synchronization point, have the same timestamp distribution.

Now assume LP; processes the first generation "complete_service" message (with timestamp ¢,)
and there exists another activity, A,, to enter into service. As a result of processing this
“complete_service" message LP; will generate another "complete_service" message denoting the service
completion of activity A,. Let £3 = 5 + & be the completion time of activity A ,, and thus the timestamp
of the "pre—Sent" completion message sent to the LP to receive A, upon its completion, as well as the
"complete_service” message denoting the service completion of A,. Assume ¢4 also falls within the ag-
gressive window, and thus the LP that receives activity A, upon its completion will receive an arrival

message with timestamp ¢3. We are interested in the timestamp distribution of this arrival message.

Timestamp ¢4 is the sum of a conditional exponential and an exponential random variable with
mean 1/A. Thus it is also a conditional exponential, in this case conditioned on being between the times-
tamp of the first generation "complete_service” message which produced it and the upper bound of the
aggressive window. We term the arrival message with such a distribution a second generation arrival
message. Similarly, we term the "complete_service" message with timestamp 3 a second generation

"complete_service" message. We give the pdf of this timestamp distribution below.

—Ats ?\‘E ~Aty

4 Ae
paf (¢5) = [—1 dt (3.20)
¢ e

™M 1™
In Equation (3.20) the first term is the conditional exponential distribution of ¢3, conditioned on being
between logical time ¢, and the upper bound of the aggressive window. Then we uncondition this distri-
bution by integrating over all possible values of ¢, times the probability of r,. This is the second term

where ¢, is a conditional exponential, conditioned on being within the aggressive window.

There is one other way that an LP can produce an arrival message with the distribution given in
Equation (3.20). Recall A is the activity receiving service at the synchronization point. If A, completes
service within the aggressive window rather than within the lookahead window, the timestamp of the

corresponding "complete_service" message will also be a conditional exponential, and have the times-

61

tamp distribution given in Equation (3.19). For this reason it would also be what we term a first genera-
tion "complete_service" message. If the activity placed into service as a result of processing this
"complete_service" message also falls within the aggressive window it would have the timestamp distri-

bution given in Equation (3.20).

Clearly there can be third and higher order generation arrival messages as well. The probability of

such an arrival message is dependent upon the size of the aggressive window.

As can be seen, the timestamp distribution of an arrival message is dependent upon the cir-
cumstances under which the arrival message is generated. If it is a first generation arrival message, it will
have a timestamp that is a conditional exponential. If it is a second generation arrival message, it will
have the timestamp distribution given in Equation (3.20) and so forth. We give the first three terms of this
conditional distribution below. In this equation ¢ is the timestamp of an arrival message, and timestamps

t4 and £ have the dismibutions given above,

paf (6= (3.21)

Kf-?“

f—eM

s P (Arrival is st gen. arrival)

~At —Aly
~+~j ~17:f Y, 1?\' vy dty P (Arrival is 2nd gen. arrival)
ﬁ Ae™ Ae M e
+
A e Mg M A M

dty dty P (Arrival is 3rd gen. arrival)...

In order to uncondition this expression we need to calculate the probability of an Nth generation arrival

message. We do this in the following section.

3.2.4.1. Probability of an Nth Generation Arrival Message

An LP produces a first generation arrival message when it processes a "complete_service” message
with a timestamp that falls within the lookahead window and the completion time of the next activity to
receive service falls within the aggressive window. Consider the probability that an LP has a
"complete_service” message with a timestamp that falls within the lookahead window. Recall our as-

sumption that with high probability each server will always be busy, and thus with high probability each

62

LP will have a "complete_service” message somewhere on its event list. We seek the probability that this
"cdmplete_service" message has a timestamp that falls within the lookahead window. Equivalently, we
seek the probability that an activity which is receiving service at logical time T (the synchronization
point) completes service in the interval T,T+L. Due to the memoryless property of the exponential, the
probability that the activity completes in the interval T,T+L, given that the completion time of the activity

is greater than T, is 1 — e,

Given a first generation "complete_service" message, the next activity to enter into service must
complete within the aggressive window in order to produce a first generation arrival message. Note the
lookahead window is constructed such that any” activity which begins service within the window will
have a completion time greater than L, the upper bound of the lookahead window. Thus we seek the pro-
bability that the activity completes in the interval L,L+A, given that this completion time is greater than
L. Due to the memoryless property of the exponential this probability is 1 - e~ . We can now calculate

the probability that a given LP produces a first generation arrival message.

P (13t generation arrivaly= (1 — e My (1 -7, (22)

The probability that an LP produces a second generation arrival message is computed in a similar
manner. As discussed above, a second generation arrival message can be produced in two ways. First, the
LP can process the "complete_service” message within the lookahead window, this activity completes
within the aggressive window (thus producing a first generation arrival and "complete_service" message),
and the next activity to enter into service also completes within the aggressive window. Second, the
"complete_service" message representing the completion time of the activity receiving service at the syn-
chronization point may fall within the aggressive window (and is therefore a first generation
"complete_service" message). If the next activity to enter into service also completes within the aggres-
sive window this will cause a second generation arrival message to be produced. In either case, the LP

must process a first generation "complete, service" message, and the next activity to enter into service

* This is not strictly true since the lookahead window is defined such that exacily one activity will complete service at logical
time T +L, i.e. the upper bound of the lookahead window. We ignore this one completion time for the moment and discuss it in
more detail below. The reader interested in a detailed description of the construction of the lookahead window is directed to Nicol
(1993).

63

must complete within the aggressive window. We first compute the probability that an activity placed
into service as a result of processing a first generation "complete_service” message completes within the

aggressive window.

We seek the probability that an activity which begins service as a result of processing a first gen-
eration "complete_service" message will have a completion time that again falls within the aggressive
window. Recall that one aspect of processing a "complete_service” message is to determine the comple-
tion time of the next activity to enter into service. As we have shown, the completion time of the next ac-
tivity to enter into service is the sum of the timestamp of the "complete_service” message and an ex-
ponential random variable with mean 1/A. Given a first generation “"complete_service" message with
timestamp §=s within the aggressive window, we seek the probability that the new timestamp s +§ is

less than A. For a particular § =y this probability is shown below.

P +E <Al §=5)=1—g M)

In order to uncondition we integrate this probability over all possible values of §=s multiplied by
the probability of S=s. To determine the timestamp distribution of S, we note that (because it is a first
generation "complete,_service" message) it represents the completion time of an activity that entered into
service at logical time ¢ | £ < T + L, and completes within the aggressive window. Due to the memory-
less property of the exponential, the timestamp of a first generation "complete_service” message, given
that this timestamp is greater than the lower bound of the aggressive window, will be a conditional ex-
ponential, conditioned on being within the aggressive window. This distribution is given in Equation
(3.19). We compute the probability that an LP produces a second generation arrival message, given that

it processes a first generation "complete_service” message, below,

4 ~hs - ~A4 ~AA
P (2nd generation | 1st gen CS)= f(l»»e"“’*"“)a—?w—d L- (e + e77)
{ _

= 3.22
P A -2

We now compute the probability of a first generation "complete_service” message. As we have
discussed, there are two ways that a first generation "complete_service” message can occur. First, the ac-
tivity receiving service at the synchronization point completes within the lookahead window and the next

activity 1o enter into service completes within the aggressive window. This is exactly the probability that

64

an LP produces a first generation arrival message given in Equation (3.22). Alternatively, the activity re-
ceiving service at the synchronization point may complete within the aggressive window rather than the
lookahead window (or outside of both windows). Due to the memoryless property of the exponential, the
probability that the activity completes within the aggressive window given that it is still in service at logi-
cal time T'is e — ¢ ™+4) The unconditioned probability that an LP produces a second generation ar-

rival message is thus

—R(L+A)) (1 (MC’”M + e

WM)
e). (3.23)

P (2nd generation arrival) = (1-e)1 — M) + g™ —

The probability that an LP produces a third or higher order generation arrival message is computed
in a similar manner and is not discussed. The probability that an LP produces an arrival message is the
sum of the probability of producing a first generation arrival message, plus the probability of producing a
second generation arrival message, and so forth.

P (Arrival Message) = P{1st generation) + F (2nd generation) + F (3rd generation)... (3.24)
We can now compute the distribution of the timestamp of an arrival message. Assume an arrival message
has timestamp X =x. The distribution of x is a conditional exponential if the arrival message is a first gen-
eration arrival message. It is an exponential increment from a conditional exponential if it is a second

generation arrival message, and so forth. We give this distribution below.

~hx 4 A =y .
Ae P (15t gen) Ag e P (2nd generation)
d + t 2.
paf)= 1—e™™ P (Arrival) f e MM M d P (Arrival) (3.25)
” e™ he™ s a¢ £Grd Generation)
g ““ —eM [P (Arrival)

3.2.4.2. Timestamp Distribution Approximation

The timestamp distribution given in Equation (3.25) is quite complex, and using this distribution in
our analysis would make the problem intractable. For this reason we seek an approximation to the times-
tamp distribution,

As can be seen from Equation (3.25), the complexity of the timestamp distribution increases rapid-

ly as the generation of the arrival megsage increases. Clearly the probability of a second or higher order

65

generation arrival message is dependent upon the size of the aggressive window. Thus a reasonable ap-
proach to approximate the timestamp distribution is to constrain the size of the aggressive window such
that the contribution of higher order generation arrival messages to the total probability of an arrival mes-
sage is small. Given a small probability of higher order generation arrival messages, we can ignore these
timestamp distributions in our calculations. Thus we can approximate the timestamp distribution by as-
suming all arrival messages are lower order arrival messages (i.e. either first or second generation). This

simplifies the analysis significantly.

Clearly our analysis would be most simplified by assuming all arrival messages are first generation
arrival messages. As will be seen, for most of our analysis this approximation gives excellent results for
a fairly wide range of aggressive window sizes. In all cases this approximation bounds the measurement
of interest. As will be seen, our analysis can become quite complex even when assuming all arrival mes-
sages are first generation arrival messages. In order to maintain the tractability of our analysis we gen-
erally limit our focus to first generation arrival messages. However, we do demonstrate the impact of as-
suming a more complex timestamp distribution. During the course of this investigation we make it clear
whether we are assuming first or first and second generation arrival messages. Also, we make clear the

impact of the approximation,

If we assume all arrival messages are first generation, the timestamp of an arrival message will be a
conditional exponential. This is the same distribution as given in Equation (3.19) above. If we assume an
arrival message is either first or second generation, we need to condition the timestamp distribution on the
probability that the message will be a first or second generation arrival message. In this case we sum the
probability of a first and second generation arrival message, and use this as an approximation to the pro-
bability of an arrival message. Then we assign the conditional distribution based on the relative contribu-

tion of the two components.

In order to demonstrate the error of this approximation we graph the probability that an arrival
message is a first generation arrival message for aggressive window sizes between 10% and 100% of the
mean service time (see Figure 3.5). These are the observed values for a system with N=1500 LPs. In

Figure 3.6 we show the probability (for the same system) that an arrival message is either a first or second

66

Q30 -

020 p

Probatiity Firs) Generation Arrival

. . N
2.0 a9z a.4 0.6 9.8 1.0
Aggressive Window Size (% Maan Servico Time)

Figure 3.5 - Probability of a First Generation Arrival
generation message.

As can be seen, the probability that an arrival message is a first generation message decreases
quickly as the size of the aggressive window is increased, This is due to two factors. First, recall that
{with high probability) the server will be busy at the synchronization point. As the size of the aggressive
window increases, the probability that the corresponding "complete_service” message fails within the ag-

gressive window (rather than within the lookahead window) increases. As discussed above, a necessary

0.80 b

Provatiity of Firsl or Second Ganeralion Amival

0. . L : 5
700,0 0.2 a4 9.6 0.8 1.9

Aggrossiva Window Siza (% Maan Servien Thime)

Figure 3.6 - Probability of a First or Second Generation Arrival

67

condition for a first generation arrival message is that the "complete_service” message fall within the loo-
kahead window. Thus as the probability of this decreases, the probability of a first generation arrival mes-
sage decreases. Secondly, as the size of the aggressive window increases, the probability that an activity
which begins service within the aggressive window completes service within the aggressive window in-

creases. Thus the probability of a second or higher order generation arrival message increases.

As the size of the aggressive window approaches the mean service time we begin to see more third
and higher order generation arrival messages. With an aggressive window size equal to the mean service
time approximately 28% of the arrival messages are third and higher order generation messages. Thus
our approximation begins to break down as the size of the aggressive window approaches the mean ser-

vice time. We discuss the effects of these higher order generation arrival messages.

The messages in the aggressive window at the synchronization point (recall we term these mes-
sages aggressive messages) are exponentially distributed within the aggressive window. This implies that
aggressive messages are weighted towards the front of the aggressive window. As shown above, first
generation arrival messages have this same timestamp distribution, and thus will also be weighted to-
wards the front of the aggressive window, Second generation arrival messages however will be weighted
more towards the back of the aggressive window since they will have timestamps that are the sum of a
first generation "complete_service" message and an exponential random variable. Thus the probability
that a second or third generation arrival message invalidates an aggressive message (which has the same
timestamp distribution as a first generation arrival message), is less than the probability that a first genera-
tion arrival message will invalidate an aggressive message. Thus the assumption that all arrival messages
are first generation messages (rather than first, second and higher order generation arrival messages) will

tend to over-estimate the probability of a causality error.

In the analysis to follow we show the results of our predictions given aggressive window sizes up
to the mean of the service time distribution. We give these Iarger aggressive window sizes even though
our assumptions begin to break down as the window size approaches the mean service time. We do this
for two reasons. First, our results are still quite good even for these larger aggressive window sizes.

Second, we feel it is instructive to show the error of our approximation as the window size increases: it

68

helps to illustrate the tradeoff between the tractability of our analysis and the error of our approximations.

For the rest of this analysis we assume the aggressive window size will vary between 0% and 100% of

the mean service time (0 < A s»«%).

Now that we have discussed the consequences of our timestamp distribution approximation, we
need to discuss in more detail our approximation for the size of the lookahead window. We do this in the

following section.

3.2.5. Using the Expected Value for L

Now we have obtained all of the distributions necessary to determine the probability of a fault and
the expected improvement due to aggressive processing. All of our equations have treated L, the size of
the lookahead window, as a constant. Recall that L is closely approximated by the minimum of N gamma
distributed random variables, where N is the number of LPs in the system, and each gamma is the sum of
two exponentially distributed random variables. Thus the value of L is a random variable rather than a
constant. In this section we show that it is very reasonable to treat L as a constant, and o use the expected
value of L in our equations, when AL<1. We note AL decreases very quickly as NV increases, and this con-

dition holds true for any reasonably large system (i.e. on the order of 50 or more LPs).
Recall the following identity.

AL? AL?
AL q _
2 =1 ?\,L+-~—v——~2! T

When AL <<1 a good approximation for e i

S

e ™™ = 1-AL.

The most common term in our equations involving L is e

—¢" M) I this section we show why it is
reasonable to use the expected value of L in this particular expression. Similar arguments can be made

for other expressions involving L.

Rewrite

e _ ML) AL (1—6"—”).

Substituting our approximation for ¢ * we have

69

e Mg M) = (1-ALY(1-e M)
= (1—e"M)-A{1~e ML,

For fixed A this is a linear function of L.

(1—eMyA(1—e M) = b + al.
Now take the expected value of the expression.
El(1—e™) = A1l-e™L1=E[b + aL}
=p +a E[L]
= (1" M} - M1-eIE[L]

= (1 MY 1- L E[LD.

Again using our approximation that ¢™ = 1—x for small x we rewrite 1-A E[L] as e™*%

! (again noting
that E[L] <1).

(I-AE[L] (J—e My = ¢ PELD (1_p~My = pREULS _ p-REL]4)

This shows that using the expected value of L in our equations is very reasonable when AL <.

3.2.6. Probability of a Fault

In order to fault, an LP must process at least one message aggressively and subsequently receive an
arrival message with a timestamp in its past. There are many ways this can occur. For example, an LP
can process one aggressive message and receive one arrival message with a timestamp in its past. Or an
LP can process one aggressive message and receive two arrival messages where one or both messages
have timestamps in its past. Theoretically there are an infinite number of ways a fault can occur. In prac-

tice however only a few such combinations have any significant associated probability.

Before enumerating the significant terms of the probability of a fault we note that one message in
the system needs special consideration. We state without elaboration that the lookahead window is con-
structed such that exactly one activity in the system will complete service at logical time T+L, the upper
edge of the lookahead window. Thus as a consequence of processing in the lookahead window exactly
one LP will receive an arrival message with a timestamp of T+L. We term this message the lookahead
message. Recall T+ is the floor of the aggressive window. For this reason the LP that receives the loo-

kahead message will fault if it has processed any messages aggressively.

70

Due to the assumption of equally likely routing of messages, the probability of a particular LP re-
ceiving the Jookahead message is (I/N). The probability that an LP processes at leasi one aggressive
message is 1-P{zero aggressive messages} given in Equation (3.10). Let M be the random variable
denoting the number of aggressive messages a given LP processes {recall that the distribution of M is
given in Equation (3.10)). Then the probability of a given LP faulting due to the lookahead message is

1N (1-P (M =0)).

Below we enumerate the significant terms of the probability of a fault. The P (Ar=X) term is the
probability that an LP receives X arrival messages where the probability of receiving X =x arrival mes-
sages has been shown to be Poisson distributed with rate A A—(e e 2y The P (Jnval) term is the
probability that an arrival message invalidates an aggressive message. As discussed above, this probabil-
ity is dependent upon the timestamp distribution of the arrival message. We elaborate on the P (Inval)

term below,
P (Fault) = %(le M=)+ %71)"{13 (M=1,Ar=1) P (Inval) (3.26)
+ P(M=2,Ar=1) (1 - (1 = P (InvaD)?) + P (M =3,4r=1) (1 — (1 — P (Inval))*)
+ P (M=1,Ar=2) (1- (1 - P (Inval)y*) +

PM=1,Ar=3) (1 = (1 - P (Inval))*) + P (M =2,4r=2) (1 - (1 ~ P (fnval ...

The first term of Equation (3.26) is the probability that an LP has a causality error given that it re-
ceives the lookahead message, times the probability that it receives the lookahead message. The second
term is the probability of a fault given that an LP does not receive the lookahead message, times the pro-
bability that it does not receive this message. Within the second term, the P (M=1,Ar=1) P (Inval) term
is the probability of a fault given that an LP processes one aggressive message and receives one arrival
message. The P(M=2,Ar=1) (1 - (1 - P (Inval))*) term is the probability of a causality error given that
an LP processes two aggressive messages and receives one arrival message. In this term the
(1 — P (Inval)y* component is the probability that an arrival message has a timestamp greater than the

timestamps of both aggressive messages. One minus this term is the probability that an arrival message

71

has a timestamp that is not greater than the timestamps of both arrival messages, and thus represents the

probability of a causality error, The other terms are similarly derived.

The P (Inval) term in Bquation (3.25) represents the probability that a given arrival message invali-
dates a given aggressive message. As discussed above, if we assume all arrival messages are first genera-
tion messages then both aggressive messages and arrival messages have the same timestamp distriby-
tions. In this case the probability that an arrival message has a timestamp less than that of an aggressive
message is 50%. If an arrival message is a second generation message the probability of a causality error

is slightly more complex. We compute this probability,

As shown in the previous section, the timestamp of an aggressive message is a conditional ex-

ponential. Given an aggressive message with timestamp ¢, the distribution of ¢ is

?LGWM
df () = ———
paf)= 73

Now consider a second generation arrival message with timestamp X =x. We have shown the distribution

of X is

Ae ™ Ae M
dt
—?erg-—M) (1 - e—M)

A
paf (x) =
! (e
The probability that the timestamp of an arrival message is less than that of an aggressive message given

that the arrival message is a second generation arrival message is

Atx g ks ~hx ~ht
P (Fauls | 2nd generation) =1 [[[—4—— M Aoy =025
po0(d-e™) e™M—e™t (1-e™)

Thas the probability that an arrival message invalidates an aggressive message is

P (Inval)= P (1st generation) .5 + P 2nd generation) 0.25 (3.27)
We give predicted and observed values for the probability of a causality error given various aggressive

window sizes below,

3.2.7. Number of Messages Successfully Completed

The second goal of this chapter is to capture analytically the improvement in paralielism made pos-

sible by aggressive processing. We measure gains in parallelism by comparing the number of messages

72

processed in the non-aggressive algorithm versus the number of messages processed successfully by ad-
ding aggressiveness. Recall the number of messages processed in the non-aggressive algorithm is the
number of messages processed in the lookahead window. The number of messages processed in the ag-
gressive algorithm is the number of messages processed in the lookahead window plus the number of
messages processed successfully in the aggressive window. By processed successfully we mean process-
ing that is not later found to be invalid, A crude measure of the improvement in parallelism is the ratio of
these two quantities. We say crude because we are ignoring certain costs as discussed below. We begin

by computing the expected number of messages processed successfully in the aggressive window.

The improvement in parallelism calculated as described above is an upper bound on the improve-
ment that can be attained in practice. It is an upper bound because it does not account for the costs associ-
ated with a correction mechanism. In particular, it does not account for the cost of saving state or for the
cost of reprocessing messages. In Chapter 4 we define a correction mechanism and account for its costs.
For the moment however we are interested in the potential increase in parallelism due to aggressive pro-
cessing. The given correction mechanism will determine how much of this potential gain in paralielism

is offset by the costs of aggressive processing.

Given the distribution of the number of messages in the aggressive window at the synchronization
point and the number of arrival messages it is possible to determine the number of aggressive messages
processed successfully. Consider the ways in which an LP can process one aggressive message success-
fully. First, the LP can process one aggressive message and subsequently receive no arrival messages. In
this case the aggressive processing cannot be invalidated. Second, the LP can process one aggressive
message and receive one arrival message that does not invalidate the processing. Third, the LP can pro-
cess two aggressive messages and receive one arrival message that invalidates one, but not both, aggres-
sive messages. Clearly there are infinite combinations of events that could be considered. There are only

a few such combinations however with any significant associated probability,

In Bquation (3.28) we give the significant terms for the probability of successfully processing M =1
aggressive messages. In this equation P (J=/) is the probability of processing j aggressive messages. The

P (Ar=ar) term is the probability that an LP receives ar arrival messages. In this equation we assume all

73

arrival messages are first generation arrival messages. This gives the worst case probability of invalidat-
ing a given aggressive message and thus represents a pessimistic assumption with regard to the number of

messages processed successfully.

P(M=1)=P({(J=1LAr=0) + P (J=1,4r=1) 5+P (J=1.Ar=2) 25 (3.28)

+P (J=1,Ar=3) 5* + P (J=2,Ar=1) .5+ P (J=2,Ar=2) 375

+ P (J=3,4r=1) 375+ P (J=3,Ar=2) 5+~

The P (J=1,4r=0) term is the probability of processing one aggressive message and receiving no
arrival messages. In this case the one aggressive message is guaranteed to be processed successfully. The
P (J=1,Ar=1) .5 term is the probability of processing one aggressive message, receiving one arrival mes-
sage, and the arrival message not invalidating the aggressive message. The probability of the arrival mes-
sage not invalidating the aggressive message is 50% given the assumption that the arrival message is a
first generation arrival message. This is because, with the assumption of a first generation arrival mes-
sage, both the aggressive message and the arrival message have the same timestamp distribution (condi-

tional exponentials), The other terms are similarly derived.

Equation (3.29) gives the significant terms for processing two aggressive messages successfully.

P(M=2) =P (J=2,Ar=0) + P (J=2,Ar=1) 25+ P (J=2,Ar=2) 25% (3.29)

+ P =3,Ar=1) 375 -~
Finally we present the most significant terms for the probability of processing three aggressive
messages successfully. The probability of processing four or more aggressive messages successtully is

negligible for aggressive window sizes in the range of 0SA<I/A,

P(M=3)=P(J=3,Ar=0) + P(J=3,Ar=1).5" - - - (3.30)

Now we have all of the equations necessary to derive the expected number of aggressive messages

successfully processed. In Equation (3.31) below M is the number of messages processed successfully
within the aggressive window.

EIM =P (M=1) + 2%P (M=2) + 3%P (M =3) - - T{33D
Let LM be the random variable denoting the number of messages processed within the lookahead win-

T4

dow. The expected number of messages processed in the lookahead window is
E[LMY=1%*P (LM =142%P (LM =2)+3*P (LM =3) - - (3.32)
Recall the probability of processing LM =Im messages in the lookahead window is given in Equation

(3.15). The expected improvement in performance due to aggressive processing is therefore:

E[LMEIM]

Ell= EILM]

(3.33)

We calculate this expected improvement in performance for varions window sizes below,

3.3. Scalability of Protocol

A very important issue in parallel discrete event simulation is how well a particular protocol scales
ag the number of LPs increases. As discussed by Lubachevsky (1989) both Time Warp and the Null Mes-
sage protocol have the potential for explosive overhead costs as the size of the simulation grows. The
overhead associated with Time Warp can increase significantly due to large state saving costs and the
possibility of cascading rollbacks. The Null Message protocol can have significant overhead costs due to
the proliferation of nuil messages. To date only Nicol (1993) and Lubachevsky (1989) have proven the

scalability of their respective protocols.

We have not yet derived scalability results for a system such as ours. We have however developed
a set of results which we feel represent a significant step towards establishing system-level scalability

results. In this section we describe these results,

In order to begin our investigation of the scalability of our approach we examine the probability of
a fault at a given LP as the size of the simulation grows. In this section we show that the upper bound on
the probability of a fault at a given LP is approximately 25% as the number of LFs in the system ap-
proaches infinity. Further, we show that the probability of a fault reaches this maximum value for some
particular value of N (the number of LPs in the system). That is, there is some particular value of N =N *
such that once the number of LPs in the system is greater then N™ adding more LPs to the system actually
decreases the probability of a causality error at a given LP. In this section we identify the value of N "
We want {0 stress again that this discussion is about the probability of a fault at a given LP, not the proba-

bility of a faunlt in the system.

75

The equations given so far do not directly reflect N, the number of LPs in the system. Rather this is
reflected in L, the expected value of the lookahead window. As discussed in previous sections, L is close-
ly approximated by the minimum of N gamma distributed random variables, where each gamma is the
sum of two exponentials. For details regarding the width of the lookahead window the interested reader
is directed to Nicol (1993), What is important for this discussion is that as N approaches infinity, L ap-
proaches zero. In order to reflect the dependence of L on N we use the notation L (V) when we are dis-

cussing the behavior of a given LP as N approaches infinity.

We seek the probability of a fault as the size of the architecture, and the number of LPs, ap-
proaches infinity. In order to study this issue we need to account for one overhead of our protocol that
grows as the number of processors increases. In a Global Windowing algorithm, (whether aggressive or
non-aggressive) the cost of global synchronization is O (Log,F) in a system with P processors. (Costs are
somewhat higher given an aggressive barrier synchronization, but we ignore this issue for the current dis-
cussion.) Thus in order to keep the workload per processor constant, we assume there are J = P Log, P
LPs per processor (Nicol 1992b). Thus there will be N =J P LPs in a system with P processors, We

seek the probability of a fault as N approaches infinity.

In order 10 fault an LP must process at least one aggressive message and receive at least one arrival
message. Both of these events are necessary, but not sufficient for a fauit. Thus the probability of both

events occurring gives an upper bound on the probability of a fanit.

Recall that K is the random variable denoting the number of aggressive messages processed by a
given LP. The probability of processing at least one aggressive message is (1-P (K=0)), where the
P (K=0) is given in Equation (3.12). Let (4r=ar) be the event that an LP receives ar arrival messages.
The probability of receiving at least one arrival message is (1-F (Ar=0)) where P {(Ar=ar) has been
shown to be Poisson distributed with rate A A—(¢ M—e ™M) Noting the independence of these events,
the probability of both events occurring is

P(F =Kzl Arz1) = (A-[e@ ™ (f(g Mg 2]y ([Aoy

(3.34)
In Figure 3.7 we plot Bquation (3.34) as a function of AL(N). We set A 10 1/A, the maximum ag-

gressive window size considered. Note that AL (N) can only take on values between zerc and two be-

76

0.40 3 T T

035 - 4

0.3G i o

0.25

.20

Probabilty of a Feult

G115

o0

0.66 N

0,00 L x L
0.0 2.8 1.6 1.5 2.0

Iambd;a L{N}
Figure 3.7 - Probability of a Fault as AL (N)—0
cause the expected value of a gamma which is the sum of two exponentials is 2/A. Thus the maximum
value of L (N), which is closely approximated by the expected value of the minimum of N such gamma

distributed random variables, cannot exceed 2/A. Also note that as N—see AL (N)}—0.

As can be seen from Figure 3.7, the maximum probability of fault (approximately 27%) is reached
when AL (N) = 0.29. It can also be seen that after this maximum value the probability of a fault decreases
slightly as AL (N)—0. The ‘probability of a fault when AL (N) = 0 is approximately 24.7%, Thus we have
the very powerful result that the probability of a fault (at a given LP) decreases as the number of LPs in

the system approaches infinity.

This point is important. The upper bound on the probability of a fault given in Equation (3.34) is a
very loose upper bound. As discussed below, the maximum value we observed in a system with 1500 LPs
was approximately 10%. This was for an aggressive window size set to its maximum value of 100% of
the mean of the service time distribution. For an aggressive window size set to 50% of #s maximum
value, the probability of a fault was approximately 3%. For an aggressive window size set to 10% of its
maximum value this probability was approximately 0.0008. As noted, these are the values for a system

with 1500 LPs. As the number of LPs approaches infinity, these observed probabilities will rot increase.

71

In fact, we can get a good estimate of the number of LPs required, such that adding more LPs to the sys-
tem will cause the probability of a fault to decrease (although only slightly). We discuss this more fully

below.

It can be seen from Figure 3.7 that the probability of a fault rises sharply for .29 SAL(N) <2. It
would be desirable 1o either a) reduce this steep rise in the probability of a fault or b) show that the
number of LPs (V) in the system for .29 <AL (N) <2 is sufficiently small that this steep rise is not critical-
ly important. We could reduce the slope of the fault curve by adjusting the size of the aggressive window.
The approach we choose is to demonstrate that the number of LPs in the system for AL(N) = 29 (N") is

sufficiently small that T <N <N is not of critical importance.

We begin by noting that the expected value of the minimum of N gamma distributed random vari-
able is a decreasing function of N. Without going through the derivation we note that the expected value

of the minimum of N gamma distributed random variables (each with mean 2/A) is:

L(N) =[NPy (1+ap)® D eay, (3.35)
)
Again note in Equation (3.35) L is closely approximated by the minimum of N gamma distributed random
variables. Let & = Ay and d& = Ady. Rewrite Equation (3.35) using this variable transformation.

o

L(N)= % JNEH1+EN D ogE (3.36)
B

Note the integral is a function of N only. Rewrite Equation (3.36).

1
L{N) = fN) (3.37)
Because L (V) is a decreasing function of N, £ (N) in Equation (3.37) is also a decreasing function of N.
As shown in Figure 2, AL{N) = .29 when the maximum probability of a fault is reached. Rewrite

this as follows:

L) = ”7%{ 29, (3.38)
Thus we see that £ (V)=.29 when the maximum probability of a fault is reached. Since f (V) is a decreas-

ing function of N there is only one value of N, N *, for which Equation (3.38) is true.

78

In order to find N* we set A= 1 and numerically determine the number of gamma distributed ran-
dom variables (with mean 2) for which the expected value of the minimum of this number is approxi-
mately 0,29, We found this number to be between 23 and 24. Then we ran simulation studies to validate
that the expected value of the minimum of twenty four gamma distributed random variables (each com-
posed of the sum of two exponentials with mean 1) is approximately .29. We conclude that N =04,
This demonstrates the very important property that if there are more than twenty four LPs in the system,
adding more LPs to the system will decrease the probability of a fauli (at a given LP}. This is important
in that it shows the expected increase in parallelism at a given LP does not decrease (i.e. there is no
higher probability of a cansality error) as the size of the system grows without bound. Also, we can build

on this result to establish system wide scalability arguments.

In this section we have investigated the upper bound on the probability of a fault given that the size
of the aggressive window is set to its maximum value (1/A). We used the upper bound of a fault, and the
maximum aggressive window size, in order to to demonstrate the probability of a fault (as the system
grows) under the worst possible conditions. As noted, the results obtained under these conditions are
much higher than the results obtained using our explicit estimate of a fault given in Equation (3.26). In
Table 1 we use Equation (3.26) to derive the maximum probability of a fault, the minimum probability of

a fault (obtained when AL (N)=0), and N~ for various aggressive window sizes.

A P(F) Max | P(F) Min | N

A 002 0005 | 5

3 02 008§ 7

5 053 035 10

T 08 on 15

Table 3.1 - Value of N*

79

3.4. Simulation Results

In this chapter we have developed a model to investigate the improvement in potential parallelism
made possible by adding aggressiveness to an existing non-aggressive protocol. In order to test the pred-
ictions of our model we ran a series of simulations using a simple FCES queueing model. Our first queue-
ing model meets the basic assumptions of our analysis including an exponential service time distribution,
a heavily Ioaded system and each LP having an equal probability of receiving a given message. Howev-
er, there are assumptions in our model that are not met in the system. Most importantly, we do nothing to
interfere with an arrival message generated by an LP. Thus it is not guaranteed that an arrival message
will be either a first or second generation message as assumed in our model. Also recall we use the ob-

served expected value of L in our equations.

The simulation program used to gather these results does not allow causality errors to occur since
we have not yet defined a mechanism to correct such errors. We do so in Chapter 4. To gather the empiri-
cal results we used the following approach. At the point when the LPs synchronized to define the looka-
head and the aggressive windows, we made a copy of the messages in the aggressive window (the ag-
gressive messages). As the simulation progressed and the LP received its arrival messages, we kept track
of how the arrival messages would have affected the aggressive messages. Thus we monitored whether
any of the aggressive messages would have been invalidated (and tagged the LP as faulting if this was the
case) and kept track of the number of aggressive messages that would have been processed successfully.
Thus the model and the simulation focus on the aggressive messages and how they would be affected by

arrival messages.

We ran a series of simulations with 1500 LPs, a mean service time of 1/A =1 and various aggres-

sive window sizes, Then we compared the empirical results with the predictions of our model.

In Figure 3.8 we plot the predicted versus observed probability of a fault for various aggressive
window sizes. One curve shows the predicted probability of a fault assuming all arrival messages are first
generation messages. The other curve shows the predicted probability of a fault given that we account for
second generation arrival messages. As can be seen the predictions are almost perfect when we account

for both first and second generation arrival messages. Also it is clear that when we assume all arrival

80

messages are first generation messages we begin to over-predict the probability of a fault for larger ag-
gressive window sizes. This is expected since the percentage of first generation arrival messages de-
creases as the aggressive window size increases. As we have discussed, the probability of a first genera-
tion arrival message causing a fault is higher than the probability of a second (or higher) generation mes-
sage causing a fault. Also it can be seen that the probability of a fault at a given LP is quite low for a
very reasonable range of aggressive window sizes.

In Figure 3.9 we plot the predicted versus observed expected improvement in parallelism for vari-
ous aggressive window sizes. Recall we measure expected improvement as the ratio of the number of
messages processed in the aggressive version and the number of messages processed in the non-
aggressive version. Our model under-estimates the potential improvement in parallelism for larger ag-
gressive window sizes. Again this is because it over-predicts the probability of a causality error. As can

be seen there is significant potential for increased parallelism using our approach.

3.4.1. Predictive Power of Model When Assumptions Are Not Met

We are interested in the predictive power of our model given a system that does not meet our most

significant assumption: a fully connected communication topology where each LP is equally likely to re-

G.20 T T

G—= Observed
.16 - iF——=it Predicted (Al First Gien. Arrivais) g
Aimeeths Pragicted (Al First or Sec. Gen. Arrivalsy

Probability of & Causality Emor
o
=

0,05

o.0 0.2 0.4 0.6 c.8 1.0
Aggressive Window Size (% Mean Service Time)

Figure 3.8 - Probability of a Causality Error

g1

20.0 u

G-—& Predicted
i Observed

15.0

10.¢

Expected Improvement in Paralefsm

2.0 L : \ L
0.0 0.2 0.4 9.6 0.8 1.0

Aggressive Window Size (% Mean Service Time}

Figure 3.9 - Potential Expected Improvement in Parallelism
ceive a given message. We tan a series of experiments in order to study this issue. In each experiment
(except where noted) we used a 2D toroidal mesh with 1024 LPs and A=1. We varied the aggressive win-

dow size between 50% and 100% of the mean service time (1/A = 1).

In the first experiment each LP communicated only with its nearest neighbor where each neighbor
was equally likely to receive a given message. The second experiment involved a "hot spot” in the com-
munication pattern. We used a nearest neighbor communication pattern where each neighbor had a 20%
probability of receiving a given message. Also there was a 20% probability that a given message was sent
to one of ten LPs in the system (where each of the ten LPs was equally likely), Thus approximately 1% of
the LPs received 20% of the messages in the system. In the next experiment 20% of the messages were
received by approximately 8% of the LPs (i.e. 20% probability of sending a given message to one of 80

LPs).

Then we compared the results of these experiments with the predictions of our model. We com-
pared the results on both the probability of a fault and the upper bound on the expected improvement,
The results are shown in Table 2. As can be seen our results are quite accurate for the nearest neighbor
communication pattern. This makes sense as it represents essentially a uniform distribution of messages.

The predictions are also reasonable given a hot spot where 1% of the L.Ps receive 20% of the messages.

82

A = 50% MST A = 100% Mol

PP} | B{F) | BIZ} | B(X) | B{F) | P(F} | BE{T] | EB[T}
Pred | Gbe. | Pred | Obs. | Pred { Obs. | Fred { Obs.

Nearest
Neighbor { 024 | .022 | 10.27) 310,36 .103 | .093 | 13.75] 15.19

Hot Spot

1% L024] 024 | 10.27) 9.92 1 103 | .074 | 13.79] 14.39

Hot Spot

8% L0246 | 022 | 10.27} 10,361 103 | 094 | 13.79} 15.319

1500 LPa{ .023 | .0249%] 12.32/12,44] 102 | .099 | 16.62} 18.38

30006 LP= | .022 | . 0240} 17.12}37.31} .9039 | 098 | 23,25 25.51;

Table 3.2 - Effects of Various Communication Topclogies
For an aggressive window size of 50% of the mean service time there is little difference between predict-
ed and observed values, It is interesting to note that given an aggressive window size of 100% of the
mean service time the probability of a fault is actually somewhat lower than predicted. We attribute this
to the increased probability of third and higher generation arrival messages at this large aggressive win-
dow size. Consider that 99% of the LPs are receiving only 80% of the arrival messages. Thus it makes
sense that they would not fault as much as predicted. The other 1% of the LPs (receiving 20% of the mes-
sages) are obviously not faulting enough to make up for the lower number of arrival messages received
by the other LPs in the system., Most likely this is because at this large aggressive window size a greater
proportion of arrival messages are third and higher order generation messages. Thus they are less likely
to cause a fault. As can be seen, when the hot spot is reduced to 8% of the LPs in the system the ob-

served values are again quite close to the predicted values.

QOur final experiment was designed to test the probability of a causality error as the number of LPs
is increased. We simulated two systems, one with 1500 LPs and one with 3000 LPs. In these experiments

we used our basic assumption of a fully connected communication topology where each LP is equally

83

likely to receive a given message. As can be seen, both the predicted and observed value of a fault (at a
given LP) are slighly lower in the system with 3000 LPs than in the system with 1500 LPs. This matches
the predictions of our analytic model. The difference between the predicted values for the system with
1024 LPs and the systems with 1500 LPs and 3000 LPs is due to differences in the size of the lookahead

window.

3.5, Limitations of Results

The model developed in this chapter is the foundation upon which we build a much more powerful
model. For this reason it is important to discuss the limitations of the model as developed in this chapter.
However, the results developed in this chapter are important in their own right. First, our model gives
very accurate predictions given a system that meets the basic assumptions of the model (i.e. exponential
service times, heavily loaded system, equally likely communication patiern, etc.). Further, these results
show a tremendous potential for an increase in parallelism given a limited amount of aggressive process-
ing. Also, we have shown this potential improvement in parailelism exists in systems with communica-
tion topologies other than those assumed in our model. Perhaps most importantly, this is the first ime the
potential increase in parallelism, and the probability of a causality error, has been investigated as a func-
tion of the level of aggressiveness. For these reasons the results presented in this chapter are very impoz-

tant.

As noted however, both the analytic model and the simulation system developed in this chapter are
preliminary. We developed the model and the simulation in order to test our hypothesis that allowing a
very limited level of aggressive processing can greatly increase parallelism without introducing a
significant number of causality errors. To test this hypothesis, our model (and simulation) considers the
messages in the aggressive window at the synchronization point, since these messages are processed in
the aggressive version of the algorithm and are not processed in the non-aggressive version. Clearly the
results obtained in this chapter are encouraging enough to warrant further development of the model in
order to get a more realistic piciure of the costs/benefits of this approach. We do this in the remaining

chapters.

84

The preliminary nature of these results of course implies that there are limitations to the modef and
to the simulation developed in this chapter. The primary limitation of both the model and the simulation
system is that neither addresses the costs of correcting causality errors that occur as a result of aggressive
processing. The simulation system does not allow causality errors to occur since we have not yet defined
a mechanism to correct such errors. Similarly, the model developed in this chapter does not address the
costs associated with aggressive processing. Further, the simulation was designed to capture the effects
of further processing on the messages in the aggressive window at the synchronization poini, and does
not capture any activity that does not involve these messages. For this reason it does not recognize a fault
caused by one arrival message invalidating another, or the invalidation of a second generation
"complete_service" message, since these messages are not in the aggressive window at the synchroniza-
tion point. These issues are addressed in subsequent chapters. In Chapter 4 we define our correction
mechanism, and give a set of simulation results obtained after implementing this mechanism. In these
simulations we capture gll of the causality errors that occur, and all of the costs of aggressive processing
(such as reprocessing messages due to rollbacks, eic.). Also, we extend our model to capture the costs as-
sociated with aggressive processing such as saving state, reprocessing messages due to rollbacks, and so
forth. It is important to note again that while the results presented in this chapter are preliminary, they are

the foundation upon which we build more powerful results.

1t is important to discuss the limitations of the simulation results related to the various communica-
tion topologies. The reported probability of a fault is the average probability of a fault taken over the
whole system. Thus it can be assumed that an LP which receives many more messages than a "typical”
LP (such as one of the LPs in a "hot spot”) will exhibit a fault rate much higher than the average. This
brings up the main limitation of the results presented in this chapter: It is the behavior of the slowest LP
in the system, rather than the behavior of a "typical” LP, which determines the performance of a synchro-
nous protocol such as ours. All of the LPs must block until the slowest LP in the system has completed
all of its processing. The model developed in this chapter is not powerful enough to capture sysfem level
performance. In subsequent chapters we extend the results developed in this chapter in order to capture

system level performance.

85

3.6. Conclusions

In this chapter we developed a model to study the effects of adding aggressiveness to an existing
non-aggressive protocol. We have three very significant results from this work. First, we are able o
predict the probability of a fault as a function of the level of aggressiveness. This is the first time this has
been accomplished. Second, we have been able to demonstrate both theoretically and with simulation
studies the significant potential for improvement in parallelism made possible by adding aggressiveness
to a non-aggressive approach. Third, we have shown that the probability of a fault does not increase as
the number of LPs approaches infinity. We feel this result represents an important step towards proving
system-level scalability. Also, we have identified the number of LPs, N”, such that N* <N <N, implies
that the probability of a fault in a system with N, LPs is less than the probability of a fault in a system

with N; LPs.

We have shown that the basic direction of our predictions is accurate even when the major assump-
tiops of our model (such as communication topology and number of messages generated as a result of
processing an event) are violated. The results that we have obtained in this chapter show that there is
much potential for improvement in parallelism in our approach. However we still need to define a cotrec-
tion mechanism and account for the costs of this mechanism in our model. Also, we need to develop our
simulation system such that it will allow causality errors to occur and be able to correct these errors. We

accomplish both goals in remaining chapters.

CHAPTER 4

Error Correction Mechanism

The analytic model developed in the previous chapter lays the theoretical groundwork for the in-
vestigation of adding aggressiveness to an existing non-aggressive protocol. We demonstrated analytical-
ly and with simulation studies a significant potential for improvement in parallelism using this approach.
The results presented in the previous chapter however are incomplete. First, the predicted improvement
in parallelism is an upper bound on the improvement that can be attained in practice. This is because the
model does not account for the costs associated with aggressive processing. Second, while we show that
the probability of a causality error (at a given LP) is relatively small over the range of aggressive window
sizes we consider, it is none the less greater than zero, Thus we need some mechanism to correct the

causality errors that do occur,

In this chapter we define our error correcﬁon. mechanism. We add the costs of this mechanism to
our model in subseguent chapters. We propose a simple state saving and roliback scheme to correct the
causality errors that occur as a result of aggressive processing. Also, we develop a model to predict the
probability of anti-messages being produced, and show that the probability of cascading rollbacks is quite
small. Then we use this model in later chapters to complete the analytic study of the costs of our ap-
proach. The result of this work is a model that gives a much clearer picture of the costs and benefits of

adding aggressiveness to an existing non-aggressive protocol.

The rest of this chapter is organized as foHows. In section 4.1 we we discuss the correction
mechanism. In section 4.2 we develop our model to predict the probability an LP will produce an anti-
message. In section 4.3 we give empirical results to validate our model. In section 4.4 we show that the
probability of initiating a rollback chain at a given LP does not increase as the number of LPs approaches
infinity. We feel this results represents a significant step towards proving system-level scalability. We

give our conclusions in section 4.4,

86

87

4.1. Correction of Causality Errors

The approach is a simple state saving and rollback mechanism. Other approaches (such as some
type of iterative technique) are also possible. We choose a state saving and rollback mechanism for two
reasons. First, it is a widely accepted approach with significant development of hardware support (Rey-
nolds et al. 1993, Buzzel et al. 1990). Second, the model developed in the previous chapter can be

modified to account for the costs of this approach.

Our modified algorithm proceeds in two phases as follows. Assume the system is synchronized at
Togical time T. In the first phase of the algorithm the LPs cooperatively define the stimulation window. As
in the non-aggressive version, the lookahead window is defined such that all events within the window
can be processed concurrently without the possibility of a causality error. In the aggressive version the
simulation window is extended from logical time T+L to logical time 7'+L+4 where 4 is the length of the
aggressive window, In the second phase of the modified algorithm the LPs concurrently execute all of

their events within the extended simulation window. We elaborate on this second phase of the algorithm.

We assume state is saved before each message processed in the aggressive window. If, during the
course of processing within the aggressive window, an LP receives a message in its logical past it must
perform a rollback. This involves restoring the state of the LP immediately before the timestamp of the
message causing the rollback. Any messages sent as a result of processing that has been rolled back is po-
tentially invalid and is cancelled through the use of an anti-message. An anti-message has the same
timestamp as the message it is sent to cancel, and informs the receiving LP that the previous message is
invalid. After the LP performs a rollback (and sends any anti-messages required) it processes forward
from the logical time of the restored state. When an LP reprocesses a "complete_service" which had pre-
viously been rolled back (and therefore the "pre-sent” completion message had been cancelled by an
anti-message), we assume the next LP to receive the "pre-sent” completion message is chosen at random
where each LP is equally likely. Further, we assume that the duration of an activity is not affected by a

roliback.

An anti-message can cause the receiving LP to roll back (if the timestamp of the message is less

than the current logical time at the LP) and cancel messages it has sent. Thus one anti-message can lead

88

to a chain of such messages propagating through the system. Sending an anti-message as soon as the er-

ror is discovered corresponds to the aggressive cancellation policy in Time Warp (Reiher ef al. 1990),

In the modified algorithm the LPs compute in the extended simulation window without synchroni-
zation. Any messages generated as a result of this processing are sent as soon as they are generated.
Once an LP reaches the ceiling of the extended simulation window it blocks waiting for all of the other
LPs to similarly complete. We require that all messages generated with timestamps in the simulation win-
dow be processed before the LPs establish another simulation window. This ensures that once a new
simulation window is established no LP will ever have 1o roll back beyond this point. To guarantee that
all messages generated within the aggressive window are processed requires two assumptions. First we
assume that all messages sent are eventually received. Second, we assume there is some mechanism that
allows the LPs to determine when this condition has been met. This is a very important issue which we

now discuss in detail.

Recall that the three phases of a non-aggressive Global Windowing Algorithm are each separated
by a barrier synchronization. Traditional barrier synchronization routines (such as the gsync() call avail-
able on an Intel iPSC multiprocessor) assume that a processor has completed all required processing be-
fore entering into the barrier, Once the call to the barrier synchronization is made the processor loses the

thiread of control.

A traditional barrier synchronization works well with a non-aggressive windowing algorithm be-
cause the processor can determine when all required processing is completed. This can be determined be-
cause the lookahead window is constructed such that no LP will receive a message with a timestamp that
falls within the window (the interested reader is directed to Nicol 1993 to see how one such lookahead
window is constructed). Thus when all of the LPs on the processor have completed processing within the
lookahead window the processor can safely enter into a barrier synchronization. It is guaranteed that ail

necessary work is completed before the call is made,

If however an aggressive window is defined (such as in our modified algorithm) then it becomes a
very difficult issue to determine when all required processing within the window is completed. This is be-

cause an LP can complete all known processing up to the upper edge of the aggressive window, and then

89

at some later point in real time receive a message with a timestamp that falls within the aggressive win-
dow. Thus all of the processing required within the window was not completed when the LP reached the
upper bound of the window and the processor would be incorrect to make a call to the barrier routine at
this point. Further, if the late message requires a rollback then the LP may send new messages to other
LPs which have also processed up to the upper bound of the aggressive window. Thus they too will not
have completed all of the processing required within the window and similarly would be incorrect in cal-
ling a traditional barrier routine when they reached the upper bound of the aggressive window. Ascanbe
seen, if it is possible to receive a message with a timestamp that falls within the simulation window, and
the message passing activity is unpredictable, then traditional barrier synchronization routines are not

powerful encugh to use as the synchronization mechanism.

What is required is a mechanism that will allow an LP to "aggressively” enter into a barrier, such
that it retains the ability to pull out of the barrier if it discovers new processing that must be performed.
Alternatively, there can be some mechanism to keep track of enough global information to inform the

LPs when the processing within the simulation window is complete. We discuss these two approaches.

Nicol (1992a) has developed a software sokution to the problem of an aggressive barrier synchroni-
zation. In this algorithm an LP can enter the barrier optimistically before it is certain that it has completed
all required processing within the window, If at some later point it discovers that it has not completed all
required processing then it can roll out of the barrier. This is exactly what is required for our aggressive
windowing algorithm. This optimistic barrier synchronization is a much more powerful routine than the
traditional barrier synchronization and thus has a higher associated cost. As discussed by Nicol (1992a),
the optimistic barrier synchronization is on the order of two to three times slower than an optimized tradi-
tional barrier synchronization. We note again however that a traditional deterministic barrier synchroni-

zation routine is not powerful enough to be used in our aggressive windowing algorithm,

An alternative solution to our optimistic barrier synchronization problem is to use hardware such as
that currently being developed by Reynolds et al (1993). Reynolds is building a parallel reduction net-
work which will disseminate global information in order to help make parallel simulation algorithms

complete in less time, For our purposes we can use such a network to determine when processing within

90

the simulation window is complete. We can do this by keeping a global count of the number of messages
sent and the number of messages received. Every time an LP sends a message it increments a counter and
this same counter is decremented when a message is received. Thus when the message count is zero, and
all LPs have completed their processing within the simulation window, the LPs are ready to synchronize

and determine the new simulation window,

As can be seen there are (at least) two solutions available to solve our problem of optimistic syn-
chronization in the face of unpredictable message passing activity. These two approaches will have dif-
ferent costs for the synchronization mechanism. We discuss this issue in more detail when we develop

the cost model for our algorithm.

Given a solution to the optimistic barrier synchronization probiem our modifications to the non-
aggressive version of the algorithm are minimal. Our modified algorithm guarantees that an LP will nev-
er have to roll back past the floor of the aggressive window established in the first phase of the algorithm.
This implies that state only needs to be saved when processing within the aggressive window and that it
can be discarded once a new simulation window is chosen. Thus the memory requirements are much less

than in a fully aggressive approach.

The mechanism is essentially Time Warp (Jefferson 1985) with limited aggressiveness. This is
also the same approach as the Bounded Time Warp protocol proposed by Turner and Xu (1992). The
difference is that we analyze the performance of our system and they offer no analytic resulis at all. Itis
also simitar to the filiered rollback algorithm proposed by Lubachevsky et al. (1989) in which he adds ag-
gressiveness o his Bounded Lag Algorithm (Lubachevsky 1988). There are two primary differences
between the research presented here and that presented by Lubachevsky. The first difference is in the
analysis of the algorithms, The second difference is in the level of aggressivencss allowed by the proto-

cols. We discuss these two issues in turn,

The analysis presented in this thesis is significantly different from the analysis presented by Lu-
bachevsky in the following way. Lubachevsky derives enough information to show that the aggressive
version of his Bounded Lag Algorithm maintains the scalability properties of the non-aggressive version.

To accomplish this he derives the conditions under which cascading rollbacks will not develop. Also he

9

derives an upper bound on the number of events processed in the simuation including events processed
more than once due to rollbacks. Our model does not derive the conditions under which cascading roll-
backs will not occur. Rather we derive explicit estimates as to the number of first generation rollbacks,
the number of second generation rollbacks, etc. Using these derived probabilities we show that the proba-
bility of cascading rollbacks is negligible. Most importantly, we derive the expected improvement in per-
formance (due to aggressive processing) as a function of the level of aggressiveness including the costs of
state saving and rollbacks. Lubachevsky does not address this issue. (In fact, this is the first time this im-

portant issue has been addressed.)

The second difference is in the level of aggressiveness allowed by the two protocols. Lubachevsky
allows an arbitrary bound on the amount of aggressiveness. Thus at one extreme it can be a fully aggres-
sive algorithm, As discussed in the previous chapter we allow only a limited amount of aggressiveness

and our analysis is not applicable to a fully aggressive system.

Also we have derived many of the same measurements as Gupta et al. (1991) in their investigation
of Time Warp. However they are studying Time Warp which is a fully aggressive protocol. Also we are
interested in the expected improvement in the number of messages processed between global synchroni-
zation points due to our modified algorithm. This is not the same issue as investigated by Gupta ef al,
Further, in terms of a queuveing model they assume infinite servers while our model assumes one server
per LP and therefore imposes some kind of queueing. Finally they assume state saving costs are negligi-

ble and we include these costs in our model.

Now that we have described our mechanism for correcting causality errors we can develop our
model to account for the costs of this aggressiveness. The model presented in this chapter builds on the
model developed in the Chapter 3, and uses the same assumptions. Recall we assume a closed system
that is heavily loaded, an exponential service time with mean 1/A, each LP is equally likely to receive a
given "pre-sent” completion message and all processing is performed in the aggressive window before
the LP receives any arrival messages. In subsequent chapters we relax the assumption of a closed system

that is heavily loaded and model an open system with external Poisson arrival streams.

92

4.2, Costs of Aggressive Processing

There are two primary costs associated with aggressive processing: state saving costs and the po-
tential for cascading rollbacks and echoing. As discussed by Fujimoto (1990) large state saving costs
can significantly impact the performance of aggressive processing. However if the granularity of event
processing is significantly larger than state saving overhead, or if hardware support is used (Buzzel ef al.
1990), then good performance can be achieved with aggressive processing (Fujimoto 1990). We discuss

this issue in detail in the following chapter.

The second primary cost associated with aggressive processing is the possibility of echoing or cas-
cading rollbacks. Echoing occurs when one rollback causes a chain of rollbacks and the amplitnde of the
rollbacks increases without bound (Lubachevsky er al. 1989). By amplitude we mean the amount of logi-
cal time that must be rolled back. Cascading occars when a rollback chain develops and the number of
participants increases without bound (Lubachevsky ef al. 1989). Echoing is not a concern in our protocol
as an LP can never roH back beyond the ceiling of the lookahead window. In this section we derive the
probability of one roliback causing another rollback and show that the probability of cascading is neghigi-

ble.

4.2.1. Probability of Generating an Anti-Message

In this section we compute the probability that an LP generates an anti-message. In order to discuss
this probability we briefly review one aspect of Nicol’s (1993) windowing algorithm that is critical to our

analysis.

As discossed in section 3.2.1, in Nicol’s algorithm each LP "pre-sends" its completion message.
That is, the completion time of an activity, and the LP to receive this activity upon its completion, are
both calculated at the time the activity begins. The LP to subsequently receive the activity is notified of
this Teception at the time the activity enters into service. Recall that we term a message sent to inform an
LP of a future arrival a "pre-sent” completion message. Note that these "pre-sent” completion messages

are the only messages exchanged by the LPs,

93

When a server places an activity into service it also schedules a message for itself at the service
completion time. Recall that we term this message the “complete_service” message. Processing of the
"complete_service" message consists of giving service to the next scheduled activity, sending the "pre-
sent" completion message to the LP to receive the activity upon its completion, as well as any statistics
gathering required by the simulation. Thus for every server that is busy there is one "pre-sent” completion
message, sent to the receiving LP, and one “complete_ service” message scheduled on its own event list.
In section 3.2.4 we discussed the "complete_service" message in detail and discussed its various times-
tamp distributions in detail. In particular we defined a first generation "complete_service" message as one

with a timestamp that is a conditional exponential, conditioned on being within the aggressive window.

Recall our assumption that the system is heavily loaded and that the probability of an idie server is
very low. This implies that with high probability each LP will have a "complete_service" message on its
event list scheduled for some time in the future. It also implies that with high probability any arrival mes-
sage received will not go into service immediately (recall that an arrival message is a message received
by an LP with a timestamp that falls within the aggressive window). Therefore it is with high probability
that it is only the processing of a "complete_service" message that will cause another activity to be placed
into service. Given that it is only the placing of an activity into service that results in a message being
sent to another LP (the "pre-sent” completion message), and given our assumption of a heavily loaded
system, we conclude that it is only the processing of a "complete_service” message that will resuit in a

message being sent to another LP. For the purposes of our analysis we assume this is always the case.

In fact it is not the processing of the "complete_service" message that causes the "pre-sent” com-
pletion message to be sent. Rather, it is the placing of the next job into service that causes this message to
be generated. Since the next job will not enter into service uniil the "complete_service” message is pro-
cessed (because we assume the server is always busy), we state it as if it is the processing of the

"complete_service" message that causes the LP to send a "pre-sent” completion message.

If a "complete_gervice" message is processed aggressively, and the LP receives an arrival message
with a timestamp less than the timestamp of the "complete_service” message, the "pre-sent” completion

message generated as a result of this processing may be invalid. It is not necessarily the case that it will

94

be invalidated but for the purposes of this analysis we assume it always will Thus if a
"complete_service" message is processed aggressively, and the LP receives an arrival message with a
timestamp less than the timestamp of the "complete_service" message, we assume the “pre-sent” comple-
tion message generated as a result of processing the "complete_service" message is invalid. The LP must

therefore send an anti-message to cancel this message.

By definition the timestamp of the anti-message will have the same timestamp as the message be-
ing cancelled, If this timestamp falls outside of the aggressive window it will do no serious damage as the
message it will cancel has not yet been processed. If however it falls within the aggressive window it can
cause other aggressive messages to be rolled back and possibly cause another (second generation) anti-
message to be generated. We now determine the probability that an LP generates an anti-message with a

timestamp that falls within the aggressive window.

There are three conditions required for an LP to generate an anti-message with a timestamp within
the aggressive window. First, the LP must process the "complete_service" message aggressively.
Second, the processing of the "complete_service” message must be invalidated. Third, the message gen-
erated as a result of processing the "complete_service” message must have a timestamp that falls within

the aggressive window. We calculate the probability of each of these events.

The first condition is that the LP must process the "complete_service™ message aggressively. In
order for this to occur the timestamp of the "complete_service” message must fall within the aggressive
window. We give an upper bound on the probability of processing the "complete_service" message ag-
gressively by assuming it is processed aggressively when it falls within either the lookahead or the ag-
gressive window. Let (C) be the event that the "complete_service" message has a timestamp that falls
within the simulation window (i.e. either the lookahead or the aggressive window). The probability of

this event is

P(C)=1- e M) 4.1)
The second condition required to generate an anti-message is that the LP receive at least one arrival
message with a timestamp less than the dmestamp of the "complete_service" message. Remember an

anti-message can also invalidate the processing of the "complete_service” message. We ignore this issue

95

for the moment and discuss it in detail below. To determine the probability that an arrival message in-
validates the "complete_service” message we first need the distribution for the number of arrival mes-
sages that fall within the aggressive window. As shown in section 3.2.3, the probability that an LP re-
ceives K arrival messages (with timestamps that fall within the aggressive window) is Poisson distributed

with rate Ad—(e 7 — gAY

In order to predict the probability that an arrival message invalidates a "complete_service" message
(i.e. has a timestamp less than that of the "complete_service” message) we need to know the timestamp
distribution of both types of messages. In section 3.2.4 we discussed the timestamp distributions of both
arrival messages and "complete_service" messages in detail. For the purposes of this discussion we
define the event Jnval as the event that an arrival message invalidates a "complete_service” message. We

derived the probability of this event in Equation (3.27).

The final event that must occur in order to produce an anti-message is that the "pre-sent” comple-
tion message generated as a result of processing the (now invalidated) "complete_service” message must
fall within the aggressive window. Recall that the service time is drawn from independent, identically
distributed (iid) exponential random variables with mean 1/A. Consider a "complete_service” message
with timestamp T, = ¢ which is a conditional exponential, conditioned on being within the aggressive
window. Assuming there is some activity A; to enter into service upon the processing of this
"complete_service” message, the completion time of activity A; will be ¢, = ¢ + & where & is an exponen-
tial random variable with mean 1/A. We seek the probability that £, falls within the aggressive window.
Recall that the ageressive window has a width of 4 logical time units. For a particular timestamp Ty = ¢
of the "complete_service" message this probability is

Pty <A | Te=t) = 1—¢MA1,
We compute the unconditional probability by integrating the above equation over all possible values of
Tes = t times the probability of Trs = ¢, Remember the distribution for T¢y is a conditional exponential,
conditioned on being within the aggressive window (see Equation 3.19). Let (2Zrd) be the event that the

completion time of activity 4, falls within the aggressive window. The probability of this event is

96

At _ —h4 -Ad
4 1-{Ade™ + ¢).

Ae”
1—eMy I—e™

4.2

A
P{t; <A)=FQ2nd)= f(l—e”““"”‘}) (
0

We now have all of the information necessary to determine the probability of generating an anti-
message with a timestamp that falls within the aggressive window. Let (An#i) be the event that an LP
generates an anti-message with a timestamp within the aggressive window. The probability of this event
occurting is the probability that an LP processes the "complete_service” message aggressively, receives
an arrival message with a timestamp Jess than the timestamp of the "complete_service" message, and the
next activity to enter into service completes within the aggressive window. Noting the independence of

these events this probability is

P (Ant)) = P{C) P (Ar=1} P 2nd) P (Inval) 4.3
+P(C) P(Ar=2) P (2nd) (1 — (1 - P (Inval))*)
+P(C) P (Ar=3) P(2nd) (1~ (1~ P (Inval))®).

The first term in Equation (4.3) (F(C))is the probability of processing the "complete_service"
message agpressively. The second term (P (Ar=1)) is the probability of receiving one arrival message.
The third term (P (2rd) } is the probability of generating a message within the aggressive window. The
fourth term (P (Jnval)) is the probability that the arrival message has a timestamp less than the fimes-
tamp of the "complete_service" message. The other terms are similarly defined. The probability of re-
ceiving more than three arrival messages is negligible and is not included in the equation. For this reason
Equation (4.3} is an approximation. Finally, we define a first generation anti-message as an anti-message
which is produced when a "complete_service" message is invalidated by the receipt of an arrival mes-

sage.

4.2.2. Higher Order Generation Anti-Messages

We define a second generation anti-message as an anti-message which is caused by the receipt of a
first generation anti-message rather than the receipt of an arrival message. We compute the probability of
a second generation anti-message in a manner similar to the derivation of the probability of a first genera-
' tion anti-message. There are four conditions necessary for a second generation anti-message to be pro-

duced. First, the LP must receive an anti-message. Second, the LP must process the "complete_service”

97

message aggressively, Third, the timestamp of the anti-message must be less than the timestamp of the
"complete_service” message. Fourth, the "complete_service” message must have generated a message
with a timestamp within the aggressive window. We calculated the probability of each of these events
above except for the probability that the timestamp of an anti-message is less than the timestamp of a

"complete_service” message. We now derive this probability.

Consider the timestamp distribution of a first generation anti-message. A first generation anti-
message is produced when a "complete_service” is processed aggressively, the next activity to enier into
service completes within the aggressive window, and the LP receives an arrival message with & times-
tamp less than that of the "complete_service" message. The anti-message will have the same timestamp
as the "pre-sent” completion message it is sent to cancel, and this timestamp will be the sum of the logical

time of the "complete_service" message and an exponential random variable with mean 1/A.

The timestamp of a "complete_service” message is a conditional exponential, conditioned on being
within the aggressive window. Assume LP, has a "complete_service" message CS§; with timestamp
Tes=t within the aggressive window, Further assume the processing of CS, causes activity A; to be
placed into service, and that A completes service at time x =¢ +§ where £ is an exponential random
variable with mean 1/A. Further assume x falls within the aggressive window. Then LP, will have sent
some LP in the system a "pre-sent” completion message with timestamp X=x. Assume LP; is the chosen
LP. Now assume that "complete_service" message CS; is invalidated by the receipt of an arrival mes-
sage. Then the "pre-sent” completion message with timestamp X =x may be invalid and is cancelled by an

anti-message sent from LPy, to LP; (with timestamp X =x).

Now consider LP; which receives the anti-message from LP;. Assume LP; has aggressively pro-
cessed a "complete_service” message CS, with timestamp S=s. Further assume that the processing of
CS§, caused another activity A, to be placed into service, and that the completion time of activity A, is
y=s+E& Assume some LFP; receives activity A, when the activity completes ils execution, and that the
completion time of activity A, falls within the aggressive window. Thus LP; will send LF; a "pre-sent”
completion message with timestamp Y'=y. Assume that some time after LP; sends this "pre-sent” comple-

tion message to LP;, it receives the anti-message (with timestamp X =x) from LP,. Iif X =x is less than S=s

98

then the "pre-sent” completion message for activity A, may have been sent in error. This "pre-sent” com-
pletion message is thus cancelled by an anti-message. This will be a second generation anti-message
since the "complete_service" message was invalidated by the receipt of a first generation anti-message

rather than the receipt of an arrival message.

To determine the probability of a second generation anti-message we must compute the probability
that timestamp X is less than timestamp S. In section 3.24 we defined a first generation
"complete_service” message as one which has a timestamp that is a conditional exponential, conditioned
on being in the aggressive window. Both "complete_service” message CS; and CS, are first generation
messages (the discussion of this is given in section 3.2.4). We give the timestamp distribution of a first

generation "complete_service" message below and note that it is derived in section 3.2.4.

_ k™™
pdf(x)”“”‘ 1W€_M M

We define Anti_Invael as the event that an anti-message invalidates a "complete_service" message
processed aggressively. To compute the probability of this event we seek the probability that x = ¢ + & <s
or altematively 1~ P (s < x). Noting that this second form is somewhat easier to work with, we compute
this probability below.

Atx

) Ae ™™ Ae ™ Ae ™
P(Anti Inval)=1~P s<x}=1 _'(l;g'{[(l - B_M) oM _ghA (l—e‘M)

In Equation (4.4) the inner most integral is the probability that s is less than x given a particular value

ds dx dt = 25 4.4)

X=x. Then we integrate over all possible values of X =x times the probability of X, Note that X is a condi-
tional exponential, conditioned on being between T=f and A. In order to uncondition we integrate this
over all possible values of T'=¢ times the probability of T=¢. Since T is a conditional exponential, condi-

tioned on being within the aggressive window, this is done in the outer most integral.

We now have all of the information necessary to calculate the probability of producing a second
generation anti-message. Let Anti, be the event that an LP produces a second generation anti-message,

The probability of this event is

P {Anti,) = P (Anti)} P{C) P 2nd) P (Anti_Inval). {4.5)

99

The probability that a given LP produces higher order generation anti-messages is computed in a
similar manner. We can develop a simple recurrence relation to denote the probability that a given LP
produces an Ntk generation anti-message. In particular, an Ntk generation anti-message is produced
when an LP receives an N1 generation anti-message, it has processed the "complete_service" message
aggressively, the next activity to enter into service completes within the aggressive window and the
timestamp of the anti-message is less than that of the "complete_service” message. We give this probabil-

ity below.
P (Antiy) = P (Antiy_)) P{C) P (2nd) P (Anti_inval) 4.6)

4.3. Simulation Results

In order to test the accuracy of our predictions we simulated a simple FCFS queueing network with
N=1500 LPs. We built the state saving and rollback mechanism into our simulation in order to test the
impact of the correction mechanism. The system meets some of the assumptions of our model. As we
discuss below however many of the major assumptions are not met. The system does meet the assump-
tions of an exponential service distribution, a uniform distribution of messages to the other LPs and that
all messages in the aggressive window are processed before the first arrival message is received. Similar-
ly, the first arrival message is processed before the second arrival message is received and so forth. This

order of processing represents the worst case assumption as we discussed in section 3.2.1.

Probably the most important assumption of our model that is nof met by the simulation is the as-
sumption that all of the activity in the window can be captured by considering only those messages in the
aggressive window at the synchronization point. This is a significant divergence from the assumptions of
our model and is discussed more fully below. Also the simulation does not force arrival messages to be
gither first or second generation messages as is assumed in our model. Finally the predicted results use
the expected value of L (the width of the lookahead window), and as we discussed in section 3.3.5 the

width of the lookahead window is actually a random variable rather than a constant,

We developed two sets of predicted results. In one set (shown in Figure 4.1} we account for first

and second generation arrival messages. In the second set (shown in Figure 4.2) we assume all arrival

100

messages are first generation messages (recall we discussed these terms in section 3.2.4). We did this in

order to show the impact of the timestamp distribution approximation on the predicted results.

In Figure 4.1 we plot the predicted versus observed probability of a first generation anti-message
for a system with N=1500 LPs, a mean service time of 1/A = 1 and aggressive window sizes from 10% to
100% of the mean service time. This figure shows our predictions given the assumption that all arrival
messages are either first or second generation messages. Each observed data poini represents the average
of sixteen simulation runs, where each run represents one thousand iterations of the algorithm. There was

very little variation between the sixteen runs.

As can be seen our predictions are quite accurate for a very reasonable range of aggressive window
sizes. Also, the probability that an LP produces an anti-message is quite small even for large aggressive
window sizes. This is very encouraging. Note however that as the aggressive window size approaches
the mean service time our model begins to under-predict the probability of a first generation anti-

message. We now discuss the reason for this under-prediction.

Our model focuses only on the messages in the aggressive window at the synchronization point.
This presents an accurate picture of the state of an LP before it begins to process in the new simulation
window. It is a static picture however and does not capture the effects of processing within the aggres-
sive window. This is because it does not account for the probability that a "complete_service" message
that is processed within the aggressive window may place an activity into service which also completes
within the aggressive window. This other completion within the aggressive window implies that a second
"complete_service" message will be placed on the event list and (since its timestamp falls within the ag-
gressive window) will also be processed aggressively (see section 3.2.4 for a further discussion of this is-
sue). This second "complete_service" message (of course there may be other such messages as well)
may also be invalidated through the receipt of an arrival message and thus may also produce a first gen-
eration anti-message. Clearly the size of the aggressive window determines the probability of more than
one "complete_service" message being generated within the aggressive window. As can be seen in Figure
4.1, as the aggressive window size approaches the mean service time this happens enough such that our

model under-predicts the probability of an anti-message.

101

3.040 Y Y T
@ Feeif] Obysorved 1
2 0030 - Pradictod -
oy
i
=
E
o
2
<
£ o0.020
(&3
B
=
B
&=
8
< o0 b
E 0.
0.000 + * .
0.0 0.2 0.4 0.8 0.8 1.0

Aggressive Window Size (3% Mean Service Timea)

Figure 4.1 - Probability of Producing a First Generation Anti-Message
This is a good example of the trade-off between precise predictions and the tractability of our
model, Our model for predicting the probability of an anti-message is reasonably simple, and yet gives
very reasonable results for a wide range of aggressive window sizes. We could have developed our
model such that we consider more than one "complete_service” message produced as a result of process-
ing within the aggressive window. The model would however become intractable very quickly. We feel
we have reached a reasonable compromise between the complexity of the model and the accuracy of our

predictions at the upper bound of the aggressive window size.

As discussed in section 3.2.4,2, a much simpler approach is to assume all arrival messages are first
generation messages. It is interesting to show the differences in the predictions of our model'depending
on the timestamp approximation for arrival messages. In Figure 4.2 we plot the predicted and observed
probabilities of an anti-message assuming all arrival messages are Brst generation messages. Also, we
show the predicted results when we account for second generation arrival messages. As can be seen, as-

suming all arrival messages are first generation messages bounds from above the probability of an anti-

102

message. It is interesting to note that the observed probability falls between our two predicted values.

As can be seen the predicted and observed values of the probability of a first generation anti-
message are quite small. Given this very low probability of a first generation anti-message the probabili-
ty of cascading rollbacks developing is quite small. This is because in order to produce a second genera-
tion anti-message all of the conditions required for a first generation anti-message are required (and obvi-
ously the probability of these conditions occurring is quite small) and the 1P must receive a first genera-
tion anti-message. To see this, consider our predictions for higher order generation anti-messages given
an aggressive window size set to its maximum value of the mean service time. Our model predicts that
the probability of a second generation anti-message is .001, the probability of a third generation anti-
message is .0001 and the probability of a fourth generation anti-message is .000006. In order to test our
predictions we tracked the maximum generation anti-message observed ou! of all of our simulation runs.

In Table 4.1 we show the highest order generation anti-message observed for this system given aggres-

0.050 v T g T

i) Observed ,;' v
G~ Prodicted (st and 2nd Gen. Arrivajs,

Y G.040 |- ETNTRS i- Predicted (All st Gen. Arrivals) ',f '

ﬁ /

<

=

=

<z

g 0.030

@

B

5

[G]

k]

g

= 0.020

k=]

oy

=

[1:3

S22

e

“ poto |

0.000 le—imp- = o : :
0.0 0.2 0.4 0.6 0.8 10

Aggressive Window Size {3t Mean Sarvice Time)

Figure 4.2 - Probability of Producing a First Generation Anti-Message

103

sive window sizes from 10% to 100% of the mean service time. As can be seen there is no observed

problem with cascading rolibacks developing.

4.4, Scalability Issues

As discussed in Chapter 3, we have not yet developed scalability results for a system such as ours.
We have however developed a set of results which we feel represent a significant step towards proving
system-level scalability. In this section we investigate the probability that a given LP produces an anti-
message as the number of LPs in the system approaches infinity, We feel that we can use these results as

the foundation for system-level scalability results,

Aggresslve Maszcimum
Window Size Observed
(% MsST) anti-Meaess.

<1 i1st
2 2nd
.3 2nd
.4 2nd
.5 3xd
.6 I rd
7 3 rdd
.8 3rd
s 4ach
1.0 4ath

Table 4.1 - Highest Order Generation Anti-Message Observed in the System

104

We are interested iﬁ the probability that an LP produces a first generation anti-message as the
number of LPs and number of processors approaches infinity. The approach we use is the same as out-
lined in section 3.5, and we do not reiterate the arguments in this section. As discussed in section 3.5, the
value of N (the number of LPs in the system), is not directly reflected in our equations. Rather, this value
is contained in the value of L, the width of the lookahead window. In order to show the dependence of L
on N we use the notation L (N) for the remainder of this section. As discussed in section 3.5, as
N—soo AL{N)-»0. Thus to investigate the behavior of our protocol as N approaches infinity, we investi-

gate its behavior ag AL (W)—0.

As discussed in section 3.5, we need to account for the fact that the synchronization costs increase
as the size of the architecture increases. In order to keep the workload per processor constant, we assume
(in a system with P processors) there are K = P Log, P LPs per processor. Thus we assume there will be
N =K P LPs in the system. We investigate the probability an LP generates an anti-message as N ap-

proaches infinity.

In Figure 4.3 we show the (predicted) probability of producing an anti-message (at a given LP) as
AL (N)->0. In this graph the aggressive window size is set to the maximum value we consider (ie.
A = 100% of the mean of the ‘service time distriimtion). Our model predicts that as more LPs are added
to the system the probability of a given LP producing a first generation anti-message declines. Note that it
reaches the lowest probability (approximately .023) at AL (N) = 0 (i.e. the limit as N—eo). This is very
encouraging since it implies that the probability a given LP initiates a rollback chain does not increase as

the rnumber of LPs approaches infinity.

As can be seen from Figure 4.3, the probability of a given LP producing an anti-message is approx-
imately .12 at AL (N) = 2, and declines as L {N) decreases. It is important to note that in a system with ap-
proximately 50 LPs, the value of AL (N) will be approximately .17 (see section 3.3 for a discussion of
determining the number of LPs in a system for a given value of AL). In Figure 4.3 we have drawn a verti-
cal line at AL = 17, This is important because it shows that in a system with 50 or more LPs the proba-
bility of producing an anti-message (at a given LP) is reasonably low (< .05). Thus it is only in a relative-

Iy small system that we would expect to observe a probability of producing an anti-message (at a given

105

LP) that is higher than .03,

Again we note this probability of an anti-message is the probability at a given LP, not in the sys-
tem. We discuss system level performance in the following chapters. In order to test our predictions that
the probability of producing an anti-message (at a given LP) declines as more LPs are added to the sys-
tem we increased the number of LPs in our simulated system from 1500 to 3000. We then re-ran our
simulation for an aggressive window size that is 100% of the mean service time, and 50% of this mean,
For an aggressive window size set to 100% of the mean service time, the probability of a first generation
anti-message given 3000 LPs is 0.0319 compared with 0.032 for 1500 LPs. For an aggressive window
size set to 50% of the mean service time, the probability of a first generation anti-message is 0.0025 fora
system with 3000 LPs versus 0.027 for a system with 1500 LPs. While these reductions in the probability
of an anti-message are minimal, it is encouraging to note that this probability does not increase as the

number of LPs increases. As discussed, we believe these results will lay the foundation for proving

0.20 > .
A—+ Pradicted Prob. of Ant-Messags]
CreCrlambda LN) = 17
Q>
F 015 - -
o
0>
=
=
=
e
‘®
a
§ 0.10
B
2
o
R
Z
3
2 005
n.
0-00 1 ’ 1.
0.0 0.5 1.0 1.6 2.0

larnbda L{N)

Figure 4.3 - Probability of Producing an Anti-Message as N —oo

106

system-level scalability,

4.5. Conclusions

In this chapter we have defined our correction mechanism and derived the probability that an LP
produces a given generation anti-message as ¢ function of the level of aggressiveness. We stress that this
is the first time this relationship has been established. Also we have shown theoretically and through
simulation studies that the probability of an anti-message at a given LP actually decreases slightly as the

number of LPs approaches infinity. This is a very encouraging result.

What we have not yet addressed is the issue of system level performance. Uniil now we have not
1aid the theoretical foundation necessary to discuss this issue. In the next chapter we relax our assumption
of the closed system and model an open system with external Poisson arrival streams. Then we use the

theoretical base we have built to investigate system level performance.

CHAPTER 5

Analysis of an Open System

The model developed in previous chapters assumed a closed system that is heavily loaded. As we
discuss below, the assumption of a heavily loaded system simplifies our analysis significantly. The goal
of this chapter is to show that we can relax our assumption of a closed system that is heavily loaded, and
extend our analysis to include a lightly loaded system provided it is open. The model developed in this
chapter assumes an open system where each LP receives messages from an external source as well as

from other LPs in the system. We discuss the details of this new model below.

The purpose of this chapter is to demonstrate that our analysis can be extended to an open system
rather than to give a complete analysis of such a system. As will be seen, our approach to the equations
for an open system are more tedious and complex than those for a closed system. Thus while we show
how to derive the required distributions and desired equations, we do not give the full range of theoretical
and empirical results that we have for a closed system. Our goal is to demonstrate that our analysis can be

extended to an open system, and to show what is required in order to make this extension.

The remainder of this chapter is organized as follows. In section 5.1 we develop our model for the
open system. In section 5.2 we derive the distributions of the number of aggressive messages at the syn-
chronization point, the number of arrival messages, the timestamp of aggressive messages and the times-
tamp of arrival messages for an open system. In section 5.3 we show how to use these distributions to
compute the probability of a fault and the expected number of messages processed successfully at a given
LP, Also, we give simulation results o check the accuracy of our model. In section 5.4 we discuss the
calculations involved in computing the probability that an LP produces an Nth generation anti-message,
Also in section 5.4 we give simulation results which support the predictions of our model. We give our

conclusions in section 5.5.

107

108

5.1, Model of Open System

The model of the open system is very similar to the model of a closed system developed in previ-
ous chapters. We model the system as a collection of servers where activities occur. When an activity
completes service at a given server it causes other activities to occur. In our model we assume each com-
pletion causes exactly one other activity. The delay in simulation time between when an activity begins
and ends is called the duration of the activity. We assume each server chooses the duration of an activity
from independent, identically distributed exponential random variable with mean 1/A. We assume there

is one server per LP and N LPs in the system.

As in previous chapters, we treat the width of the lookahead window (L) as a constant equal to its
expected value rather than a random variable. This expected value can be obtained analytically (see

Nicol 1993) or through sample simulation runs.

We assume a server is never idle if there is an activity available to receive service. As in previous
chapiers we assume an LP processes all of its messages in the aggressive window before receiving any
arrival messages. In section 3.2.1 we discussed how this is & worst case assumption in that an arrival

message will invalidate the maximum number of messages possible.

Each LP receives mggsages from both an external source and from other LPs in the system. The
external arrival messages are in the form of a Poisson process with rate Ag. As discussed in section 3.2.1,

the messages received from the other LPs in the system are the "pre-sent” completion messages.

Once an activity completes service it departs the system with probability p, and stays in the system
with probability p . If an activity stays in the system the next LP to receive it is chosen at random, where

each LP is equally likely to be chosen.

In section 3.2.4 we discuss the timestamp distribution of arrival messages. As discussed, this times-
tamp distribution can be quite complicated, depending on the circumstances under which the arrival mes-
sage is produced. In section 3.2.4, we showed if we restrict the size of the aggressive window, we can
approximate the timestamp distribution by assuming all arrival messages are first generation messages.

With this assumption our analysis is greatly simplified. However, this assumption gives a pessimistic

109

view of the performance of our protocol (i.e. it over-estimates the probability of a fault and under-
estimates the expected improvement in performance). As discussed, we can make the timestamp distri-
bution more exact and assume all arrival messages are either first, or first and second generation mes-
sages. In this case the results are more accurate, but the analysis is much more complicated. Thus there is

a trade-off between the complexity of the analysis and the exactness of the resuits.

As in Chapter 3, we restrict the size of the aggressive window 1o be no greater than the mean of the
service time distribution, There is no special significance in this choice. It is chosen because it is large
enough to demonstrate the error of the timestamp distribution approximation as the size of the aggressive
window increases, and small enough such that we feel the predictions of ouf model are still reasonable at

the upper end of the aggressive window size.

As will be seen, the analysis in this chapter is substantially more complicated than that presented in
previous chapters. Due to the complexity of the analysis, we (except where explicitly noted) make the
simplifying assumption that all arrival messages are first generation messages. As discussed, this approxi-
mation tends to give a more pessimistic view of the performance of our aggressive protocol than when
we cohsidcr second or higher order generation messages. Without this assumption however the analysis
becomes intractable. We discuss the effects of this simplifying assumption during the course of our
analysis.

Now that we have defined our model we derive the distributions needed to determine the probabili-
ty of a fault and the expected improvement due to aggressive processing. We begin by deriving the input

rate to a given LP.

5.2. Distributions

In this section we derive the distribution of the number of messages in the aggressive window at
the synchronization point, the number of arrival messages, the probability that an arrival message invali-
dates k messages and so forth. In order to derive these distributions we first must determine the total in-

put rate 1o a given LP, We do this below.

110

5.2.1. Total Input Rate

The total input rate (Ar) at each LP is the sum of the external arrival rate plus the arrival rate from

the other LPs in the system (internal arrival rate).
?\q‘ - ?\‘E + ?uf (5.1)
As noted by Kleinrock (1975), Jackson (1957) showed that each LP in this system will behave as an in-
dependent M/M/1 system with Poisson input stream with rate A, This is true even though the total input

rate will not in general be a Poisson process.

The external arrival stream is, by definition, Poisson with rate Ag. In order to determine the rate of
the internal arrival stream, consider a given LP;. LP; will have a total input stream with rate Ay, After
each activity is processed the activity will stay in the system with probability p,. The output rate of LFP;
(that stays in the system) will therefore be Ayp ;. This total output rate from LP; will fork into N output
streams since each LP is equally likely to receive a given activity. Therefore the input stream to a given
LP; from LP; will have rate Ayp, I/N. The total input stream to a given LP; (from internal sources) will

be the sum of ali such input streams.

N
Ar=hg+ A =Ag + Y Arp UN =Ag +pids. (5.2)
ioi

We now solve for the total input rate Ay,

Ap(l—p1)=Ag (5.3)
Ag

Po
The utilization of the server at a given LP (denoted by the symbol p) is defined to be p = Ay/A. The
condition for stability in the system is 0 < p < 1. We assume this condition is always true (that is, we

assume that the parameters of the system are always chosen such that this condition will hold).

Now that we have determined the total input rate to a given LP we can derive the distribution for
the number of messages in the aggressive window at the synchronization point, We do this in the follow-

ing section.

111

5,2,2. Number of Messages in the Aggressive Window at the Synchronization Point

After the LPs have completed processing within the simulation window they synchronize globally
to define the new simulation window. In the non-aggressive version of the algorithm the LPs define the
lookahead window. Recall this is defined such that all events with timestamps falling within the window
can be executed concurrently without any possibility of a causality error. In the aggressive version of the
algorithm the LPs define the aggressive window as an extension to the lookahead window. Events within
the lookahead window are the only events executed between global synchronization points in the non-
aggressive algorithm. If we temporarily ignore the arrival messages, then the events processed within the
aggressive window represent the extra processing atlowed by the aggressive algorithm between global
synchronization points. We are interested in how much extra processing is performed between global
synchronization points due to aggressive processing. As in Chapter 3, we compute the extra parallelism
available due to aggressive processing by determining the number of events with timestamps falling
within the lookahead window, and the number of events with timestamps falling within the aggressive

window.

We assume all of the external arrivals with timestamps falling within the lookahead window have
arrived by the time the LPs synchronize to determine the next lookahead window. This assumption i re-
quired for external arrival messages with timestamps that fall within the lookahead window since the LPs
cannot determine a lookahead window if it is possible to receive external arrival messages with unknown
timestamps. While external messages could fall within the aggressive window without affecting the
correctness of the aggressive version of the algorithm, the analysis is simplified by assaming they are
present at the synchronization point. Therefore we make this assumption and note that one way (o ensure

this requirement is to generate all of the external arrivals at the beginning of the simulation.

At the synchronization point, the number of messages in the aggressive window is the sum of the
external arrivals and internal arrivals with timestamps that fall within the aggressive window. The
number of messages due to external arrival messages is Poisson distributed with rate Az A, where A is the
size of the aggressive window. The number of messages due to internal arrivals is more difficult to deter-

mine. We determine this distribution in the remainder of this section.

112

Recall when an activity enters into service at a given LP, the LP determines both the completion
time of the activity and the next LP to receive this activity upon its completion, The LP then sends a
message to the next LP to receive this activity, informing the LP of this futare arrival. Recall we term
these messages "pre-sent” completion messages because they are used to inform the next LP of this fu-
ture arrival. An LP is informed of this future arrival at the wall-clock time the activity enters into service,

As noted, these are the only messages exchanged by the LPs,

Fér the purposes of this analysis there are two important points regarding the "pre-sent” completion
messages. First, the timestamp of the "pre-sent” completion message is the logical time the activity com-
pletes service, which is also the logical time the activity arrives at the next LP. Second, assume the 1.Ps
synchronize at logical time T to define the new simulation window, and consider the servers that are busy
at the synchronization point (i.e. logical ime T). Each such server will be busy with an activity that be-
gan service at logical time s < T, completes at time 7" > T, and whose completion was pre-sent. Thus
there will be one "pre-sent” completion message for each server that is busy. We seek to determine the
distribution of the number of such "pre-sent” completion messages in the aggressive window of a given
LP at the synchronization point. As noted, these messages are processed in the aggressive version of the

algorithm and are not processed in the non-aggressive algorithm.

As discussed by Kleinrock (1975, page 18), the utilization factor (p) can be interpreted as the ex-

pected fraction of servers that are busy in the steady state (assuming 0 < p < 1).

p = E[fraction of busy servers] = % 5.4)
Given that the expected fraction of busy servers is known, we can determine the expected number of
"pre-sent” completion messages that will be in the system at the synchronization point (recall there is one
such message for every busy server). It is expected there will be p NV servers busy at the synchronization
point in a system with N servers. Recall the probability that a "pre-sent” completion message stays in the
system is p . Thus there will be o N "pre-sent” completion messages in the system at the synchronization

point, where o is defined as the expected fraction of busy servers times the probability that a given "pre-

sent” completion message stays in the system.

113

a=pp (5.5

The probability of a given LP receiving one of these "pre-sent” completion messages is 1/N (due o
the assumption that each LP is equally likely to receive a given message). Let K be the random variable

denoting the number of "pre-sent” completion messages received by a given LP. The probability X =£ is

PK=k)= (%)k (N];I Y- k!(gi\rrik)!

Note in Equation (5.6) there is a large number of trials (oV) and the probability of success at any trial is

(5.6)

small (1/N). As shown by Brieman (1986), in this situation the binomial is closely approximated by the

Poisson distribution with rate equal to the number of trials times the probability of success at any trial.

P(K=k) = o/k! 5.7
Using the same approach as in Chapter 3 (Equations (3.4) through (3.11)), it can be shown that the
number of "pre-sent” completion messages in the aggressive window at the synchronization point is

closely approximated by the Poisson distribution with rate cie ™% ~ oig™E+4),

_ ge™MEHAYE
k!

AL
P &=ty = & (o M) (5.8)

As noted, we use the Poisson distribution as an approximation to the binomial distribution. It is
convenient to assume this is the true distribution. We do so for the rest of this analysis, but note our

analysis is built on this approximation.

Equation (5.8) gives the number of messages at the synchronization point from internal sources.
Recall an LP receives messages from both internal and external sources. Further recall (by assumption)
the external messages that will arrive in either the lookahead or the aggressive window will be present
when the LPs reach the synchronization point. Given that the number of external messages in the aggres-
sive window at the synchronization poing is Poisson distributed with rate AzA, and the number of internal
messages is Poisson with rate ae ™ — oe M) the total number of messages in the aggressive window
at the synchronization point will be the sum of these two Poisson streams, Thus the number of messages
will be Poisson distributed with rate oe —oe M) 104, Let W be the rate of the merged Poisson

sireams.

114

W= g Moge M)A = ae™ (1-0e™) (5.9)

Then the number of messages in the aggressive window at the synchronization point is

k
P (K=k)= %—e-‘*‘ (5.10)

Also, we are interested in the number of messages in the lookahead window at the synchronization
point. As discussed in section 3.2.4, the system can be viewed as probabilistically restarting at the syn-
chronization point* (further recall we refer to this as logical time T). That is, if the current fioor of the
simulation window is logical time T, we can view the lookahead window as extending from logical fime
0 to L, rather than logical time T to T+L. Similarly, we can view the aggressive window as extending -
from logical time L to L+A rather than logical time T'+L to T+L+A. This is what we have done in Equa-
tion (5.9) where we compute the distribution of the number of messages in a window extending from log-
ical time L to [.+A. Similarly, we can compute the number of events in a window extending from lIogical
time 0 to L by substituting 0 for L, and substituting £, for A in Equation (5.9). Making this substitution, we
see the number of messages in a window from logical time 0 to L (i.e, the lookahead window) is Poisson
distributed with rate o—cte 7 +AgL. Let © be the parameter of the Poisson distribution in the Iookahead
window at the synchronization point.

0 = o—oe M+ AgL. (5.11) -
Let J be the random variable denoting the number of messages in the lookahead window at the synchron-

ization point. Then
P=)= %e“’ (5.12)

5.2.3. Complete_Service Message

In the above equations we calculate the probability that an LP has K "pre-sent” completion mes-
sages (in the aggressive or lookahead windows) from both internal and external sources. As discussed in
section 3.2.2.1, every LP with a server that is busy will have a "complete_service” message scheduled on

its event list. We need to account for this message in our equations.

"We again note that this s an approximation since the proteeol chooses the value of T. As we have shown however this
approximation is quite good.

115

In section 3.2.2.1, we showed that (given the server is busy) the probability the "complete_service"
message has a timestamp which falls within the lookahead window is 1 — ¢™, Similarly, we showed the
probabiity the "complete_service” message falls within the aggressive window is ¢ — ¢ These

probabilities are conditioned on the server being busy.

In order to uncondition we multiply the probability that the "complete_service” message will fall
within the lookahead or aggressive windows by the probability that the LP has a "complete_service” mes-
sage scheduled. Recall p (0 £ p < 1) is the server utilization, and therefore represents the probability
the server will be busy at any given time, For our purposes it represents the probability that an LP will
have a "complete_service" message scheduled on its own event fist. The unconditioned probability that
an LP has a "complete_service” message in the lookahead window is p(l—e“u) and the probability the
"complete_service" message exists and falls within the aggressive window is p(e ™ —e¢*), Let o be
the probability an LP has a "complete_service" message in the lookahead window and « be the probabili-

ty that an LP has a "complete_service" message in the aggressive window.

o =p(l-e (5.13)

i = ple M—gMEH) (5.14)

Let X be the random variable denoting the total number of messages (including "pre-sent” completion
messages and a "complete_service" message) in the aggressive window, and let ¥ be the random variable

representing the number of such messages in the lookahead window.

In order 1o have X =0 messages in the aggressive window an LP must have no "pre-sent” comple-
tion messages (in the aggressive window) and the "complete_service" message (if it exists) must fall out-
side of the aggressive window. Let (M=0) be the event that an LP has no messages in the aggressive
window. Let (C) be the event that an LP does not have the “"complete_service” message in the aggressive
window. The probability that an LP has zero messages in the aggressive window is

P(X=0) = P(M=0,C)=¢"" (1. (5.15)
Let M’=0 be the event that an LP has no "pre-sent" completion messages in the lookahead window. Let c
be the event that an LP does not have the "complete_service” message in the lookahead window. The

probability of zero messages in the lookahead window is

116

P (¥=0) =P (M'=0,C")y=e™® (1-0). (5.16)
Now consider the probability of (X =x) =1 messages in the aggressive window. One way for this to
occur is for the LP to have x "pre-sent” completion messages and not have the "complete_service" mes-
sage in the aggressive window. Alternatively, the LP could have x—1 "pre-sent” completion messages

and have the "complete_service” message in the aggressive window.

PX=xx2)=PM=x-1,C)+P(M=x,C)= (5.17)
Kl x
-——§;‘f’31)2 e (1-B)+ (j? et x

Similarly, the probability that an LP has (¥ =y) 2 1 messages in the lookahead window is

P(Y=y,yz1)=P(M =y-1,C)+ P(M =,C) = (5.18)
-1 y
((f_)_yl)! cr+(3)! (1-0)

5.2.4. Distribution of Arrival Messages

In this section we derive the probability distribution for the number of messages that arrive in the
aggressive window. Recall we term a message received by an LP, such that the timestamp of the mes-
sage falls within the aggressive window, an arrival message. As discussed in section 3.2.1, we assume
an LP processes all of its messages within the lookahead and aggressive windows before it receives any
arrival messages. As noted, this may not be strictly true, but is reasonable given the relatively small ag-
gressive window sizes we consider. Further, as shown in section 3.2.1, this represents the worst case as-
sumption. Given that all messages within the aggressive window have been processed by the time an LP
receives an arrival message, if the timestamp of this message is less than that of any message processed
aggressively, this results in a causality error. Since arrival messages can lead to causality errors it s im-

poriant to determine the distribution of the number of such messages received by a given LP.

Recall our assaumption that all external messages will have arrived by the time the LPs reach the
synchronization point. Thus the only additional arrival messages will be those generated by the other LPs

in the system,

117

In Equation (5.2) we showed

hg+ A=Az +App -
Thus

A =%py.
That is, the internal arrival rate into a given LP is equal to the total input rate times the probability that a

message stays in the system,

In Equation (5.8) we showed that the number of messages in the aggressive window (at the syn-
chronization point) due to internal sources is Poisson distributed with rate ae ™ —oe ™) As shown
ahove, the total internal arrival rate to a given LP is Poisson with rate Ayp ;. The total arrival stream in the
aggressive window (which has a width of A logical units) from internal sources will therefore be Poisson
distributed with rate Ayp;A. We break this total internal arrival rate into two component rates. First, the
rate for the messages in the aggressive window at the synchronization point, and second, the rate of the

internal arrival messages.

Afl‘p IA = Rarriva.! + (ae'-l[,. - W—ML-M)) (519)

?\'arrival = MP lA - (aewu_m-m,m))

‘We conclude that the number of messages that arrive in the aggressive window, and thus the distribution

for the number of arrival messages, is Poisson distributed with rate Ayp A ~ (ce—oe),

5.3. Probability of a Fault at a Given LP

In Chapter 3, we showed (assuming a closed system) the timestamps of the messages in the aggres-
sive window at the synchronization point are conditional exponentials, conditioned on failing within the
aggressive window, Also we argued that a reasonable approximation for the timestamp distribution of ar-
rival messages is to assume they are also conditional exponentials, conditioned on falling within the ag-
gressive window. Given these distributions, we showed how to compute the probability of a fault and the

probability of successfully processing K messages in the aggressive window.

In an open system it is somewhat more difficalt to determine these values. This is because there are

two different sources of messages that fall within the aggressive window, and two different timestamp

118

distributions we must consider. First, some of the messages in the aggressive window (af the synchroniza-
tion point) are due to internal sources. That is, these are the messages exchanged by the LPs. Note that
we have discussed these messages at length in sections 3.2.2 - 3.5. As discussed, the timestamps of these
internal messages are conditional exponentials, conditioned on falling within the aggressive window. The
second type of messages are those received from the external Poisson process. By definition of the Pois-
son process, we know that the distance between the timestamps of these external messages is exponen-
tially distributed.

Consider the calculation of the probability of a fault at a given LP. Recall our assumption that all of
the external messages have arrived in the aggressive window by the time the LPs synchronize o define a
new simulation window. Thus it is only the receipt of an arrival message (from an internal source) that
can result in a causality error. Recall we derived the probability distribution of the number of arrival
messages received by a given LP in Equation (5.19). An arrival message has the potential to invalidate
either of the two types of messages (i.c. the messages from external sources or the messages from internal

sources) in the aggressive window. First consider the messages due to internal sources.

In Equation (5.8), we derive the distribution of the number of messages in the aggressive window
at the synchronization point due to internal sources. Given that we know the distribution of the number
of such messages in the aggressive window, the timestamp distribution of these messages, the timestamp
distribution of the arrival messages, and the distribution of the number of arrival messages received, we
can determine the probability of a fault and the expected number of messages successfully processed.
This is exactly what we discussed in detail in section 3.4, and do not reiterate. We term a fault caused by
an arrival message invalidating an internal message an internal fault. We denote the probability of such a

fauit as P (Fault Internal).

Now consider the messages in the aggressive window of a given LP due to the external Poisson ar-
rival process with rate Ap. We seek the probability that an arrival message invalidates one of these mes-
sages. Let P (Fault External) be the probability that an arrival message invalidates an external message in
the aggressive window. Consider an aggressive window extending from logical time 0 .. A, and assume

the LP receives an arrival message with timestamp ¢ such that 0 < ¢ < A. Consider the number of external

119

messages in the interval from ¢ .. A. Note this is exactly the number of messages in the aggressive win-
dow with a timestamp greater than that of the arrival message, and if this number is greater than zero then

the LP has faulted.

By definition of the Poisson process, the probability of K =k messages in an interval from ¢ .. A is

(e (A-DY aa-n
BT E— ¢)
Thus we know the probability of K =k messages (in the aggressive window) with timestamps greater than

P {K=k Messages in interval t .. A) =

that of an arrival message with timestamp T4 = #. In order to uncondition this expression we integrate
over all possible values of T = ¢, times the probability of T, =¢. Recall our assumption that the times-
tamp of an arrival message is a conditional exponential, conditioned on falling within the aggressive win-
dow. The unconditioned probability of K=k messages in the aggressive window with a timestamp greater

than that of an arrival message is thus

A p@-n) Agla-ty Aie™

P (K=k Messages with timestamps > Ty =) :_[" e erd.
B k! (1-e™%)

The probability of X =0, and thus the probability that an arrival message does nof invalidate an

external message is

— G-n Aie ™
P (Fault External) w_[e VTS
0 (1-e™%)

The probability of not faulting given one arrival message is

P (No Fault)= P (Fault Internal) P (Fault External).
That is, the arrival message must not invalidate an external message, and it must not invalidate an internal

message. The probability that an arrival message does cause a fault is one minus this probability.
P (Fault)y=1— P (No Fault)
The probability of faulting given more than one arrival message is similar to other such derivations given

in previous chapters and is not reiterated,

Now we have derived all of the equations necessary to calculate the probability of a fault (at a
given LP) for an open system. Clearly these same equations and distributions are sufficient to compute

the expected number of messages processed successfully at a given LP. As discussed, the number of

120

internal messages processed successfully is computed exactly as shown in section 3.4. The number of
external messages processed successfully is computed in a manner similar to the probability of invalidat-
ing K messages shown above. In particular, the probability of processing K =k messages successfully
given an arrival message with timestamp T, = ¢, is the probability that there are K =k messages in the in-
terval from Q.. ¢, As above, we need to consider all possible timestamps T = ¢, times the probability of

T, = i. We give the unconditioned expression below.

dt

N 2 Opt) g Ae™
P (K=k Messages with timestamps < Ty ={) = j X e Y
0 R €
As can be seen, our analysis of a closed system can be extended to model an open system with an
external Poisson arrival process. Below we give simulation results to demonstrate the correctness of our

analysis.

5.3.1. Simulation Resufts

In this section we give a set of simulation results to examine the accuracy of our equations. We
simulated an open queueing system where an LP received messages from both internal sources and from
an external Poisson arrival process with rate Ag. As discussed, we generated all of our external arrival
messages at the beginning of the simulation. In our analysis, each data point represents the average taken
over sixteen trials, where each trial consisted of 1000 iterations of the algorithm, There was little vari-

ance between the sixteen trials.

Recall in Chaptér 3 we simulated a Iarge system (1500 LPs} which was heavily loaded. In this sec-
tion we simulate a small system (250 LFPs) that is lightly loaded. The particular system we simulated had
an external arrival rate of Ag = 0.5, and an exponential service time distribution with mean I/A = 1. The
probability that a message stayed in the system was p, = 0.2, and the probability a message exited the

system was po = 0.8, Thus the server ntilization of our system was p = 0.625.

In Figure 5.1 we show the predicted and observed probability of a fault given an aggressive win-
dow size from A = 10% of the mean of the service time distribution 1o A = 100% of the mean of the ser-

vice time distribution. As can be seen, our predictions are quite close for the smaller aggressive window

121

sizes. As the size of the aggressive window increases however our equations begin to over-predict the
probability of a fault. This was exactly the pattern we observed in our predictions for the closed system.
As discussed in detail in section 3.2.4.2, the reason for this over-prediction is the error of our timestamp
approximation fdr the arrival messages. As discussed, the larger the size of the aggressive window, the
farger the error of this approximation. As can be seen, given a lightly loaded system the probability of a

fault at a given LP is quite small.

The final parameter of interest in an open system is the probability of producing an Ntk generation

anti-message, We derive thig probability in the following sections.

5.4, Anti-Messages

In this section we calculate the probability an LP produces an anti-message with a timestamp fal-
ling within the aggressive window. Recall we are not concerned with anti-messages whose timestamps
fall outside of the aggressive window because the message being cancelled will not yet have been pro-

cessed. As the message will not yet have been processed there is no way the error can propagate through

0.020 T T 3 T 3]

g Progiclad

Q0186 L3t Observed -4
=) &
= §
4 /
&
= /
B //
& o010 | E
L
@ /
= oA
= E:
.

0.008 - -

o
/‘B/
G
’l/)._

5.000 P d ; . .

0.0 0.2 0.4 0.6 0.8 1.0

Aggressive Windgow Size (% MST)

Figure 5.1 - Probability of a Fault in an Open System

122

the system. As we will show, the computation of the probabilities associated with an anti-message in an
open system are much more complicated than in the closed system assumed in previous chapters, Before
deriving these probabilities we describe briefly the characteristics of the two systems that affect this com-

putation significantly.

In previous chapters we have assumed a closed system that is heavily loaded. As discussed, this as-
sumption simplifies the derivation of the various probability distributions we have needed. This is partic-
ularly true in the calculation of the probability of producing an Ntk generation anti-message. Consider

the impact on our analysis of assuming a closed, heavily loaded system.

Perhaps the most important implication of a closed, heavily loaded system is that with high proba-
bility each server will always be busy. While this probability is not necessarily one, we assume this for
the purposes of our analysis. This has two important implications with regard to the probability of gen-
erating an anti-message. First, it implies that (with high probability) it is only the processing of the
"complete_service" message that will cause a new activity to be placed into service. Thus the processing
of the "complete_service" message is a necessary, but not sufficient condition to produce an anti-
message. Second, each time a "complete_service" message is processed there will (with high probability)
be an activity ready to be placed into service. This implies that with high probability the completion time
of the next activity to receive service will be the sum of the timestamp of the "complete_service” mes-

sage and an exponential random variable with mean 1/A.

These characteristics of a closed, heavily loaded system significantly reduce the number of cases
we must consider in determining the probability of an N4 generation anti-message. As shown in section
4.3.2, there are three events we must consider. First, the LP must process the "complete_service” mes-
sage aggressively. This is because it is only the processing of the "complete_service” message which
causes a new activity to be placed into service. Thus it is only the processing of the "complete_service"
message (aggressively) that can cause the wrong activity to be placed into service. Second, this new ac-
tivity must complete within the aggressive window. As mentioned above, the calculation of the comple-
tion time of this activity is greatly simplified because we know that it will be the sum of the logical time

of the "complete_service" message and an exponential random variable. Given this, it is not difficult to

123

compute the probability that the activity completes within the aggressive window. Third, the processing
of the "complete_service” message must be invalidated by the receipt of an arrival message. Thus the

number of events to consider in a closed system is quite small.

As can be seen, the computation of the probability of an anti-message is simplified by the charac-
teristics of the closed system we assumed. Note this is also true for higher order generation anti-
messages. In particular, the timestamp distribution of an anti-message will not change from generation to
generation. This is because it is only the processing of the "complete_service" message that can cause an
incorrect activity to be placed into service, and therefore any anti-message will have a timestamp that is
the sum of the timestamp of the "complete_service" message and an exponential random variable. As
shown in Equation (4.6), this allows us to define a simple recurrence relation to determine the probability

of an Nth generation anti-message.

When we move to an open system that is not necessarily heavily loaded, we lose the simplifying
aspects of the closed system. We can no longer assume it is only the aggressive processing of the
"complete_service" message that can cause an incorrect activity to be placed into service. As will be
seen, there are a multiplicity of ways an incorrect activity can be placed into service. Further, for each set
of circumstances under which an anti-message can be generated, there are different timestamp distribu-
tions that must be considered. Many of these timestamp distributions are much more complex than the
ones dealt with in the closed system. Therefore this section is not only beneficial in that we expand the
scope of our analysis, it also serves to show how quickly the level of complexity increases as we begin to

move away from a system that allowed us to make many simplifying assumptions.

The bulk of this analysis has been placed into an appendix because the importance of the material
does not justify the length and complexity of the analysis here. In this section we give an overview of the
cases that must be considered to determine the probability of an anti-message. Also we give simulation

results which support our model.

124

5.5, Overview of the Probability of Producing an Anti-Message

Recall an anti-message is produced when an LP discovers it has sent a message to another LP in er-
ror, Further recall the only time an LP sends a message is when it places an activity into service, and the
message is sent to the LP which receives this activity upon its completion. As discussed in section 4.3.1,
we assume such a message is sent incorrectly if the event that caused the activity to be placed into service
is invalidated. This corresponds to the aggressive cancellation strategy in Time Warp (Reiher ef al.

1990).

We divide our analysis into two sections. In the first section we define and describe the events

necessary to create an anti-message. In the appendix we compute the probability of these events.

Recall our model of a closed, heavily foaded system assumed a server is always busy. Clearly, in
an open system which can be lightly loaded we cannot make this assumption. Given that a server can be-
come idle in a lightly loaded system, there are two basic cases we must consider in our analysis: either
the server is busy when the LP begins processing aggressively or it is free when it begins to process ag-
gressively. Note by "busy when the LP begins processing aggressively" we mean the server is busy, and
the completion time of the activity currently receiving service is at Jeast as great as the lower bound of
the aggressive window. Sometimes we use the term "busy at the beginning of the aggressive window" to
signify this same event. We first consider the events that must occur in order for a given LP to produce an

anti-message given the server is busy when the LP begins to process aggressively.

We define busy as the event that the server is busy when the LP begins processing in the aggressive
window. Given that the server is busy, the activity currently receiving service must complete before a
new activity can begin service (recall our assumption of non-preemptive service). Thus it is only the pro-
cessing of the "complete_service" message which will cause a new activity to be placed into service, and
consequently cause a "pre-sent” completion message. As noted, the "complete_service” message must be
processed aggressively in order to place an incorrect activity into service, and thus the timestamp of the
"complete_service” message must fall within the aggressive window. Let C represent the event that the
"complete_service" message falls within the aggressive window, and let T, represent the timesiamp of

the "complete_service" message (note all of the timestamps we discuss are assumed to be within the ag-

125

gressive window unless we explicitly state otherwise).

Given that the "complete_service" message is processed aggressively, there must be an aciivity to
enter in{o service aggressively (and thus cause a "pre-sent” completion message to be sent aggressively)
in order to produce an anti-message. As noted, in a heavily loaded system it is reasonable to assume
there will always be an activity ready to enter into service upon the processing of a "complete_service”

message. In a system that may be lightly loaded however we cannot make this same assumption.

There are two ways an activity can enter into service given that the "complete_service” message
falls within the aggressive window. First, there can be an activity on the server queue (i.e. an activity
waiting to receive service). In this case we assume the activity will enter into service immediately upon
the processing of the "complete_service" message. If there is no activity on the server queue, there may
be an activity on the LP’s event list with timestamp X > T In this case, the activity will enter into ser-
vice when the LP has simulated up to logical time X. Thus the server will become idle between logical

time T and logical time X, and again become busy when it enters this next activity into service.

Recall that in order to produce an anti-message the next activity to enter into service must complete
within the aggressive window. As can be seen, it is important to consider whether the activity enters into
service at logical time Try or at logical time X in order to determine the probability that it completes

within the aggressive window.

We define the events that must occur in order to produce an anti-message given that the server is
busy at the beginning of the aggressive window. Let Act_1 be the event there is an activity to place into
service immediately upon the completion of the activity currently receiving service (and thus entering
into service at logical time Teg). Let Act_2 be the event that there is no activity waiting to enter into ser-
vice, but there is an activity with timestamp X > T within the aggressive window (that enters into ser-
vice at logical time X). We define 2nd as the event that an activity placed into service at logical time Ty
completes within the aggressive window. We define C_2nd as the event an activity which enters into

service at logical time X > T completes within the aggressive window.

126

The events defined thus far are necessary, but not sufficient to cause an anti-ressage. Also, the ac-
tivity must remain in the system upon its completion with probability p,. Given the activity completes
within the aggressive window and stays in the system upon its completion, the activity chosen for service
must be invalidated in order to produce an anti-message. Thus if the activity enters into service at logical
time Ty the LP must receive an arrival message with a timestamp less than Tcs. Similarly, if the activity
enters into service at logical time X > T, the LP must receive an arrival message with a timestamp less

than X.

As in previous chapters, we let Arr=£ be the event that an LP receives k arrival messages. We
define inval 1 as the event that an arrival message invalidates an activity which enters into service at log-
ical time T, and we define inval_2 as the event that an arrival message invalidates an activity which be-

gins service at logical time X > T

This defines all of the events we must consider in order to determine the probability that an anti-
message is produced given that the server is busy as the LP begins to process within the aggressive win-

dow. This probability is

P (Anti 1busy) = P(C) P (Act 1) P (2nd) P (Arr=1} P (inval_1)p, + {(5.20)

P{CYP{Act2) P(C_2nd) P(Arr=1) F(inval_2)p,.

Note this does not account for the receipt of more than one arrival message. We consider that possibility
below. Further, this probability is conditioned on the event that the server is busy at the beginning of the

aggressive window.

Now we compute the probability of producing an anti-message given that the server is free as the
LP begins to process aggressively. We define s_free as the event that the server is idle as the LP begins
to process in the aggressive window. If the server is idle at logical time L (the lower bound of the aggres-
sive window), the next activity to enter into service will be the one with the minimum timestamp among
the M activities in the aggressive window, assuming such an activity exists. Call this activity 4, and

define ActW as the event that such an activity exists. We denote the timestamp of activity A, as ¢.

As discussed, if activity A exists, it must complete within the aggressive window in order to gen-

erate an anti-message (with which we are concerned). We define S_2nd as the event that activity A,

127

(gempletes service within the aggressive window. Also, the LP must receive an event with a timestamp
less than ¢ in order to produce an anti-message. We define inval_3 as the event that activity A, is invali-
dated by the receipt of an arrival message. Finally, the activity must remain in the system upon its com-
pletion in order to produce an anti-message (with probability p,). Let Anti be the event that an LP pro-
duces a first generation anti-message. As can be seen, the probability of evnt Anfi given that the server is
free at logical time L, and given that activity A, exists, is

P (Anti| s _free and ActW) = P(S_2nd) P (inval 3) P (Arr=1)p,. (5.21)
We consider the probability of more than one arrival message below.

Finally, there is also the probability that an LP will produce an anti-message given that the server is
idle at logical time L, and there is no activity within the aggressive window to enter into service (i.e. ac-
tivity A, does not exist). This occurs when an LP receives an arrival message, places this activity into
service aggressively, the activity completes within the aggressive window, stays in the system upon its
completion, and the activity is invalidated by the receipt of a second (or third) arrival message. As dis-
cussed in the appendix, if an arrival message is placed into service aggressively, it will enter into service
at logical time T (the same logical time as the "complete_service” message). Also, we show the proba-
bility this activity completes within the aggressive window is P (2nd). Noting the probability one arrival
message invalidates another arrival message is 0.5 (since they have, by assumption, the same timestamp
distribution), the probability of producing an anti-message given that the server is idle at logical time L,
and activity A; does not exist is

P (Anti |s_free and ActW) = P (Arr=2) P (2nd) p, 0.5. (5.22)
We consider the case of more than two arrival messages below.

We now define the events associated with invalidating an activity given more than one arrival mes-
sage. As discussed, there are three logical times at which an activity can enter into service within the ag-
gressive window. If the server is busy as the LP begins to process aggressively, the next activity to enter
into service will begin service at either logical time T¢g (the time of the "complete_service” message), or
at logical time X such that X > Teg. H the server is free as the LP begins to process aggressively, then the

next activity will enter into service at logical time ¢, where ¢ is the minimum of the N activities within

128

the aggressive window, or at logical time T¢y (if an arrival message is placed into service aggressively).

We define invalidateA as the event an activity which enters into service at logical time Tey is in-
validated by the receipt of an arrival message. We define invalidateB as the event that an activity which
enters into service at logical time X > Ty is invalidated by the receipt of an arrival message. We define
invalidateC as the event that an activity which enters into service at logical time ¢ is invalidated by an ar-
rival message. Finally, we define invalidateD as the event that an arrival message placed into service ag-
gressively is invalidated by the receipt of another arrival message. The probability that a given LP pro-

duces a first generation anti-message is

P (Anti) = pP(C) P{Act1) P (2nd) P (invalidateA) p {5.24)
+p P(C) P(Act2) P(C_2nd) P (invalidateB) p |
+ (1~p) P {(Actw) P (S_2nd) P (invalidateC) p
+ (1-p) (1 — P (Actw)) P (2nd) P (invalidateD) p;
As can be seen, there are many cases that must be considered in order to compute the probability
that an LP produces an anti-message in an open, lightly loaded system. In the appendix we derive the

probability of each of these events. Here we give simulation results which support our analysis.

£.6. Simulation Results

In order to test our equations we simulated an open queueing system where an LP receives mes-
sages from both internal sources, and from an external Poisson arrival process with rate Ag. As dis-
cussed, we generated all of our external arrival messages at the beginning of the simulation. Each data
point represents the average taken over 32 trials, where each trial consisted of 1000 iterations of the algo-

rithm,

Recall in Chapter 3 we simulated a system (1500 LPs) which was heavily loaded, In .this experi-
ment we simulated a system (250 LPs) that was lightly Ioaded. The particular system we simulated had
an external arrival rate of Ag = 0.5, and an exponential service time distribution with mean 1/A = 1. The
probability a message stayed in the system was p, = 0.4, and the probability a message exited the system

was py = 0.6. Thus the server utilization of our system was p = 0.833. Note this system was more heavi-

129

ly loaded than the system we simulated to investigate the probability of a fault (Figure 3.8). This is be-

cause there was almost no probability of an anti-message in the more lighily loaded system.

In Figure 5.2 we show the predicied and observed probability of a first generation anti-message
given an aggressive window size from A = 10% of the mean of the service time distribution to A = 100%
of the mean of the service time distribution, As can be seen, our predictions are quite close for the smali-
er aggressive window sizes. As the size of the aggressive window increases however our equations begin
to overpredict the probability of an anti-message. This was exactly the pattern we observed in our predic-
tions for the closed system, and our predictions of the probability of a fanit in an open system. As dis-
cussed in detail in section 3.2.4.2, the reason for this overprediction is the error of our timestamp approxi-
mation for the arrival messages. As we discussed, the larger the size of the aggressive window, the larger
the error of this approximation. It is important to note however our predictions bound from above the pro-
bability of a first generation anti-message. For this reason our predictions are guite useful even if they are
not exact at the larger aggressive window sizes. As can be seen, given a lightly loaded system the proba-

bility of an anti-message at a given LP is quite small.

£.0060 + v T T 3
/

S Observed /
Bt Predicted /

0,0040

0.0020

Probability of a First Generation And-Message

0.0c00 €3 . ‘ .
a0 6.2 0.4 2.6 (o R:} 1.¢

Aggressive Window Size (% MST)

Figure 5.2 - Probability of an Anti-Message in an Open System

130

As we discuss in the appendix, we are forced to develop an approximation for the timestamp distri-
bution of an Nth generation anti-message. Even given this approximation, the computation of the proba-
bility of producing an Nt/ generation anti-message is quite time consuming. We computed the probabili-
ty of a second generation anti-message given an aggressive window size of 50% of the mean of the ser-
vice time distribution, and 100% of the mean of the service time distribution. Our prediction for the pro-
bability of 2 second generation anti-message given an aggressive window size of 50% of the mean of the
service time distribution was 0.000007, and we observed a probability of 0.000005. For an aggressive
window size equal to 100% of the mean of the service time distribution, we predicted 0.00019 and ob-

served 0.000124,

As can be seen, our predictions are quite accurate. We conjecture that most of the error in our
predictions is caused by the over estimation of the probability of a first generation anti-message, which
we use in the equation to predict the probability of a second generation anti-message. When we use the
observed probability of a first generation anti-message in our equations, rather than the predicted, we get
the following results. For A = 50% of the mean of the service time distribution we predict 0.0000046
compared with an observed probability of 0.000003. For A = 100% of the mean of the service time distri-
bution, we predict the probability of a second generation anti-message is 0.000127. This is compared
with the observed probability of 0.000124. As can be seen these probabilities are quite small, and the

predictive power of our model is quite good.

5.7. Discussion

This chapter is important for three reasons. First, it allows us to extend our analysis to an open sys-
tem that can be lightly loaded. Thus we are able to relax some our assumptions from previous chaplers.
Second, it is important in that it demonstrates how quickly the analysis becomes very complex as we
move away from a system that allowed us to make many simplifying assumptions. Third, the analysis in
this chapter showed the probability of a fault and the probability of an anti-message at a giver LP in a
lightly loaded system is quite smail. It seems clear from our predicted and observed results that the more
lightly loaded the system, the Jower the probability of a fault, and the lower the probability of producing

an anti-message.

131

In Chapters 3 and 4 where we discussed a closed system, and in our current discussion of an open
system, we have computed the probability of a fault and an anti-message at a given LP. This is certainly
useful information, but does not give a complete description of the behavior of a system such as ours.
This is because we need to examine the behavior of the system, rather than the behavior of a given LP.

‘We address this very important issue in the next chapter.

CHAPTER 6

System Level Performance

In previous chapters we have demonstrated both theoretically and with simulation studies that the
aggressive global windowing algorithm offers the potential for significant performance gains over the
non-aggressive windowing protocol. We have shown the probability of a causality etror occurting af a
given LP is small. When causality errors do occur and the correction mechanism must correct the out of
order processing, we have shown that the probability of a second or higher order generation anti-message
is quite small af @ given LP. Further, we have shown that on gverage our aggressive windowing algo-
rithm processes significantly more messages (that are not later invalidated) between global synchroniza-

tion points than does the non-aggressive protocol.

While these results are encouraging they are incomplete because they consider only the behavior of
a "typical" LP. In a windowing protocol (whether aggressive or non-aggressive), each phase of the algo-
rithm is separated by a barrier synchronization. Thus every LP in the system remains blocked until the
slowest LP completes its processing. Thus it is the worst case behavior, rather than average case

behavior, that dominates system performance.

In our discussion of the error correction mechanism we showed that the probability of a given LP
receiving a second generation anti-message is quite low. However, in a system with a large number of
LPs the probability that some LP in the system receives a second generation anti-message is quite high.
Thus the whole system will (at a minimum) have to block until this second generation anti-message is
processed. In order to make statements about the performance of the system we must consider the high
probability that some LP will receive a second generation anti-message rather than the low probability

that a given LP receives such a message.

In this chapter we extend our model in order to investigate system-level performance. Also, we ex-
tend our model to include the costs of aggressive processing such as state saving and the necessity to

reprocess messages due to rollbacks. Given these extensions we are able to predict the costs (in terms of

132

133

the number of messages that must be processed) of processing one unit of Togical time for both ap-

proaches. Finally, we give simulation results which support our model.

The rest of this chapter is organized as follows. In section 6.1 we discuss the assumptions of our
model and describe our technique for capturing the cost of each approach. In section 6.2 we model the
costs of the non-aggressive approach. In section 6.3 we model the costs of the aggressive approach. In

section 6.4, we give our theoretical and simulation results. We give our conclusions in section 6.5.

6.1. Model

In the non-aggressive version of the algorithm the time required to complete the processing within
the Jockahead window is a function of two costs: the workload within the window and the costs of global
synchronization, In the aggressive algorithm we must also consider the costs of state saving and repro-
cessing messages due to rollbacks. In either approach the time required io complete processing within the
simulation window is dominated by the slowest LP in the system. As discussed above, it is for this rea-
son that it is inadequate to consider only average case behavior. We begin by discussing the assumptions

of our model and our technique for modelling the costs of each approach.

We briefly review the assumptions given in section 3.2, all of which we continue to assume. We
assume there are N LPs in the system with one server per LP. We assume the duration of an activity is
drawn from independent, identically distributed exponential random variables with mean 1/A. We assume
that when an activity completes it causes exactly one other activity at some LP in the system. The next
LP 10 receive this activity upon its completion is chosen at random where each LP is equally likely to be

picked.

Also, we make assumptions regarding the processing order of events for the aggressive algorithm,
We assume that all of the events within the aggressive window are processed before an LP receives its
first arrival message. This is a reasonable assumption given the relatively small aggressive window sizes
we consider, Also, as discussed in section 3.2.1, this represents a worst case assumption. Similarly, we
assume an LP completes all of the processing required by the first arrival message before the second ar-

rival message is received and so forth. The arguments given in section 3.2.1 can be extended to show that

134

this is alfso the worst case assnmption.

We assume all arrival messages are first generation arrival messages. As discuss in section 3.2.4.2,
this implies that arrival messages have the same timestamp distribution as the aggressive messages (recall
that an aggressive message is an event with a timestamp that falls within the aggressive window, and the
gvent is in the aggressive window at the time the LPs synchronize to define a new simulation window).

As discussed in section 3.2.4.2, this represents a worst case assumption.

We now describe our technique for modelfing the costs of each approach. We define the process-
ing cost as the expected cost of processing one unit of logical time. Note this cost includes the messages
that must be processed (i.e. the real work of the simulation), as well as the over-head costs associated
with the particular approach. In the case of the non-aggressive approach one such over-head is the cost of
gloabl synchronization. In the aggressive approach one such over-head cost is saving state. In our
analysis, we model the over-head costs of each approach relative to the cost of processing a single mes-

sage.

For example, consider the processing cost for the non-aggressive approach. Assume a given LP has
four messages to process in a particular unit of logical time. Further, assume the LPs synchronized three
times during the course of processing through the unit of logical time. If the cost of gloabl synchroniza-

tion was equal to the cost of processing a message, then the processing cost would be seven,

We assume each message takes approximately the same amount of real time to process. Our model
does not consider the cost of message passing and thus assumes this cost is zero. Note that the message
passing costs of the aggressive version will be somewhat higher than the non-aggressive version, but we
do not think this is significant. Recall that we have shown the probability of sending a message in error is
quite small (i.e. the probability of an anti-message is quite small). Thus most of the messages sent in the
aggressive version of the algorithm will also be sent in the non-aggressive version of the algorithm. Also,
while we do consider the cost of state saving and reprocessing messages due to roliback, we assume the
cost of rolling back is zero. This is reasonable given that the cost of aggressive processing is dominated

by state saving and reprocessing messages.

135

The equations, examples and empirical results developed in this chapter assume a closed system
that is heavily loaded. This is because the equations for a closed system are easier to work with than
those of an open system. However, these same equations could have been derived for an open system as

welk.

There are other assumptions we need to make as the chapter progresses, but we have not yet
developed the context for these assumpiions. We begin our discussion with the costs of processing one

unit of logical time for the non-aggressive windowing protocol.

6.2. Costs of Nen-Aggressive Processing

In the non-aggressive algorithm the LPs concurrently process their events with timestamps falling
within the lookahead window. When an LP completes this processing it enters into a barrier synchroniza-
tion waiting for the other LPs to similarly complete. Consider the cost of processing within the fookahead
window. Given our assumption that each message takes approximately the same amount of real time to
compute, processing within the lookahead window will be dominated by the LP with the most messages
to process. Thus a reasonable approach to modeling this cost would be to determine the number of mes-
sages we expect the maximally loaded LP to process. We do not use this approach however since we
seek to compare the two approaches given the most optimistic set of assumptions regarding the perfor-

mance of the non-aggressive algorithm,

The best case (non-trivial) assumption is that the maximally loaded 1P has one message 1o process.
We add the cost of the global synchronization (performed at the upper bound of the lookahead window)
to the cost of processing one message. For the moment assume the system uses a traditional barrier syn-
chronization such as the gsync() routine provided on an Intel iPSC2 hypercube. We discuss other ap-

proaches below.

The cost of a barrier synchronization is O (Log,F) given a system with P processots. Let Cyp
represent the cost of processing one message and Cp, represent the total cost of processing within the

fookahead window. Then

136

Cra=Cuyp +c¢ Log P 6.1)
The ¢ term in Equation (6.1) is a factor used to express the cost of a global synchronization relative to the

cost of processing a single message.

6.3. Costs of Aggressive Processing

The costs of aggressive processing are more difficult to capture than the costs of non-aggressive
processing. This is because it is necessary to consider the costs of state saving, reprocessing messages

and the effects of anti-messages.

The total time required to complete processing within the aggressive window is the sum of two
components. First is the cost of processing the events within the aggressive window. This cost will be in-
curred by either approach (although the non-aggressive algorithm would define one or more lookahead
windows to process all such messages), and represents the work that must be completed within the win-
dow. The second component is the cost incurred due 1o aggressive processing. This represents the extra
work required by the correction mechanism that would not be incurred if the events were processed non-
aggressively. This cost includes the cost of state saving and reprocessing events due to rollbacks and

anii-messages.

Before developing our model to capture these costs we briefly review the aspects of the correction
mechanism that are critical 10 our analysis. Recall we discussed the correction mechanism in detail in

Chapter 4,

Our aggressive algorithm consists of two phases. In the first phase the 1.Ps synchronize to deter-
mine the new lookahead and aggressive windows. In the second phase of the algorithm the LPs con-
currently process their events with timestamps falling within the newly defined simulation window. Any

new events generated as a result of this processing are immediately sent to the receiving LP.

We assume state is saved after each event that is processed aggressively, Thus state information
must be saved as the LP processes within the aggressive window. However, an LP does not need to save

state as it processes within the lookahead window since this processing is guaranteed to be correct.

137

A causality error occurs when an LP receives an arrival message with a timestamp less than that of
some event(s) processed aggressively. When this occurs we assume that any event with a timestamp
greater than that of the offending arrival message is in error. It is not necessarily the case that event
dependencies have been violated, but for the purposes of this analysis we assume it always is. To correct
a causality error two steps are required. First, the LP rolls back to the logical time immediately prior to
the timestamp of the offending arrival message. Given our assumption that all processing with a logical
time greater than that of the offending arrival message is in error, any events generated within this time
interval are considered invalid. Thus part of the roliback procedure is to cancel any such evenis sent o
other LPs. Recall we cancel events (assumed) to be sent in error through the use of an anti-message (see
Chapters 4 and 5 for a discussion of anti-messages). This corresponds to the aggressive cancellation poli-

¢y in Time Warp (Reiher ef al. 1990).

The second phase required to correct a causality error is to reprocess all of the events with times-
tamps greater than that of the offending arrival message. Since we limit the amount of aggressive pro-

cessing, the amount of reprocessing required is limited by the upper bound of the aggressive window.

Also it is possible that the receipt of an anti-message will lead to a causality error. We assume
when an arrival message is cancelled through the receipt of an anti-message, any events processed with
timestamps greater than that of the cancelled arrival message are invalid. Again note this is not necessari-

ly the case, but for the purposes of this analysis we pessimistically assume it always is.

As discussed, both the cost of saving state and the cost of reprocessing messages must be be con-
sidered in our model. Clearly the cost of these two items is a function of the number of events processed
aggressively and the number of arrival messages received, In previous chapters we have computed the
expected number of messages processed aggressively and the expected number of arrival messages re-
ceived by a "typical" LP in the system. As discussed however it is not the behavior of the "typical” LP
that dominates system level performance. Rather it is the behavior of the slowest L.P in the system. We

now give an overview of our approach to capture the behavior of the slowest LP in the system.

138

6.3.1. Overview of System Level Performance

In previous chapteré we developed a model to give precise estimates for the expected number of
messages processed agaressively, the expected number of arrival messages, the probability of a first gen-
eration anti-message and so forth, We could to do this because we were able to derive the necessary pro-
bability distributions, and then apply mathematical principles to derive the desired equations. Unfor-
tunately there is no precise mathematical formulation that defines the behavior of the LP which will dom-
inate system performance. Similarly, there is no precise definition of the "worst case” behavior of a sys-

tem such as ours.

Given that there is no precise formulation of the "worst case” behavior of our system, we develop
our model such that it is reasonable to believe that we have captured the most important activities in the
system which will dominate system performance. This is what we seek to accomplish. In order to do this
we make a set of very pessimistic assumptions regarding the behavior of our system. We do this so that
(given a system that performs under the assumptions of our model) the system will perform better than
our model suggests. At the end of the chapter we give empirical results which show that our model does

indeed capture a very pessimistic view of system performance,

As discussed, it is the slowest LP in the system which dominates system performance. Our model
assumes that the LP with the most processing to perform is the stowest LP in the system. Therefore we
seek to determine the maximum number of messages processed by any LP in the system. Our approach to

this problem is as follows.

We define a special LP which we use to track the occurrences in the system which will dominate
system performance. That is, we pick one LP out of the system, and define the workload of this chosen
LP such that we expect its workload to be greater than that of any other LP in the system. We term this
chosen LP the dominant LP of the system. As discussed, we make a set of very pessimistic assumptions
regarding the amount of processing required by the dominant LP. Thﬁs we use these pessimistic assump-
tions to compute the workload of the dominant LP, and then use this computed workload in our calcula-

tion of the processing cost of the aggressive approach.

139

6.3.2. Workload of the Dominant LP

1n this section we discuss our basic approach to capturing the workload of the dominant LP. In sub-

sequent sections we derive the equations needed to compute this value.

In order to derive the workload of the dominant LP we consider the significant occurrences in the
system which will affect its performance. The receipt of arrival messages is one important occurrence.
Recall that arrival messages may cause a rollback, and that a rollback may require the reprocessing of
events. Another significant event is the receipt of anti-messages which may require a roliback, and may
result in the generation of other anti-messages. The number of messages processed in the Jookahead win-
dow and the number of messages processed in the aggressive window must also be considered. Finally,
the cost of saving state must be considered. Given our assumption that state is saved after every message
processed aggressively, it is the LP which processes the most aggressive messages that will incur the
most state saving costs. Thus we expect the dominant LP will have the highest state saving cost in the

system.

First, we assume the dominant LP has the maximum number of events in the lookahead window
taken over all of the LPs in the system. The first step in our analysis therefore is to compute the max-

imum number of evenls in the lookahead window taken over all of the LPs in the system.

Next, we consider the effects of arrival messages. As discussed, each arrival message has the po-
tential to invalidate events within the aggressive window as well ag other arrival messages, Additionally,
each time a message is reprocessed the state of the LP must be saved again. Thus the receipt of arrival
messages can cause a great deal of processing. In our model we assume the dominant LP receives the
most arrival messages of all of the LPs in the system. Our second task therefore is to derive the expected
number of arrival messages received by the dominant LP. Additionally, we must determine the amount

of reprocessing and state saving required as a result of each arrival message.

The other major factor we must consider is the effect of anti-messages. Certainly one of the pri-
mary costs associated with any aggressive protocol (that uses state saving and rollback) is the effect of
anti-messages propagating through the system. Before we discuss how we account for the effect of anti-

messages in our model we briefly describe their impact upon system performance.

140

As has been shown, the probability of cascading rollbacks developing in our system is quite small
due to limited aggressive processing, Nevertheless, the propagation of anti-messages can significantly

impact system performance even given the limited aggressive processing we allow.

We define a rollback chain as a sequence of anti-messages where an Ntk — 1 generation anti-
message causes an Ntk generation anti-message to be produced. The depth of a rollback chain is the max-
imum generation anti-message produced in the chain. The processing cost to a given P that receives one
of the anti-messages in a rollback chain may not be large, but the cost to the system is cumulative. That
is, the system must remain blocked until every anti-message in a given rollback chain is processed. We

account for the cumulative effects of a rollback chain in the following way.

We define the maximum rollback chain as the rollback chain which produces the highest order gen-
eration anti-message observed in the system in a given simulation window. We develop our model 10
compute the probability that this maximum rollback chain reaches depth D =d. In order to account for the
cumulative effects of the maximum rollback chain, we make the pessimistic assumption that the dom-
inant LP receives an anti-message for each generation anti-message in the maximum rollback chain,
Clearly the more aggressive processing an LP has performed, the more processing we would expect to be
invalidated by the receipt of an anti-message. Recall the dominant LP receives the maximum number of
arrival messages of any LP in the system. Thus it is reasonable to believe an anti-message received by the
dominant LP will require more reprocessing than an anti-message received by some other LP in the sys-
tem. For this reason we expect our assurption that the dominant LP receives each anti-message in the

maximum rollback chain will over-estimate the damage caused by such a chain developing in our system.

To summarize our approach, we pick one LP in the system and define it as the dominant LP. We
assume the dominant LP begins by processing the most events within the lookahead window. Then we
assume it receives the most arrival messages of any LP in the system. We assame these messages are re-
ceived one at a time, and that all of the reprocessing required by a given arrival message is completed by
the time the next arrival message is received. Then we calculate the costs involved in processing each ar-
rival message (including state saving and reprocessing messages). After the dominant LP has received

all of its arrival messages, we assume it begins receiving anti-messages one at a time. We assume the

141

dominant LP receives an anti-message for each generation anti-message in the maximum rollback chain.
Again we make the worst case assumption that all of the reprocessing required by the receipt of the Nih
generation anti-message is completed before the dominant LP receives the Nth + 1 generation anti-
message, Then we calculate the total amount of processing required to process all of the anti-messages.
The total cost of processing for the dominant LP is the sum of all of this processing. Then we use the total
cost of processing obtained for the dominant LP in our calculation of the processing cost of the aggres- ‘

sive version of the algorithm.

Now that we have outlined our basic approach we compute the probabilities required to model the
costs of aggressive processing. We begin with the events with timestamps that fall within the lookahead

window.

6.3.3. Events Within the lookahead Window

We assume the dominant LP has the most evenis within the Jookahead window of any LP in the

system. In this section we derive the expected number of such events for the dominant L.P.

Let M4 be the number of events with timestamps that fall within the lookahead window of the
dominant LP. We compute the expected value of My, in the following way, Recall in Equation (3.15)
we derived the probability distribation for the number of events within the lookahead window for a given
LP. We seek the distribution for the maximum number of events within the lookahead window taken over
the N LPs in the system. Let X = x; be the random variable denoting the number of events in the looka-
head window of LP;, and let ¥ = y be the random variable denoting the maximum number of events in the

lockahead window taken over all N LPs in the system.

Y =max {X1,%9,% * * Xy}
In order for the maximum value to be less than or equal to y, each of the x; must be less than or
equal to y. Assuming independence between the N LPs, the probability that all N x; are less than or equal
toyis

PY<y)=P(x <y,
This equation gives the probability that (¥ < y) and is thus the cumulative distribution function (CDF) of

142

FO=P¥sy=P(x<y"
Recall that the probability distribution for the number of events in the lookahead window of a given LP is

a discrete distribution. Then by the additive property of probability distributions

P¥=y)=PF¥sy)-PF<y-1)=F@)—-F{y~1).
Thus the probability that Y =y is

P(r=y)=P(x; <y -P(xsy-nY.
As noted above, we derive the probability that X = x; in Equation (3.15). The probability that x; Sy is

Pi;sy)= lyzGP(x‘- =).
e
Let M, 4 be the namber of events within the lookahead window of the dominant LP. The expecied value
of the maximum number of events in any lookahead window, and thus the expected value of the number
of events in the lookahead window of the dominant LP is

0 N wl N
E[Mu1=E[¥1=% y (S P0=))) - (% Pl=k) . 62)
y=l =0 k=0

6.3.4. Arrival Messages

We seek the maximnum number of arrival messages received by any LP in the system. We derive
this maximum value in the same manner as the derivation for the maximum number of events within the
lookahead window given above. Recall we derived the probability that a given LP receives K arrival
messages in BEquation 3.18. We seek the maximum number of arrival messages received over all of the N
LPs in the system. Let X =x; be the random variable denoting the number of arrival messages received
by LP;, and let ¥ be the maximum number of arrival messages received by any LP in the system,

Y =max {x,,x9,%3 * -2y}
In order for ¥ < y, all N x; must be less than or equal to y. As we did for Equation (6.2), we define the cu-
mulative distribution function for the maximum number of arrival messages, and use the CDF to deter-
mine the probability that the maximum number of arrival messages is ¥ = y. The probability that Y <y is

the probability that all N x; are less than y. Assuming independence among the LPs, this probability is

143

FN=PX<y)=P(x sy
This equation gives the probability that ¥ <y and is thus the CDF of the maximum number of arrival

messages received by any LP in the system. Let My, be the number of arrival messages received by the
dominant LP, Following the same approach taken for Equation (6.2), we note the expected value for the
maximuam number of arrival messages received by any LP in the system is

w0 ¥ N y—1 N
E[Mul1=E[Y]=3 vy (X Plx=/)) (L P=k)) 6.3)
kel

yal Jj=0
Again recail the probability that x; = & is given in Equation (3.18).

Our néxt task is to calculate the costs associated with processing the arrival messages. As dis-
cussed, one cost associated with processing an arrival message is the potential to invalidate some of the
aggressive messages (aggressive messages are defined in section 3.2.1).. Recall if the first arrival mes-
sage invalidates some of the aggressive messages, all of the reprocessing is completed by the time the
dominant LP receives another arrival message. Thus this second arrival message may again invalidate
some of the aggressive messages, and it may also invalidate the first arrival message. This is also wue for

each subsequent arrival message received by the dominant LP,

In order for the dominant LP to be able to perform a rollback we assume it saves its state after
every event processed aggressively. As discussed, arrival messages may also be invalidated requiring
that the state of the dominant LP be saved after every arrival message processed. We compute the total
amount of processing performed by the dominant LP as a result of all of its arrival messages. Also we

compute the total number of times the dominant LP must save its state,

We begin with the assumption that the dominant LP has the same probability distribution for the
number of aggressive messages as do the other LPs in the system. Recall we derived this distribution in
Equation 3.13. Let P (M, = m) represent the probability that the dominant LP has m aggressive mes-

sages. Then the expected value of My, 18

Bl Mg, 1= X m P(Mag = m). ©4)

me=]

Next we determine the number of aggressive messages invalidated by the receipt of the first arrival

message. These are the events that will have to be reprocessed. Recall our (worst case) assumption that

144

all arrival messages are first generation arrival messages (i.e. are conditional exponentials, conditioned on
being within the aggressive window). Given this assumption both the aggressive messages and the arrival
messages have the same timestamp distribution. Thus we expect that the first arrival message will invali-
date half of the aggressive messages. Let NR; represent the expected number of aggressive messages that
must be reprocessed due to the receipt of the ith arrival message. Then the expected amount of reprocess-
ing caused by the first arrival message is

NR, = 52 Py =m) = 5 ElMg) ©.5)

m=1

After receiving its first arrival message the dominant LP must reprocess any events invalidated by
this message. After this reprocessing is completed, the dominant LP receives its second arrival message.
This second arrival message is then processed, and any reprocessing required by this message is per-

formed. This continues until the dominant LP has received its last arrival message.

Note the expected number of aggressive messages invalidated by the receipt of an arrival message
is the same for each arrival message, and this expected value is given in Equation (6.5). However, after
the first arrival message is received we must also consider the probability one arrival message invalidates
another arrival message already processed. For the moment we ignore the possibility of one arrival mes-
sage invalidating another arrival message, and determine the expected number of aggressive messages

that must be reprocessed.

As discussed, the expected amount of reprocessing caused by each arrival message is given in
Equation (6.5). Our next task is to determine the amount of reprocessing caused by @/l of the arrival mes-
sages received by the dominant LP. To compute this, we calculate the expected amount of reprocessing
given that the dominant LP receives K arrival messages, times the probability that the dominant 1P re-
ceives K arrival messages, over all possible values of K. For example, if it is known that the dominant LP
receives K arrival messages, then the expected amount of reprocessing caused by all K arrival messages

would be

. koo m E Mg}
E [Reprocessing | My=k1=73, 0} PMgg=m)=k 5
1

i=] m=

145

We uncondition this expression by summing over all possible values of M,, =k times the probabil-
ity that My, = k. Let NRy be the random variable denoting the total amount of reprocessing (of the ag-

gressive messages) caused by all of the amrival messages received by the dominant LP. Then

E[Ma} EiMy,)

E[NRr}=3 kE[Myd P(Mprty = 2

k=]

(6.6)

Next we consider the expected amount of reprocessing caused by one arrival message invalidating
other arrival messages. Note all the arrival messages have the same timestamp distribution. Thus if X ar-
rival messages have been received and processed, then it is expected the next arrival message will have a
timestamp less than half of the timestamps for arrival messages already processed. Let Argp denote the
expected number of arrival messages reprocessed by the dominant LP due to receipt of all of its arrival
messages. If we know the dominant LP receives M, = k arrival messages, then the expected number of

arrival messages reprocessed is

ko
ElAres | My =k1=3 ‘2 = L g2 .
5 2 4
In order to uncondition this expression we sum over all possible values of My, = k times the probability

of My, = k. The expected value of Argp is

EkY1~Efk]

7 ®.7)

E[Arr RP = »&1» kP k P(My, =) =
k=1

We have now derived all of the terms necessary to compute the expected amount of processing re-
quired by the dominant LP due to the receipt of arrival messages. This number is the sum of a) the ex-
pected number of the aggressive messages reprocessed due the receipt of arrival messages, b) the expect-
ed number of arrival messages received by the dominant LP and c) the expected aumber of arrival mes-
sages that must be reprocessed. Let Ary be the total processing required by the dominant LP due to the

arrival messages. The expected vatue of Ary is

E[Arp 1=ElMs 1+ E{NRy 1+ ELARgp]. 6.8)
As discussed, we assume the dominant LP saves its state after every message it processes aggres-
sively. Thus the total number of times it must save its state due to arrival messages is also given in Equa-

tion (6.8). Let §S,, be the number of times the dominant LP saves its state due to arrival messages. Then

146

the expected value of §S,, is

E[554 1=E[My 1 +E[NRr] +E[ARgp |. 6.9
Equation (6.8) gives the expected amount of processing required due to the receipt of arrival mes-
sages. Recall the dominant LP processes its aggressive messages (once) before the first arrival message is
received. Similarly, the dominant LP saves its state after each aggressive message processed. Thus we
must include these costs in our computation. Let AMr be the total number of events processed before the
dominant LP receives its first anti-message. Then the expected value of AMy is
E{AMp=E[M 4 1+E[My 1+ EINRr 1 +E[ARpp 1+ EL My,). (6.10)
Similarly, let $54,,r be the total number of times the dominant LP must save state before receiving the
first anti-message. Since the dominant LP must save its state after every message processed aggressively

{(note it does not save state as it processes within the lookahead window) the expected value of S5, is
E[SSaurY=EIMs 1+ EINRp 1+ EQARgp] + E[My, 1. {6.11)

6.3.5. Maximum Rollback Chain

The other set of events in the system that we expect to dominate system performance is the
development of rollback chains. Recall that we model the cumulative effect of rollback chains on system
performance by assuming the dominant LP receives each anti-message of the dominant roliback chain.
Let D be the random variable representing the depth of the maximum rollback chain, In this section we
derive the probability that the maximum roliback chain reaches depth D = d, and determine the amount

of reprocessing required by each anti-message.

We have shown in section 5.3.2 the timestamp distribution of an anti-message (in a closed system
that is heavily loaded) does not change from generation to generation. Thus it is not necessary to consider
whether an anti-message is a first generation or higher order generation anii-message in our analysis.

Therefore we model the costs of anti-messages to the system in the following way.

First, we compute the probability that the depth of the maximum rollback chain reaches D = d.
Then we assume that if the depth of the maximum rollback chain is D = d with probability P, the dom-

inant LP receives [= d anti-messages with probability P. Then we compute the expected amount of

147

reprocessing caused by each anti-message.

Recall we make the worst case assumption that all arrival messages are first generation arrival mes-
sages (i.e. conditional exponentials, conditioned on being within the aggressive window). This is the
worst case assumption regarding the timestamp distribution of an arrival message. Given our assumption
that all arrival messages are conditional exponentials, it follows that an anti-message sent to cancel one of
the arrival messages will also have this same timestamp distribution. Since this represents the worst case

assumption, and since this assumption significantly simplifies our analysis, we assume this to be the case.

We now determine the probability that the maximum roliback chain reaches depth D =d. In sec-

tion 5.3.1 we showed the probability that a given LP produces a first generation anti-message is

P (Anti) = P{(C) P 2nd) P (Arr = 1) P (Inval) 6.12)
+ P(CY P 2nd) P (Arr=2) (1 — (1 — P (Inval)?)

+ P(C) P (2nd) P (Arr=3) (1 — (1 — P (Inval*)...
In Equation (6.12), the P (C} term is the probability that an L.P processes the "complete_service” message

aggressively. The P (2nd) term is the probability that the next activity to enter into service completes
within the aggressive window. The P (Arr = k) term is the probability that the LP receives k arrival mes-
sages and the P (Jnval) term is the probability that an arrival message invalidates the "complete_service”

message (this is given in Equation (3.27)).

Let Antiy be the event that a given LP produces an anti-message of generation d. In section 5.3.2

we showed that
P{Anti))=P (Antiy_1) P (C) P 2nd) P (Anti_Inval). 6.13))
In Equation (6.13) the P (Anti;_;) is the probability of receiving a dth—1 generation anti-message, and
P (Anti_Inval) (derived in Equation 4.4) is the probability that this anti-message invalidates the

"complete_service" message. The other terms are the same as in Equation (6.12).

We compute the depth of the maximum rollback chain in the following way. The probability that a
given LP produces a dth generation anti-message is given in Equation (6.13). The probability that a
given LP does not produce a drh generation anti-message is (1~ P (Antiy). In a system with N LPs, the

probability that no LP in the system produces a dih generation anti-message is (1 — P (Antig N, The

148

probability that some LP in the system produces a dth generation anti-message, and thus the probability

that the maximum rollback chain reaches depth I = d is

PD=d)=1~{1~PAnti)V. (6.14)

We calculate the expected amount of reprocessing required by the dominant LP due to the receipt

of anti-messages in the following way. First, we make the assumption that cach arrival message is equal-
ly likely to be invalidated by a given anti-message. Assume the dominant LP has received My, = k ar-
rival messages. We can number the arrival messages from 1 .. k, where 1 is the arrival message with the
smallest timestamp and £ is the arrival message with the largest timestamp. Assume an anti-message is
received which invalidates the arrival message with the minimam timestamp. In this case all of the other”
k — 1 arrival messages will have timestamps greater than that of the invalidated arrival message, and
therefore will have to be reprocessed. Assuming each arrival message is equally likely to be invalidated,
the probability of invalidating the arrival message with the minimum timestamp is 1/k. Similarly, if the
anti-message cancels the arrival message with the second smallest timestamp, then the other & — 2 arrival
messages must be reprocessed. This also occurs with probability 1/k. Let RP_Arr| be the number of ar-
rival messages that must be reprocessed due to the receipt of the first anti-message. As can be seen, the

expected value of RP_Arr | given k arrival messages is

E[RP_Arr, lMA,‘wk]zi(Kmt) 1. igi = kol (6.15)
i=} K KA 2

Refore continuing with our analysis there is one issue that must be addressed. In our model we
define the dominant LP, and define the workload of this LP such that we expect it to be higher than the
workload of any other LP in the system. It is for this reason that we assume the dominant LP has the
most events in the lookahead window, receives the most arrival messages and receives each anti-message
in the maximum roliback chain. Note if we consider a "real” LP in the system (rather than the dominant
L.P which we define for the purposes of this analysis) the receipt of a given anti-message cancels a given
arrival message. Therefore since each anti-message is sent to cancel a particular arrival message, an LP

will never receive more anti-messages than the number of arrival messages it has received.

149

As discussed, our model is not considering a "real” LP in the system but rather we define the dom-
inant LP 1o track the maximum amount of processing required in the system. If we decrement the arrival
message count after each anti-message received, this count may become negative unless it can be shown
that the maximum number of arrival messages received by the dominant LP is greater than the depth of
the maximum rollback chain. This seems like a difficult proof, and one that is not really very useful ex-
cept in this particular context. Given that our analysis is greatly simplified if we do not decrement the ar-
rival message count, and given that the effect of this action is to over-estimate the amount of reprocessing
required by the dominant LP, we proceed with our analysis assﬁming that the arrival message count is not

decremented after the receipt of an anli-message.

As discussed, we make the worst case assumption that all of the reprocessing required by the re-
ceipt of the first anti-message is completed by the time the dominant LP receives the second arrival mes-
sage. The probability that the depth of the maximurn rollback chain reaches level D = d, and thus the pro-
bability that the dominant LP receives D = d anti-messages, is given in Equation 6.14. Given that the
message arrival count is not decremented after the receipt of an anti-message, the expected amount of
reprocessing (given My, = k arrival messages) required by each of the anti-messages is given in Equation
6.15 (i.c., each subsequent anti-message causes the same amount of reprocessing as the first anti-

message).

Let ARgpy be the total number of arrival messages that must be reprocessed due to the receipt of

the D = d anti-messages. The expected value of ARgp, given My, =k and given D =d is

ElArgps | Mgy =k andD =d] = d—’%—i—.

In order to uncondition this expression we sum over all possible values of My, = k and all possible values

of D =d,

(EMy] - 1) ED]

2 (6.16)

E[ARRPA]=§)§} a b por, =0 P0=a) =

Now consider the aggressive messages (i.e. events within the aggressive window before the first ar-

rival message was received) reprocessed due to the anti-messages. Recall we make the worst case as-

sumption that the arrival messages, the anti-messages and the aggressive messages all have the same

150

timestamp distribution (conditional exponentials, conditioned on being within the aggressive window).
Thus we expect that 50% of the aggressive messages are invalidated, and therefore must be reprocessed,
due to the receipt of an anti-message. Let Agpp be the number of aggressive messages that must be

reprocessed by a given anti-message. Then the expected value of Aggp is

o EiM
E[Agrp }= E—’EP(MAG=M} = “’”’”E””"éi}—- 6.17)

i 2 2
In this equation the m/2 term is the expected number of aggressive messages invalidated given My, = m
aggressive messages. We sum this over all possible values of M, = m times the probability of My, = m.
Equation {6.17) gives the expected number of aggressive messages invalidated (and thus reprocessed)
due to the receipt of one anti-message. Let Agy be the total number of aggressive messages that must be

reprocessed due to the receipt of all of the anti-messages received by the dominant LP. The expected

value of Agr is

E[Ms]EID]

E[Agg—}mi E%P(Mﬁé_,:m)l’(l):d) = >

d=l mw=l
In Equation (6.18) we sum the expected number of messages reprocessed per anti-message, over all pos-

6.18)

sible depths D = d of the maximum rollback chain, times the probability that the maximum rollback chain

reaches depth D = d (and thus the dominant LP receives [= d anti-messages).

Now we have computed all of the terms necessary to determine the expected number of events that
must be reprocessed by the dominant LP due to anti-messages. As discussed, these anti-messages may
cause the dominant LP to reprocess both arrival messages and aggressive messages. Recall that
E[ARgpps 1 is the expected number of arrival messages reprocessed due to anti-messages, and that
E[Agr 1is the expected number of events within the aggressive window that must be reprocessed due to
anti-messages. Let TRP,,,; be the total number of messages that must be reprocessed due to the receipt of

anti-messages. Then the expected value of TRP,,; is

E[TRP i J=E[ARpps]+ E[Agr . (6.19)
Again note we assume state is saved after each message that is reprocessed due to the receipt of an
anti-message, Let §S_Ansiy represent the total number of times the dominant LP must save state due to

the receipt of anti-messages. The expected value of §§_Antiy is thus

151

E[SS Antir)=E[ARgps 1+ E[Agr . | (6.20)
Now we have computed the workioad of the dominant LP except for the cost of global synchroni-
zation which we discuss below. To summarize, the total namber of messages processed by the dominant
LP is the sum of a) the messages in the lookahead window, b) the aggressive messages, c) the arrival
messages, d) the aggressive messages and the arrival messages reprocessed due to the receipt of arrival
messages and ¢) the aggressive messages and the arrival messages reprocessed due to the receipt of ansi-
messages. Recall that AMr is the total number of messages processed by the dominant LP before it re-
ceives the first anti-messages. Also, TRP,,; is the number of messages that be reprocessed due to the re-
ceipt of anti-messages. If we let MPy represent the total number of messages processed by the dominant

LP, then the expected value of MPy is

EfMPy1=E[AM7; 1+ E[Tgp 1. (6.21)
The dominant LP must save its state after every message that it processes aggressively. Recall

88,44 is the total number of times the dominant LP saves state before it receives the first anti-message.
Also, §S§_Antir is the number of times the dominant LP saves state due to the receipt of anti-messages.

Let §S7 be the total namber of tmes the dominant LP saves its state. Then the expected value of SSt is

E{5857 1=E[SSus 1+ E[SS_Antir] (6.22)
Now we have captured the costs of processing through the aggressive window. The final cost of ag-
gressive processing that must be considered is the cost of global synchronization. As discussed in section
4.1, the traditional barrier synchronization routine is not powerful enough for an aggressive windowing
algorithm, In this analysis we model the costs of global synchronization assuming a software solution
such as that provided by Nicol (1992a), We do this so we can discuss the protocol without assuming any

particular hardware support,

Now we are ready to compare the processing cost of the two approaches. Recall we assume (sec-
tion 6.2.2) the cost of global synchronization for the non-aggressive algorithm is ¢ Log, P given £ pro-
cessors., As discussed, the ¢ term is a factor used to express the cost of global synchronization in relative
to the cost of processing a single message. As discussed in section 6.2.2, we assume the total cost of pro-

cessing within the lookahead window is the cost of processing one message plus the cost of a giobal syn-

152

chronization, Thus the cost of processing one unit of logical time, and therefore the processing cost of

the non-aggressive approach, is

Cyp+c Log, P
CostNA = —“i'fmfﬁ—. (6.23)
The P term in Equation (6.23) is the number of processors in the system. Recall Cyp is the cost of pro-

cessing one message. As noted, this represents the best case for the costs of non-aggressive processing.

The cost of processing for the aggressive approach is computed in a similar manner. Recall that the
aggressive barrier synchronization required in the aggressive approach is approximately twice as slow as
the non-aggressive barrier synchronization. Thus cost of global synchronization for the aggressive ap-
proach is 2 ¢ Log, P, i.e. twice the cost of the non-aggressive approach. The number of messages pro-
cessed in the aggressive approach is the sum of a) the meséages with timestamps that fall within the loo-
kahead window, b) the aggressive messages, ¢) the arrival messages d) the aggressive messages repro-
cessed due to arrival messages, €) the arrival messages reprocessed due to arrival messages, f) the aggres-
sive messages reprocessed due to anti-messages and g) the arrival messages reprocessed due to anti-
messages. We must also consider the cost of saving state. The expected processing cost for the aggres-

sive approach is thus

EIMPr1+SCE[SSp1+2¢c L P
Cosid = ZLMEr Li;} cog2 " (6.24)

The SC term in Equation (6.24) is the cost of saving state relative to the cost of processing a single mes-

sage. We are now ready to present our theoretical results.

6.4. Theoretical Results

In this section we use the equations developed in the previous sections to compare the processing
cost of the two approaches. All of our results assume a system with N = 1024 LPs and a mean service
time of 1/A = 1. Given these parameters, the expected width of the lookahead window is E[L] = .0386.
In order to compute the cost of global synchronization we must assume some hardware configuration. In
order to be consistent with our analytic model we assume there is one LP per processor, and thus we as-
sume P = 1024. Our predicted resuits would be slightly worse if we assumed a smaller configuration

{due to the reduced cost of global synchronization of the non-aggressive approach). We derive resulis for

153

{Am 100% MST. P = 5024}

10.0

23 G e D)
15l Q5 = .26

Expected Improveerant

Hn et

'-w:-}w-—--e)_._-.ng._.,"@._._@...__{

9.0 0.8 1.5 2.6

etato Saving Cost
Figure 6.1 - Theoretical Improvement, A = 100% MST
aggressive window sizes of A = 100%, A = 50% and A = 10% of the mean service time,
There are two independent variables in our model which must be considered: the cost of global
synchronization relative to the cost of processing a single message, and the cost of saving state relative to
the cost of processing a single message. One way to present the results would be to present a three di-

mensional plot which gives speed up as a function of these two variables. We did not choose this ap-

(A w 507 MST, P = 1024)

10.0

e QS a U
e T QA8 = 25

80 O

G0 - -

Expected Improvement

0035 0.5 .G 15 2.0
State Saving Cost

Figure 6.2 - Theoretical Improvement, A = 5¢% MST

154

proach however because we found the three dimensional plots to be somewhat difficult 1o read. For this
reason we present a family of curves, where the state saving cost is varied on the x axis, and the
corresponding expected improvement in the processing cost is shown on the y axis. We vary the state
saving cost from zero to twice the cost of processing a single message. Each curve represents the im-
provement in processing cost given a particular value for the cost of global synchronization. We compute
the results assuming the cost of global synchronization is 0, .25, .5, .75, 1.0 and 2.0 times the cost of pro-

cessing a single message.

The formula we use to compute the expected improvement in processing cost is

CostNA
El = CostA (625)

Thus ratios greater than one indicate the superiority of the aggressive approach.

In Figure 6.1 we plot the expected improvement given an aggressive window size of A = 100% of
the mean service time. When the cost of global synchronization is zero, we predict the non-aggressive
approach will offer better performance unless the cost of state saving is close to zero. This is not surpris-
ing given that the cost of global synchronization is the dominant cost for the non-aggressive approach in

our model. Since our model assumes the best case performance of the non-aggressive approach (i.e. we

(A= 10% MST, P = 1024}

10.0
e QIS e O

6.0 >

40 =

Expecied lmprovament

:
1.5

»
a

3.0
State Saving Cost

Figure 6.3 - Theoretical Improvement, A = 10% MST

155

assume there is no idleness in this approach), it is expected that our model would predict the non-
aggressive approach to offer better performance if the cost of global synchronization is free. As we in-
crease the cost of global synchronization our model predicts the aggressive approach will offer better per-
formance. This is true even if the cost of saving state is twice the cost of of processing a message. We
find these results very encouraging, particularly given our very pessimistic assumptions regarding the

cost of aggressive processing.

In Figure 6.2 we plot the expected improvement given an aggressive window that is 50% of the
mean service time. The maximum expected improvement given this smaller aggressive window size is
less than the maximum expected improvement for an aggressive window size of 100% of the mean ser-
vice time. The reason for this difference is the high over-head cost of the aggressive approach assumed
in our model. Recall our assumption that the dominant LP has the highest number of messages 10 process
within the lookahead window of any LP in the system. This is compared to our assumption that the cost
of processing within the lookahead window for the non-aggressive approach is the cost of processing a
single message. Further recall that the cost of global synchronization for the aggressive approach is twice
that of the non-aggressive approach. Thus the smaller the size of the aggressive window, the less oppor-

tunity there is to amortize the high overhead costs assumed in our model.

In Figure 6.3 we show the expected improvement given an aggressive window size set to 10% of
the mean service time. The high (assumed) cost of processing within the lookahead window, and the high
synchronization cost, dominates the performance of the aggressive algorithm given an aggressive win-
dow of this size. Thus the high over-head cost cannot be amortized over the aggressive window, and our

model predicts limited improvement in performance.

6.5, Simulation Results

In this section we give a set of simulation results in order to test the predictions of our analytic
model. All of these results (except where noted) assume P = 1024 processors, N = 1024 LPs and a mean
service time of 1/A = 1. All of the graphs (except for Figure 6.4) give the results for an aggressive win-

dow size set to 100% of the mean service time. The system we simulated is a simple FCES queueing net-

156

work with one server per LP. Each data point represents the mean observed value taken over sixteen tri-
als, where each trial consisted of one thousand iterations of the aigorithm, Note that there was very little

observed difference between the trials.

Many of the assumptions of our model were met in these simulations. Except where stated, the
communication pattern was random as assumed in our model (i.e. each LP was equally fikely 1o receive a
given message). We implemented our state saving and rollback algorithm as described in Chapter 4, and
thus errors which did occur were corrected through the rollback procedure. As discussed, one aspect of
the rollback procedure is to cancel messages sent incorrectly through the use of anti-messages. Thus roll-

back chains could (and did) develop in cur simulation.

Some of the assumptions of our model were not met in our simulations. First, not all arrival mes-
sages were first (or first and second) generation messages as assumed in our model. Second, recall our
model only considers the effects of one "complete_service” message within the aggressive window. In
the course of computing within the aggressive window however it is possible that more than one such
message is processed. Finally, our model assumes the width of the lookahead window is a constant, and

the expected value of this window is used in our calculations. As discussed however, the width of the loo-

30.6

C—O Obsarved
13-t Proglcted

N

o

-3
T

®

=4

=3
T

Expecied Mess. Processed by Gominant LP
3 @
] o

50

0.0 oz 0.4 0.6

2] 1.0
Aggressive Window Size (% Mean Service Timo)

Figure 6.4 - Number of Messages Processed by Dominant LP

157

kahead window is in fact a random variable,

In Figure 6.4 we show the "raw" count of the number of messages processed by the dominant LP
(i.e. the LP which processed the maximum number of messages in the system) compared with the costs
of processing predicted by our model. It is important to stress that these observed values represent the
maximum number of messages processed by any LP in the systern. We say "raw” because Figure 6.4
does not account for state saving costs or the cost of global synchronization. Rather, it is just a count of
the number of messages processed by the maximally Ioaded LP in the system. Note that for the smaller
aggressive window sizes the predictions of the model are fairly close to the observed values, and in some
cases very slightly under-predicts the observed values. The reason for this under-prediction is similar to
the reasons given in section 4.3. Our model assumes a static picture of the aggressive window and thus
does not consider events such as more than one "complete_service” message being produced at a given
LP. For small values of A (the size of the aggressive window) our equations do not compensate for the
events not considered in the model. As A increases however our equations begin to over-predict the

amount of processing required by the dominant LP due to the very pessimistic assumptions of our model.

(A w T00% MST, P w 1024)

Eypectad Improvement

0.0 . L .
[cX5] 05 1.6 1.8 2.0

Stala Saving Gost

Figure 6.5 - Expected Improvement, Random Communication Pattern

158

(A e 300% MST, F = 1024)
1043 3

= QS m)
rmmmnsl N GS = 2B

Expscted improvement

0.0 0.8 1.0 5 20
$1a1e Saving Cost

Figure 6.6 - Expected Improvement, Nearest Neighbor Communication Pattern
In Figure 6.5 we use this "raw" message count (for the dominant LP) and plot the expected im-
provement in performance given various state saving and global synchronization costs. Again we present
a family of curves rather than a three dimensional plot. Each such curve represents the expected im-
provement given global synchronization costs of 0, .23, .5, .75, 1.0 and 2.0 times the cost of processing a
single message. We vary the state saving cost between zero and two times the cost of processing a single

message.

Figure 6.5 shows our aggressive algorithm can offer significant improvement in performance.
Note some improvement is expected even when the cost of global synchronization is free. This is very en~
couraging. As the cost of global synchronization increases the expected improvement due (o aggressive
processing increases. This is expected since (given a lookahead window of .0386) the non-aggressive al-
gorithm must synchronize approximately twenty six times to process one unit of logical time. Even
though the global synchronization cost for the aggressive algorithm is twice that of the non-aggressive al-

gorithm, this cost is incurred only once (at the end of the simulation window).

Our model assumes each LP is equally likely to receive a given message. We make this assump-
tion in order to make the analysis tractable. However, we are interested in the performance of our algo-

rithm given different communication topologies. In section 4.7.1 we investigated the effects of the com-

159

(Ao 100% MST, P e 1024)
10.0 v "

G} GE = 0
e O

8.0 -

5.0

4.0 -

Expested braproverment

0.a o5 1.9 1.5 20
Stata Saving Cost

Figure 6.7 - Expected Improvement, Hot Spot (1%) Communication Pattern
munication topology under the assumption that the overhead of the correction mechanism is zero. Now

we study this issue given that we have defined and implemented a correction mechanism.

In Figure 6.6 we show the expected improvement given a nearest neighbor communication topolo-
gy. We assume a 2D toroidal mesh where an LP commaunicates only with its immediate neighbors. We

assume each neighbor is equally likely to receive a given message. As can be seen, our aggressive algo-

(B = 100% MST, P w 1024)
1c.C T T

Expected Improvemnent

[£X:] 0.5 1.0
State Saving Cost

Figure 6.8 - Expected Improvement, Hot Spot (5%) Communication Pattern

160

rithm offers an improvement in performance except under the condition that the cost of global synchroni-
zation is zero and the cost of saving state is relatively high. These results are very encouraging since the

nearest neighbor communication topology is an imporiant configuration in parallel simulation.

The next issue we investigated is the behavior of our algorithm given a "hot spot" in the communi-
cation topology. In one experiment we assume a nearest neighbor communication pattern, where an LP
sends a message to one of its immediate neighbors with an 80% probability. Note each neighbor is equal-
Iy likely to receive the given message. There is a 20% probability that the LP sends the message to one
of ten LPs in the system. Thus 1% of the LPs received 20% of the message traffic. The results of this ex-

periment are shown in Figure 6.7.

As can be seen, this highly unbalanced communication paitern adversely affected our aggressive
algorithm. The reason for this is that the LPs receiving the heavy message traffic were frequently rolling
back to reprocess messages. Also, the performance was hurt by the requirement that all reprocessing
caused by one arrival message be completed before the next message is received. It is expected thatin a
real system some messages may be received before all of the reprocessing associated with a preceding

message is completed. In this case the LP could order the messages, and potentially avoid reprocessing

(A = T00% MST, P u 1024)
1049 T

(23S w O
el OGS w 25

Eypacted Improvement

o Tty A imandEEL - SR SN N

0.¢ 2.5 1.0 1.5 2.0
Stata Saving Gost

Figure 6.9 - Expected Improvement, Hot Spot (8 %) Communication Pattern

161

the same message more than once.

Another problem may be our use of the aggressive cancellation strategy. Recall in this strategy an
anti-message is sent as soon as an error becomes apparent. Thus whenever one of the LPs was rolled
back, if 2 message was potentially sent in error it immediately sent an anti-message to cancel this mes-
sage. Our simulation employs the aggressive cancellation strategy because of our worst case assumption
that any out of order processing results in a violation of event dependencies. As discussed however, this
is not necessarily the case. It is certainly possible that out of order processing does not viclate event

dependencies because no such dependencies exist between messages processed in the wrong order.

This fact has been noted and studied in connection with Time Warp (Jefferson 1985). For this rea-
son the lazy cancellation policy (Reiher et al 1990)) was developed. In this stralegy an anti-message is
not sent because a message may have been sent in error. Rather, an anti-message is sent only when it is
known that a message was sent in error. Thus if no event dependencies are violated by out of order pro-

cessing, no anti-message is sent.

Another reason an actual system may show better results than our simulation is because it is likely
that an LP will have more than one message in its queue at a time. Thus an LP can order the messages be-
fore processing (recall our simulation assumes all messages are received one at a time and therefore no
ordering of messages occurs). Also, it is possible that an LP will receive an anti-message sent to cancel a
particular arrival message before this arrival message has been processed. In this case the arrival mes-
sage would not be processed, and the LP would not be forced to roll back due to the receipt of the arrival

message.

In Figure 6.8 we show the improvement in processing cost given a "hot spot” where 5% of the L.Ps
receive 20% of the messages. As can be seen, the performance of our algorithm is greatly improved
when the communication pattern is slghtly more balanced. Given this communication pattern the ag-
gressive approach again offers significant improvement in the processing cost compared to that of the
non-aggressive approach. In Figure 6.9 we show the improvement in processing cost given a "hot spot”
where 8% of the LPs receive 20% of the messages. As can be seen, our approach offers excellent perfor-

mance in this situation. Thus our system can perform quite well even when the message traffic is unbal-

162

(A w 100% MST, P = 2048}

15.0

Expacted Improvement

0.0 0.5 1.0 1.5 20
State Saving Cost

Figure 6.10 - Expected Improvement, 2048 LPs (Random Communication Pattern)
anced. When the communication pattern is highly unbalanced however our research indicates that the ag-
gressive algorithm (without some modification) is not a good choice unless the cost of global synchroni-

zation is prohibitive,

Synch | Equal |Nemrest! pe 1o | o 5% | s 6% 048

Cost | Likely|Meigh. LPg
4 245 | 1.07 - 0.43 6,77 | 3.35
435 7.00 | 3.90 - 2,25 3.10 | 9.80

5 11,50 | 6.70 0.26 | 4.05 5.40 |16.24

15 16,00 § 9.50 | .65] 5.90 7.70 [22.75

£.0 f20.55 [12.46 | 1.07 | T.70 |10.00 j22.00

2.0 §38.40 |23.50 | 2.70 |15.00 |19.30 {65.00

Table 6.1 - Critical State Saving Values for Various Communication Patterns

163

In order to give a concise picture of the costs/benefits of aggressive processing we define what we
term the critical state saving cost. A critical state saving cost of 8§ = ¢ implies that if the cost of saving
state is less than ¢ times the cost of processing a single message, the processing cost of the aggressive al-
gorithm offers an improvement over the processing cost of the non-aggressive algorithm. Conversely, a
state saving cost greater than ¢ times the cost of processing one message implies that the processing cost

of the non-aggressive algorithm is better than the processing cost of the aggressive algorithm.

In Table 6.1 we show the critical state saving cost for various communication patterns as a function
of the cost of global synchronization. We assume an aggressive window size equal to 100% of the mean
of the service time distribution, We give the critical state saving value for a system where 5% of the LPs
receive 20% of the messages ("HS (5%)"), 8% of the LPs receive 20% of the messages ("HS (8%)"). as
well as a random communication pattern where each LP is equally likely to receive a given message, and

the nearest neighbor communication pattern.

Consider determining the critical state saving value for a system with a nearest neighbor communi-
cation pattern, and a global synchronization cost of .5 (i.e. 50% of the cost of processing a message). In
this case we would look at the column labeled "Synch Cost” and find .5 (third row), then we would find
the third row of the column labeled "Nearest Neighbor" and determine that the critical state saving value
for this set of parameters is 6.70. Thus in a system with a nearest neighbor communication topology, if
the cost of global synchronization is .5, then for any state saving cost less than 6.70 times the cost of pro-

cessing a single message, the aggressive approach would offer an improvement in performance.

6.5.1. Behavior of Dominant LP as Workload Increases

In this section we investigate the behavior of the dominant LP as we increase the workload relative
to a fixed architecture. What we would like to show is that the processing cost of the dominant LP in-
creases only slightly as the size of the simulation problem grows. To investigate this issue we increased

the number of LPs in the system from N = 1024 LPs to N = 2048 LPs.

The results of this experiment showed that the number of messages processed by the dominant LP

increased very little as a result of doubling the number of LPs in the system. In particular, the mean

164

number of messages processed by the dominant LP in a system with N = 1024 LPs was 15.57. When the
system was increased 10 N = 2048 LPs, the mean number of messages processed by the dominant LP in-
creased only to 16.8 messages. Thus the processing cost was changed very little when the number of LPs

in the system doubled. This is a very encouraging result.

We show the speed up in processing cost for a system with N = 2048 LPs and P = 2048 processors
in Figure 6.10. As can be seen there is a significant improvement. It is important {0 note however that
this improvement is due to the fact that the size of the lookahead window decreased from L = .0386 to
L = .0272 as a result of doubling the number of LPs in the system. Thus the LPs (in the non-aggressive
approach) are forced to synchronize thirty seven times to compute one unit of logical time rather than the
twenty six times required with the smafler system. If the cost of global synchronization is greater than

zero, the processing cost of the non-aggressive approach will be severely affected.

6.6, Discussion

In this chapter we have enhanced our analytic model such that we can examine the behavior of the
system rather than the behavior of a "typical" LP. We developed our model assuming the best case
behavior of the non-aggressive protocol and a set of very pessimistic assumptions regarding the behavior
of the aggressive algorithm. We have shown that even under these conditions our approach can

significantly improve performance.

Also we have presented a set of simulation results which support the predictions of our model. In
particular, the simulation results show that our model tends to underestimate the potential for improve-
ment, We further tested our analytic results by investigating the impact of various communication topo-
logies on the behavior of our system. These results indicate that except in the case of a highly unbalanced
communication pattern, aggressive processing offers the potential for a significant increase in perfor-
mance. Even given a highly unbalanced communication pattern, the aggressive approach offers an im-
provement in the processing cost if the cost of global synchronization is high. Finally, simulation studies
show that the behavior of the dominant LP is only slightly affected as the number of LPs in the system is

doubled.

CHAPTER 7

Conclusions

Parallel discrete event simulation is an important and interesting application of parallel processing.
As we have shown, paralle]l simulation presents very difficult synchronization issues due to the underly-
ing sense of logical time. Many protocols have been introduced to solve these difficult issues, but only re-
cently have we begun to develop a body of theoretical results to help predict, explain or bound the petfor-
mance of any given synchronization mechanism. The research presented in this dissertation makes a

significant contribution to the small but growing set of analytic results for parallel simulation.

In this research we have argued that we need to define synchronization mechanisms that blend as-
pects of aggressive and non-aggressive protocols in order to maximize the advantages, and minimize the
disadvantages of each approach. We have defined one such protocol and developed a set of analytic
results to study the improvement in performance made possible by this approach. This work represents
the first time the relationship between the level of aggressiveness and the expected improvement in paral-
lelism has been established. It is also the first time the relationship between the level of aggressiveness
and the costs of aggressive processing has been established. Further, we have made significant progress
towards demonstrating that our aggressive windowing algorithm maintains the important scalability
features of the non-aggressive algorithm. Finally, we have derived the probability of a causality error at a
given LP, and the probability that an LP initiates a rollback chain by issuing an anti-message, as the

number of LPs approaches infinity. These are all significant contributions.

Below we give a summary of the contributions of each chapter, and where appropriate discuss the

weaknesses of our approach. We conclude this chapter with our thoughts for future research.

7.1, Summary of Results

In Chapter 3, we define the aggressive window as a mechanism for adding aggressiveness (o an ex-

isting non-aggressive protocol. We derive the probability distributions required for our analysis. Given

165

166

these distributions, we develop a model 1o investigate the probability of a causality error, and the expect-
ed improvement due to aggressive processing, as a function of the level of aggressiveness. This model is
developed under the assumption of a closed queueing system that is heavily loaded, has exponential ser-
vice time distributions and a random routing of messages where each LP is equally likely to receive a
given message. We do not develop a correction mechanism in that chapter, and thus do not include the
costs of this mechanism in the model. Furtiler, the analysis developed in Chapter 3 investigates the
behavior of a "typical” LP rather system level performance. However, the results derived in this chapter
lay the foundation for our analyses where we do include the cost of the synchronization mechanism and

investigate system-Jevel performance.

The primary weakness of this chapter is in our approach to computing the probability of a causality
error and the expected improvement in parallelism due to aggressive processing. We derive these results
by enumerating all of the possible ways a causality error can occur, and all of the possible ways an LP
can process K aggressive messages successfully. This computation is very tedious. The first extension to

this work will be the use of order statistics to make this analysis less cumbersome.

In Chapter 4 we define a mechanism to correct the causality errors that occur as a result of aggres-
sive processing. Also, we extend our earlier analysis to investigate the probability of a causality error that
requires an LP to produce an anti-message. The main result of this chapter is the establishment of the re-
lationship between the level of aggressiveness and the probability that an LP produces an Ntk generation

anti-message.

In Chapter 5 we extend our analysis to an open gueueing network, where the system can be lightly
loaded. This analysis is important in that it allows us to analyze lightly loaded systems. Also it is impor-
tant in that it demonstrates how quickly the analysis becomes intractable as we move away from a system
that allowed us to make many simplifying assumptions. Again, the analysis is tedious. For this reason

most of the analysis appears in the appendix.

In Chapter 6 we synthesize the results of the previous chapters. The main contribution of this
chapter is a model that describes system level performance rather than the behavior of a "typical” LP. We

develop our model to compare the processing cost of the two approaches, where we define the processing

167

cost as the cost of processing one unit of logical time. In this model we include the synchronization costs
of the non-aggressive protocol, as well as the cost of aggressive processing. Our model makes the best
case assumptions for the non-aggressive approach, and a set of very pessimistic assumptions for our ag-
gressive algorithm, Even under this very unbalanced set of assumptions, our model predicts the potential
for significant performance gains due to aggressive processing. Also in Chapter 6 we investigate the im-
pact of various communication topologies on our system. It is shown that aggressiveness can improve
performance excep! under the conditions of a very highly unbalanced communication pattern with a low
global synchronization cost. Finally, we demonstrate that the costs of aggressive processing increases

very slowly as the number of LPs in the system increases.

7.2. Future Research

The results developed in this research are primarily theoretical in nature. In order to make the
analysis tractable, we have been forced to make a number of simplifying assumptions. These assumptions
include that each LP is equally likely to receive a given message, that the completion of one activity
causes exactly one activity to be scheduled somewhere in the system, and that service times are exponen-
tial. The assumptions we have made are common. However, we would however like to augment our
analytic results with a set of empirical results derived from a multiprocessor implementation of our algo-
rithm. While our simulation studies suggest that our analytic results are applicable beyond the simplifying

assumptions of our model, we would like to validate this through an implementation of our protocol.

Perhaps the most striking unanswered question of this research is whether there is some optimal
level of aggressiveness with a protocol such as ours. We discussed the increase in parallelism, and the
costs of aggressive processing as a function of the level of aggressiveness. We did not focus on an op-

timal tradeoff between these competing costs. This would be a very interesting area of future research.

Our comparison of the performance of the aggressive and non-aggressive algorithms assumes a
system with some lookahead capabilities. We would like to extend the analysis of our protocol to sys-
tems with no lookahead. It would be a significant contribution if we could determine the costs of aggres-

sive processing, as a function of the level of aggressiveness, for a system without lookahead.

168

Another area of futare research is to theoretically demonstrate the scalability of our approach. Our
empirical results demonstrate that the cost of aggressive processing increases very slowly as the size of

the system increases. We have not yet established this result analytically.

7.3. Concluding Remarks

In this thesis we have studied the difficult and interesting synchronization issues encountered in
parallel discrete event simulation. It is our belief that the future direction of synchronization mechanisms
for parallel simulation should be toward the blending of non-aggressive and aggressive protocols; we feel
the work in this thesis demonstrates the advantages of this approach. The resulis presented in this thesis
have been primarily theoretical, and we feel we have made a contribution to the growing body of theoret-
ical results for paratlel simulation. Our hope is that these theoretical results will be used to help guide the

development of powerful mechanisms for parallel discrete event simulation.

CHAPTER 8

Bibliography

169

170

BIBLIOGRAPHY

Aahlad, A. and J. Browne 1988. The Persistent Echo Problem and a Solution. Unpublished

Manuscript.

Akyldiz, .F., L. Chen, 8.R. Das, R.M. Fujimoto and R.F. Serfozo 1992. Performance Analysis of

Time Warp With Limited Memory. 1992 ACM Sigmetrics Conference.

Ayani, Rassul 1989. A Parallel Simulation Scheme Based on Distances Between Objects.
Proceedings of the 1989 SCS Muiticonference on Distributed Simulation, Volume 21 Number

2, 113-118. Society for Computer Simulation, March 1989,

Breiman, L.eo 1986. Probability and Stochastic Processes With a View Toward Applications. The

Scientific Press. Second Edition.

Bryant, R.E. Simulation of packet communication architecture computer systems. MIT-LCS-TR-

188, Massachusetts Institute of Technology, 1877.

Buzzle, C., M. Robb and R. Fujimoto 1990. Modular VME Roilback Hardware for Time Warp.

Proceedings of the SCS 1990 Multiconference on Distributed Simulation. January, 1990.

Chandy, K.M. and J. Misra 1979. A Case Study in the Design and Verification of Distributed Pro-

grams. /EEE Transactions on Software Engineering SE-5,5 May 1979, 440-452.

Chandy, K. and J. Misra 1987. Conditional Knowledge as a Basis for Distributed Simulation.

Technical Report 5251:TR:87, California Institute of Technology, 1987.

in

Chandy, K., and R. Sherman 1989. The Conditional Event Approach fo Distributed Simulation.,
Proceedings of the 1989 SCS Muiticonference on Distributed Simulation, Pgs. 93-99, January,

1989.

Dickens, P. and P. Reynolds 1990. SRADS with Local Roliback. Proceedings of the 1990 SCS

Muiticonference on Distributed Simulation, January, 1990, 161-164.

Dickens, P. and P. Reynolds 1991. A Performance Model for Parallel Discrete Event Simulation.

1991 Winter Simulation Conference. December, 1991, 618-626.

Dickens, P., P. Reynolds and J.M. Duva 1992. Performance and Scalability Results for an Ag-
gressive Global Windowing Algorithm. TR-92-10, Department of Computer Science, Universi-

ty of Virginia, April, 1992.

Ebling, M. et al, 1989. An Ant Foraging Model Implemented on the Time Warp Operating Sys-

tem Distributed Simulation, V 21, Num. 2, Pgs. 21-26, March, 1989.

Felderman, R.E. and L. Kleinrock 1980. An Upper Bound on the Improvement of Asynchronous
vs. Synchronous Distributed Processing. Proceedings of the 1990 SCS Multiconference on

Distributed Simulation, January, 1980, 131-136,

Felderman, R. and L. Kleinrock 1991, Two Processor Time Warp Analysis: Some Results on a
Unifying Approach. Distrubted Simulation 1991, SCS Simulation Series, Vol.23, pgs. 3-10,
1991.

Felderman, Robert and Leonard Kleinrock 19¢1a. "Bounds and Approximations for Self-Initiating

Distributed Simulation Without Lookahead.” Submitted (September 1991): ACM Transactions

172

on Modeling and Cormputer Simulation.

Felderman, R. and L. Kieinrock 1992a. Two Processor Time Warp Analysis: Capturing the Ef-

fects of Message Queueing and Roliback/State Saving Costs. Unpublished Manuscript.

Felderman, R. and L. Kleinrock 1992. Two Processor Conservative Simulation Analysis. Distri-

buted Simulation 1992. SCS Simulation Series, Vol. 24 Num. 3, pgs. 169-177, 1992,

Fox, G., A. Johnson, A. Lyzenga, A. Otfto, J. Salamon and D. Walker, 1988. Solving Problems

on Concurrent processors Prentice-Hall, 1968,

Fujimoto, 1988. Lookahead in Parallel Discrete Event Simulation. Proc. 1988 International

Conference on Parallel Processing, Volume 3, Pgs. 34-41, August, 1988.

Fujimoto, R., J. Tsai and A. Gopalakrishnan 1988a. The Rollback Chip: Hardware Support for
Distributed Simulation Using Time Warp. Proceedings of the 1988 SCS Multiconference on

Distributed Simulation, Pgs. 81-86, January, 1988.

Fujimoto, 1989. Performance Measurements of Distributed Simulation Strategies. Transactions

of the SCS, Society for Computer Simulation, April, 1989.

Fujimoto, R. 1989a. Time Warp on a Shared Memory Multiprocessor. Proceedings of the 1989

Imermational Conference on Parallel Processing, 1989.

Fujimoto, R. 1890. Paraliel Discrete Event Simulation. Communications of the ACM, Volume 33,

Number 10, October 1990, 30-53.

173

Fujimoto, R. 1990a. Performance of Time Warp Under Synthetic workloads. Proceedings of

the 1988 SCS Multiconference on Distributed Simulation, Pgs. 23-28, January, 1990.

Gafni, A. Rollback Mechanisms for Optimistic Distributed Simulation Strategies. Proceedings of

the 1988 SCS Muiticonference on Distributed Simulation, Pgs. 61-67, January, 1988.

Gupta, A., |. Akyldiz and R. Fujimoto 1991. Performance Analysis of Time Warp With Multiple
Homogeneuos Processors. /EEE Transactions on Software Engineering. Volume 17 (No.

10):1013-1027, Oct. 1981.

Groselj, A.B. and C. Tropper 1988. The Time of Next Event Algorithm. Proc. of the 1988 SCS

Multiconference on Distributed Simulation, pgs. 25-29, January 1988.

Groselj, AB. and C. Tropper 1989. A Deadiock Resolution Scheme for Distributed Simuiation.
Proc. of the 1989 SCS Multiconference on Distributed Simulation, Pgs. 108-112, January,
1989.

Jefferson, D.R. 1985. Virtual Time. ACM Transactions on Programming Languages and Sys-

tems, 7,3 (1985), 404-425,

Kumar, D. 1986. Simulating Feedforward Systems Using a Network of Processors. The 19th

Annual Simulation Symposium, pgs. 127-144, March 1986.

Lavenburg, S., R. Muntz and B. Samadi 1983. Performance Analysis of a rollback method for
distributed simulation. PERFORMANCE 83, Elsevier Science Pub (North Holland) pgs. 117-

132, 1983.

174

Lin, Y., J. Baer and E. Lazowska 1988, Tailoring a Parallel Trace-Driven Simulation Technique
to Specific Multiprocessor Cache Coherence Protocols. Technical Report 88-03-02, Universi-

ty of Washington March, 1988.

Lin, J. and E. Lazowska 1989. Exploiting Lookahead in Paralle! Simulation. Technical Report

89-10-06, University of Washington, October, 1989,

Lin, J and E. Lazowska 1989a. A Study of Time Warp Rollback Mechanisms. Technical Report

89-09-07, University of Washingion, 1989,

Lin Y.B., and E.D. Lazowska 1990. Optimality Considerations for Time Warp Paraliel Simulation.
Proceedings of the 1990 SCS Multiconference on Distributed Simulation, January, 1990,29-

34.

Lin Y.B., E. Lazowska and J.L. Baer 1990a. Conservative Paraliel Simulation for Systems with
no Lookahead Prediction Proc. 1990 SCS Multiconference on Distributed Simulation, pgs.

144-149, January, 1980.

Liu, L.Z. and C. Tropper 1990. Local Deadlock Detection in Distributed Simulations. Proceedings

of the 1990 Muiticonference on Distributed Simulation, pgs. 64-69, January 1990.

Lubachevsky B. 1988. Bounded Lag Distributed Discrete Event Simulation. Proceedings of the

1988 8CS Multiconference on Distributed Simulation, January, 1988,183-191.

Lubachevsky B., A. Shwartz and A. Weiss 1989. Rollback Sometimes Works... If Filtered.

Proceedings of the 1989 Winter Simulation Conference. December, 1989, 630-639.

175

Lubachevsky, B. 1989a. Scalability of the Bounded Lag Distributed Event Simulation. Proceed-

ings of the 1989 SCS Multiconference on Distributed Simulation, January, 1989, 100-105.

Madisetti V., J. Walrand and D. Messerschmitt 1990. Synchronization in Message-Passing
Computers. Proceedings of the 1990 SCS Multiconference on Distributed Simulation, Janu-

ary, 1990, 35-48.

Madisetti, V., D. Hardaker and R. Fujimoto 1982. The MINDIX Operating System for Parallel
Simulation. Distributed Simulation, SCS Simulation Series, Vol. 24, Num. 3, pgs. 65-74, Jan.

1902,

Misra, J. 1986. Distributed Discrete-Event Simulation. Computing Surveys, Vol. 18, pgs. 39 -

64, March 1986.

Mitra, D. and 1. Mitrani 1984. Analysis and Optimum Performance of Two Message-Passing
Paralle! Processors Synchronized by Rollback. PERFORMANCE 84, Elsevier Science Pub

{North Holland) pgs. 35-51, 1684.

Mizel D. and R. Lipton 1990. Time Warp vs. Chandy-Misra: A Worst Case Comparison.
Proceedings of the 1990 SCS Multiconference on Distributed Simulation, January, 1990, 137-
143.

Nicol, D. 1984, Synchronzng Network Performance. Master's Thesis, University of Virginia,

1984,

Nicol, D. 1988. High Performance Parallelized DES of Stochastic Queueing Networks. Proceed-

ings of the 1988 Winter Simulation Conference, pgs. 306-313, San Diego, Ca., December

176

1988,

Nicol, D. and Reynolds, P. 1984. Problem Oriented Protocol Design. Proceedings 1984 Winter

Simulation Conference, pgs. 471-474, Dallas, Texas, November, 1984,

Nicol, David M. 1991, "Performance Bounds on Parallel Self-Initiating Discrete Event Simula-

tions". ACM Transactions on Modelling and Computer Simulation. Volume 1, No. 1, 1991

Nicol, [, 1992, Conservative Parallel Simulation of Priority Class Queueing Networks. /EEE

Transactions on Parallel and Distributed Systems, Vol. 3, Num. 3, Pgs. 294-303, May, 1892,

Nicol, D. 1992a. Optimistic Barrier Synchronization. Submitted: Parallel Computing.

Nicol, D. 1992b. Personal Communicatiorn.

Nicol, D. 1993. The Cost of Conservative Synchronization in Parallel Discrete Event Simulation.

JACM, to appear, April 1993.

Peacock, J.K, JW. Wong and E.G. Manning 1979, Distributed Simulation Using a Network of

Processors. Computer Networks 3 {1979}, 44-56, North-Holland Publishing.

Peacock, J.K, JW. Weng and E.G. Manning 1979a. A Distributed Approach to Queueing Net-
work Simulation Proceedings of the 1979 Winter Simulation Confererice, pgs. 399-406 De-

cember, 1979,

Presiey, M., M. Eblin, F. Wieland, D. Jefferson, 1989. Benchmarking the Time Warp Operating

System with a Computer Network Simuiation Distributed Simulation, V 21, Num. 2, Pgs. 8-13,

177

March, 1989.

Reiher, P., R. Fujimoto, S. Bellenot, D. Jefferson 1990. Cancellation Strategies in Optimistic Ex-

ecution Systems. Proceedings of the 1990 SCS Multiconference on Distributed Simulfation.,

January, 1990.

Reynolds, P. 1982. A Shared Resource Algorithm for Distributed Simulation. Proceedings of the
Ninth Annual International Computer Architecture Conference, pgs. 259-266, Austin, Texas,

April, 1982.

Reynolds, P. 1988. A Spectrum of Options for Parallel Simulation. Proceedings of the 1988

Winter Simulation Conference, December 12-14, San Diego, California, 325-332.

Reynolds, P., C. Pancerella and S. Srinivasan 1993. Design and Performance Analysis of
Hardware Support for Parallel Simulations, to appear in a special issue of Journal of Parallel

and Distributed Computing on Parallel and Distributed Simulation, August 1993.

Sokol, L., D.Briscoe and A. Wieland 1988. MTW: A Strategy for Scheduiing Discrete Simulation

Events for Concurrent Execution. Froc. 1988 SCS Multiconference on Distributed Simulation,

Pgs. 34-42, January 1988.

Sokol, L..and B. Stucky 1990. MTW: Experimental Results for a Constrained Optimistic Schedul-
ing Paradigm Froceedings of the 1990 SCS Multiconference on Distributed Simulation, Pgs.

169-173, January, 1990.

Steinman, J. 1992. SPEEDES: A Unified Approach to Parallel Simulation. Distributed Simula-

tion, SCS Simulation Series, Vol. 24, Num. 3, pgs. 75-84, Jan. 1992,

178

Theofanos, M. 1984. Distributed Simutations of Queueing Networks. Master's Thesis, University

of Virginia, 1984.

Tumer, S. and M. Xu 1992. Performance Evaluation of the Bounded Time Warp Algorithm. Dis-

tributed Simulation, SCS Simutation Series, Vol. 24, Num. 3, pgs. 117-126, Jan. 1992,

Wagner, D. and E. Lazowska 1988. Paralle! Simulation of Queueing Networks: Limitations and

Potentials. TR88-09-05, University of Washington, Seattle, Washington, September 1988.

Wieland, F. et al, 1989. Distributed Combat Simuiation and Time Warp: The Model and its Per-

formance Distributed Simulation, March 1989,

APPENDIX

A.1. Introduction

In Chapter 5 we defined and described all of the events which must occur in order for an 1P to pro-

duce an anti-message. We showed the probability of a first generation anti-message (at a given LP) is

P (Anti) = pP(C) P (Act 1) P (2nd) P (invalidateA) p (A1)
+p P(C)P(Act2) P(C_2nd) P{invalidateB) p,
+ (1-p) P (Actw) P (S_2nd) P (invalidaieC) p,
+ (1-p)Y (1 — P (Actw)) P (2nd) P {invalidateD}) p,
In this appendix we compute the probability of each event in this equation.

We organize the appendix as follows. First we compute the probability of an anti-message given
that the server is busy with an activity which began sexvice at logical time ¢ < L, and which completes
service at logical time ¢ > L. That is, the server is busy with an activity which completes at a logical time
greater than the lower bound of the aggressive window. (Throughout this appendix we use the term "busy
as the LP begins to process in the aggressive window", or "busy as the LP begins to process aggressively”
to denote this same event.) Then we compute the probability of an anti-message given that the server is
idle at logical time L, the lower bound of the aggressive window. (Throughout the appendix we use the
term "free at the beginning of the aggressive window", or "free as the LP begins to process aggressively”
1o denote this same event.) Qur last step is to compute the probability that a given LP produces an Ntk

generation anti-message.
A.2. Probability of an Anti-Message Given a Busy Server

As discussed in Chapter 5, there are two basic cases which must be considered: the server is busy
as the LP begins to process in the aggressive window or the server is free as the LP begins to process in
the aggressive window. In this section we investigate the probability of an anti-message given that the

server is busy as the LP begins to process in the aggressive window.

The first two lines of Equation (A.1) give the probability of an anti-message given that the server is

busy as the LP begins to process aggressively,

P (Anti | Server Busy)=p P(C) F (Act_1) P 2nd) P (invalidateA) p, (A.1A)
+p P(C) P(Act2) P(C_2nd) P (invalidate_2) p,
We begin by deriving the probability of each of these events.

Recall that p is the probability that a server is busy at any given time, and thus represents the pro-
bability that the server is busy as the LP begins to process aggressively. In Chapter 5 we showed that
p =g/,

We next term in this equation is P (C), the probability that the activity currently receiving service
completes within the aggressive window. Recall the duration of an activity is drawn from independent,
identically distributed exponential random variables with mean 1/A. The probability that the completion
time of the activity currently receiving service falls within the aggressive window (given that the comple-

tion time is greater than L, the lower bound of the aggressive window) is

P(C)=1-e™ (A2)

We now calculate the probability of event Act_1, the event that there is an activity to begin service
immediately after the server becomes idle. This will occur if a) there is an activity on the server queue,
or b) there is an activity in the aggressive window with a timestamp less than that of the
"complete_service” message. Consider the probability there are no activities on the server queue. As
shown by Trevedi (1982, page 420), the probability of zero activities on the server queue in the steady

state is 1-p.

Now consider the probability of zero messages in the aggressive window with a timestamp less
than that of the "complete_service” message. As discussed in Chapter 5, there are two types of messages
in the aggressive window which must be considered: messages from internal sources and messages from
external sources. Let Nolnternal be the event that there are no messages from internal sources with a
timestamp less than Tgg (the timestamp of the "complete_service” message). Recall we derived the pro-
bability of K messages in the aggressive window (due to internal sources) in Equation (5.8). The proba-

bility of Nolnternal is the probability that there are zero messages in the aggressive window (from

180

internal sources), or there is one message from an internal source with a timestamp greater than T¢g, or
two messages from internal sources, both of which have timestamps greater than Ty, and so forth. The
computation of this probability is essentially the same as in Equation (3.28) and is not reiterated in this

section,

We define NoExternal as the event that there are no external messages in the aggressive window
with a timestamp less than T, Consider an interval from logical time 0 .. Teg = ¢ Given that the exter-
nal messages are from a Poisson process with rate Ag, the probability of zero messages in this interval is

P (NoExternal | Tog=1)= e
In order to uncondition this expression, we integrate over all possible values of T = ¢ times the probabil-

ity of Tcg = t. Recall the timestamp of the "complete_service" message is a conditional exponential, con-

ditioned on being within the aggressive window. The unconditioned probability of NoExternal is

A At
P (NoExternal) = fe_w he (A.3)

0 (1—e™
This is a complicated integral with no closed form solution of which we are aware. We leave it in integral
form and note that it must be solved numerically. The probability of the event Act_1 (the event that there
exists an activity ready to receive service upon the processing of the "complete_service" message) is one
minus the probability that no such activity exists. Thus it is one minus the probability of no activities on

the server queue, no internal messages with a timestamp less than Tes and no external messages with a

timestamp less than T'rg. This probability is

P(Act1)=1—((1 - p) P (Nolnternal) P (NoExternal)). {A.4)
Next we determine the probability of the event 2nd, the event that an activity that begins service
immediately after the processing of the "complete_service" message has a completion time within the
aggressive window. The completion time of the next activity to enter into service is Teg + &, where & is
an exponential random variable with mean 1/A. Given a particular timestamp Ty = ¢, this probability is

1-¢™M4~9 We uncondition this expression below.

{(A.5)

4 =Mt _ 234 A
P (2nd) = j(l—e'MA_‘))Hmwdt C1-(Me™ 4 oM
! -

g™M) - f—e™

For the remainder of this appendix we define £ to be an exponential random variable with mean 1/A.

i81

Also, we define T to be the timestamp of the “complete_service” message (given that it falls within the
aggressive window), and thus it is a conditional exponential, conditioned on being within the aggressive

window,

The next term on the first line of Equation (A.1.A) is P (InvalidateA), the probability that the LP
receives an arrival message with a timestamp less than Tes. We discuss this probability below. The final

term on this line is p, which we have previously discussed.

Now consider the second line of Equation (A.1.A). Aci_2 is the event that there is no activity to
enter into service at logical time T, but there is an acti\}ity in the aggressive window with a timestamp X
such that X > Trs. The probability of Act_2 is one minus the probability that there are no internal mes-
sages in the interval Trg .. A and there are no external messages in this interval. As noted, the timestamp
distribution of the "complete_service” message is a conditional exponential, conditioned on being within
the aggressive window. Thus we seek the probability that there is at least one message in the aggressive
window with a timestamp that is greater than Ty, which is a conditional exponential. This is exactly the

probability of a fault computed in section 5.3. We do not recompute this probability in this appendix,

We now calculate the probability of the event Act_2. The probability of no activities on either the
server queue or in the aggressive window with a timestamp less than that of the "complete_service" mes-
sage is one minus the probability of Act_1 (given in Equation (A.4)). The probability of an activity in the
aggressive window with a timestamp greater than that of the "complete_service” message is the probabil'-

ity of a fault given in section 5.3. Due to the independence of these events, the probability of Act_2 is

P(Act_2y=(1—-P(Act_1)) P(Fault). {A.6)
Now assume that event Act_2 occurs, and thus the next activity to enter into service has a times-~

tamp between T, (the imestamp of the "complete_service" message) and A. We represent this timestamp
as logical time X, We need to compute the probability of event C_2nd, the event that an activity which
enters into service at logical time X completes within the aggressive window. X is a conditional exponen-
tial, conditioned on being between the "complete_service" message and the upper bound of the aggres-
sive window. Note there is a non-zero probability of having no activities to enter service upon the pro-

cessing of the "complete_service” message, and N>1 activities with timestamps between the

182

"complete_service” message and the upper bound of the aggressive window. In this case the timestamp of
the next activity to receive service would have a distribution that is the minimum of N conditional
exponentials (conditioned on falling bétween the "complete_service” message and the upper bound of the
aggressive window). However, because of the restrictions that 0 <p< 1 and 0 <A < 1/A, the probability
there are no activities available to enter into service when the "complete_service” message is processed,
and N > 1 activities with a timestamp between that of the "complete_service” message and A is quite
smail. For the purposes of our discussion we assume this probability is negligible and do not consider the

affects of more than one activity in this interval.

Given an activity with timestamp X (in the interval between T, and A) is the next activity to
receive service, we seek the probability that this activity completes within the aggressive window. Recal-
ling that the service time distribution is exponentially distributed with mean 1/A, we seek the probability
that the new timestamp X +§ is less than A. Given a particular value of X=x this probability is
1~ ¢ MA~%) Ag noted, x can range between Teg = ¢ and A. Thus the probability that X + & < A given a

particular value of T,.=t is

A
YRR Vs AAe™ g™ _ oM g™
POe+E <A | Tomt) = [(1=e ™)~ dx = i .
t
—Ax
Note —-};g—;ﬁ is the conditional distribution of X given that it ranges between T,.=t and A. We uncon-
g Mg

dition this expression by intergating over all possible values of T, times the probability that 7=, Not-

ing that T, is a conditional exponential we do this below.

My M _ g M _peM QM

eM_gM 1-e™M

A
P(C_2nd)=P(X +§ M)EJME dt A
0
This is a difficult integral with no closed form solution of which we are aware. We leave it in integral

form and note that it must be solved aumerically.

Now that we have computed the probabilities associated with the next activity to receive service,
we need to compute the probability that the chosen activity is invalidated by the receipt of an arrival mes-
sage. Again we note our assumption that the chosen activity is invalidated if the LP receives an arrival

message with a timestamp less than the logical time of the activity entered into service aggressively.

183

Recall inval_1 is the event that the chosen activity is invafidated given that it enters service at logical
time T,,. This probability is 50% since both the arrival message and the "complete_service" message
have (by assumption) the same timestamp distribution (conditional exponentials, conditioned on falling

within the aggressive window).

Pinval_1)=.5
It is somewhat more difficult to calculate the probability of invalidating an activity given that the
timestamp of the activity is a conditional exponential, conditioned on being between T, and A. Noting
that this probability is derived in a manner similar to the other such probabilities derived above, the

unconditioned probability of this event is

AAx
he ™ Ao Ae™
P(inval 2)= dys dx dt = 0.75 A8
{ -2 ! ',[E’; (1—e™y Mg g4 @8
vy
The a?ﬁﬁ; term is the timestamp distribution of an arrival message. The inside integral represents
-2

the probability that an arrival message has a timestamp less than the logical time of the activity that is
placed into service aggressively, given that the activity has a particular timestamp X =x. The next integral
is the probability distribution for X=x given a particular timestamp of the "complete_service" message
T,,=t. The final integral computes this probability over all possible values of the "complete_service"

timestamp times the probability of these values,

Now we account for the fact that an LP may receive more than one arrival message. We seek the
probability that the activity chosen for service is invalidated given that the server is busy when the LP
begins processing within the aggressive window. First consider the case that the activity enters into ser-
vice at logical time T, the timestamp of the complete service message. Recall we defined invalidateA as
the event that such an activity is invalidated by the receipt of an arrival message, given that the LP may
receive more than one such message. As shown above, the probability of any particular arrival message
invalidating such an activity is 50% since they both have the same timestamp distribution. The probabil-
ity of invalidating this activity given more than one arrival message is thus

P (invalidateA) = P (Arr=1) 0.5 + P (Arr=2) 0.75 + P (Arr=3) 0.875 (A9
In Equation (A.9), the second term is the probability of invalidating the activity given two arrival

184

messages. This probability is 0.75 because the probability that a given arrival message has a timestamp
greater than that of the arrival message (and thus not invalidating the activity) is 0.5. The probability that
the timestamps of two arrival messages are both greater than that of the activity is 0.5% =0.25. The pro-
bability that at least one of the arrival has a timestamp less than that of the activity, and thus the probabil-
ity that the activity is invalidated, is 1 — 0.25 = 0.75. The other term is similarly derived. The probability
of receiving more than three arrival messages is negligible and is not considered. Given that it is possible

to receive more than three arrival messages however this equation is an approximation.

Recall in Chapter 5 we defined invalidateB as the event that an activity is invalidated given that it
entered into service at logical time X | T, < X < A. As shown in Equation (A.8), the probability of an
invalidation given one arrival message is 0.75. We derive the probability of an invalidation given more
than one event in a manner similar to this dexivation in Bquation (A.8). The probability of event ipvali-
dateB is

P (invalidateB) = P (Arr=1) 0.75 + P (Arr=2)y 0.93 P (Arr=3) 0.98 (A.10)
Again we note that the probability of receiving more than three arrival messages is negligible and is not
considered. Because it is possible to receive more than three events however Equation (A.10) is an

approximation.

The final requirement to produce an anti-message (with which we are concerned) is that the activity

remain in the system upon its completion. As noted in Chapter 5, the probability of this event is p;.

We have now computed all of the probabilities associated with producing an anti-message given
that the server is busy at the beginning of the aggressive window. Our next task is to compute this proba-

bility given that the server is free as the LP begins to process aggressively.
A.3. Probability of an Anti-Message Given Server is Free

In this section we derive the probabilities associated with generating an anti-message given that the
server is free at the beginning of the aggressive window. Recall the last two lines of Equation (A.1) give

the probability of an anti-message when the server is idle as the LP begins to process aggressively.

P{Anti | Server Idle} =+ (1-p) P (Actw) P (S_2nd) F (invalidateC) p, (A.LB)

185

+ (1-p) (1 — P (Actw)) P (2nd) P (invalidateD) p |
There are two basic cases to consider: either the LP has an activity with a timestamp that falls within the

aggressive window (which it would place into service aggressively) or it does not. First consider the case

that such an activity exists.

The first term in Equation (A.1.B) is 1— p, which is one minus the probability that the server is
busy at any given time. It therefore represents the probability that the server is idle at any given time, and

is thus the probability that the server is idle as the LP begins to process aggressively.

The next term is Ac/W, the event that there is an activity to be placed into service aggressively
given that the server is idle as the LP begins to process aggressively. Recall that the number of activities
in the aggressive window is Poisson distributed with rate ¥. The probability of at least one activity within

the aggressive window is thus

Pl{ActW)=1~¢77. (A11)
The next term in this equation is §_2nd, the probability that the next activity to enter into service
completes within the aggressive window. In order to compute the probability of this event, we must

determine the timestamp distribution of the next activity to enter into service.

The next activity to receive service will be the activity with the smallest timestamp within the
aggressive window. Given N 21 activities within the aggressive window, we seek the timestamp distri-
bution for the activity with the minimum timestamp. We note that the calculation of the pdf for the
minimum timestamp among the N 21 activities in the aggressive window is performed in a manner analo-
gous to the calculation of the pdf of the Clock random variable given in Dickens and Reynolds (1991).
For this reason we do not elaborate on the technique in this appendix, Let ¢ be the minimum timestamp

among all timestamps within the aggressive window. The CDF of ¢ is

\PM
o Mgt M T A1)
g g !
CDF($)=1- . :
@=1- % (=5
pM -
t
The Af—:\—i,-— term is the probability of M activilies in the aggressive window given that M = 1. The pdf
-

of ¢ is the derivative of Equation (A.12) with respect to ¢. For the remainder of this appendix we term

186

this pdf f (¢} and direct the interested reader to Dickens and Reynolds (1991) for its derivation.

Given f (¢) we can derive the probability of the event §_2nd, the event that the chosen activity
completes within the aggressive window. The probability of this event is the probability that the new

timestamp ¢ + £ falls within the aggressive window. This probability is

A
P (S_2nd) = [1-e =91 (¢) d¢. (A.13)
b
The logic of this derivation is similar to the derivation of events C_2xd and 2nd discussed above.

Given that such an activity exists, we seek the probability of event invalidateC, the event that the
LP receives an arrival message with a timestamp less than ¢, the logical time at which the activity entered

into service. We term this event inval_3. This probability is

49 ?\,g_?‘""
P (nval_3)=[[f(®) ds a¢. (A.19)
5 o (I-e™)
The derivation of this probability is similar to the derivation of the probability of events inval_1 and

inval_2 discussed above. This is a complex integral with no closed form solution of which we are aware.

Event inval_3 gives the probability of an invalidation given one arrival message. We now com-
pute the probability of invalidateC, the probability that the activity is invalidated given more than one

arrival message. The probability of this cvent is

P (invalidateC) = P (Arr=1) inval_3+ P (Arr=2) (1~ { 1- P (inval_ 3)%)) (A.15)

+ (1= (1~ P (inval_3)%)

This probability is computed in a manner analogous to evenls invalidateA and invalidateB discussed
above. The probability of receiving more than three arrival messages is negligible and is not considered.

For this reason however the above equoation is an approximation.

The next term in Equation (A.1.B) is p, the probability that the activity stays in the system upon

its completion. We have now calculated the probability of each event in the first line of Equation (A.1.B).

Now consider second line of Equation (A.1.B). This line gives the probability of an anti-message
given that the server is free at the beginning of the aggressive window and there are no activities within

the aggressive window. The first term is 1 — p, the probability that the server is idle. The next term is

187

1~ ActW, the probability that there is no event with a timestamp that falls within the aggressive window.

These probabilities have been discussed above.

As discussed, if the server is idle as the LP begins to process aggressively, and there are no activi-
ties within the aggressive window, then in order to produce an anti-message the LP must receive an
arrival message and place this activity into service aggressively. Also, this activity must complete within
the aggressive window. The timestamp of an arrival message is (by assumption) a conditional exponem
tial, conditioned on falling within the aggressive window. This is also the timestamp distribution of a
"complete_service” message. Thus the probability that an arrival message (which is placed into service)
completes within the aggressive window is the same as the probability an activity placed into service at
logical time Teg (timestamp of the "complete_service” message) completes within the aggressive win-

dow. This probability is 7 (2nd) discussed in previous sections.

The arrival message placed into service aggressively must be invalidated by the receipt another
arrival message in order to produce an anti-message. Recall we defined the event invalidateD as the
event that this first arrival message is invalidated by the receipt of a second (or third) arrival message.
The probability of this event is

P (invalidateD) = P (Arr=2} 0.5 + P (Arr=3) 0.75. (A.16)
The first term in this expression is the probability of receiving two arrival messages, where the second
arrival message invalidates the first. Again we note that this is an approximation since we do not con-

sider the probability of receiving more than three arrival messages.

The final term in Equation (A.1.B) is p;, the probability that the activity stays in the system upon

its completion.

We have now derived the probabilities for each event required to produce a first generation anti-

message. In the next section we derive the probability of producing an Nth generation anti-message.
A 4. Nth Generation Anti-Messages

As noted in previous chapters, one of the primary problems with a fully aggressive system is the

possibility of cascading rollbacks. A cascading rollback develops when one anti-message leads to other

188

anti-messages, and the error propagates without bound. As we discussed in Chapter 4, the probability of
cascading rollbacks developing with the limited aggressiveness we allow is negligible. In this section we
describe the events necessary for one anti-message to cause another anti-message, and the probabilities

associated with these events.

As will be seen, the computation of the probability of an Nth generation anti-message becomes
quite complex. The reason for this is as follows. Recall that the final, unconditioned expression for the
probability of a first generation anti-message has four terms (Equation (A.1)). For each of these four
terms, we calculate the probability that the LP receives an arrival message with a timestamp less than the
logical time the activity is placed into service aggressively. As we have seen, this is complicated by the
fact that there are three logical times at which an activity can be entered into service aggressively (i.e.

logical time Ty, logical time X 1X > Tcy, and logical time ¢).

This process becomes much more complicated as we compute the probability of a 2rd generation
anti-message because the timestamp distribution of a first generation anti-message will be conditioned on
the particular set of circumstances under which the anti-message was produced. For example, if the
activity enters into service aggressively at logical time T, (the timestamp of the "complete_service” mes-
sage), and this activity is later invalidated, the timestamp distribution of the message that must be can-
celled (and thus the timestamp distribution of the anti-message sent to cancel this message) will be
Y =T, +£&. If, on the other hand, the activity entered into service at logical time ¢, then the message that
must be cancelled will have timestamp Z = ¢ + . There is also the third case to consider, where the
invalidated activity has a imestamp X that is a conditional exponential, conditioned on being between T
and A. In this case the anti-message will have timestamp D =X +&. We discuss this issue more fully

below.

Thus the fimestamp of a first generation anti-message will have a pdf conditioned on the particular
set of circumstances under which the anti-message was generated, Given this, we must then compute the
probability that the anti-message will have a timestamp less than the logical time an activity was placed
into service aggressively. As there are three different logical times an activity can be placed into service

aggressively, this requires nine different computations (three possible times an activity can be placed into

189

service aggressively, for each possible logical time three components of the conditional pdf of a first gen-
eration anti-message). These computations are complicated by the fact that many of the distributions
cannot be expressed in terms of elementary functions. This is further complicated by the fact that we
cannot prove that the timestamp distribution of an anti-message does not change from generation to gen-

eration, though we believe it does not.

For these reasons we take the following approach to the analysis. First, we discuss the steps
required to compute the probability of producing a second generation anti-message. This allows us to
develop an exact prediction of this probability, and demonstrates again how quickly the level of complex-
ity grows as we model a more complex system. We then give an approximation that bounds (from
above) the probability of producing an anti-message. With this approximation, we are able 1o develop a
recurrence relation describing the probability of an Ntk generation anti-message. As discussed in section
5.5, this approximation has a minimal impact on the predictive power of the model. We begin by

describing the technique to compute the probability of a second generation anti-message.

Recall that a first generation anti-message is produced when an activity placed into service aggres-
sively is invalidated by the receipt of an arrival message. An Nth generation anti-message is produced
when an activity is invalidated by the receipt of an Nth — 1 generation anti-message. Consider the proba-
bility of producing a 2nd generation anti-message. Again the LP must place an activity into service
aggressively, the activity must complete within the aggressive window, the activity must stay in the sys-
tem after its completion and the activity must be invalidated by the receipt of another message. There-
fore, all of the events necessary to produce a first generation anti-message musi occur, except that the
activity must be invalidated by the receipt of a first generation anti-message rather than by the receipt of
an arrival message. In the previous section we determined the probabilities associated with each event
necessary to produce a second generation anti-message except for the probability that an anti-message
invalidates the activity chosen for service. The calculation of this probability requires the timestamp dis-

tribution of a first generation anti-message which we now derive.

As mentioned above, the timestamp distribution of a first generation anti-message is dependent

upon the particular set of circumstances under which the anti-message was generated. Recall there are

190

four sets of circumstances under which an anti-message can be produced. For the purposes of our
analysis, it is convenient to define four different classes of anti-messages, where the distinction between
the classes is the set of circumstances under which an anti-message is produced. More specifically, we
classify anti-messages on the basis of the logical time the invalidated activity entered into service aggres-
sively. We now review the four sets of events which can produce an anti-message, and the timestamp

distribution of the anti-message produced given each particular set of events.

One set of events which can lead to an anti-message is when the server is busy at logical time L
(the lower bound of the aggressive window), the activity currently receiving service completes at logical
time Teg (within the aggressive window), there is an activity to place into service at logical time Tcg, the
activity stays in the system upon its completion and the activity entered into service at logical time Ty is
invalidated by an arrival message. We classify an anti-message produced due to this sequence of events
a CSanti. As shown, the probability of these events occurring, and thus the probability of producing an

anti-message that we classify as a CSanti is

P{CSanti)y=p P(CYP (Act 1) P 2nd) P (Invalidate 1) p,. {A.17)
Consider the timestamp distribution of a CSansl. As noted, the invalidated activity entered into ser-
vice at logical time T and completed service within the aggressive window. Thus the completion time
of the activity (and therefore the timestamp of the "pre-sent” completion message), is a conditional
exponential, conditioned on being between T, and A. Thus the timestamp of the anti-message sent to
cancei this "pre-sent” completion message will (by definition) have this same timestamp distribution. Let
Y =Teg + & be the timestamp of a CSarti. Below we give the pdf of ¥, given a particular timestamp of
the "complete_service” message Tpg = 1

~Ay

pdf (v | CSanti, T.s=f) =e_,f‘;—% (A.18)

~e
Note that by pdf (y | CSan#i,T,, =t} we mean the timestamp distribution of an anti-message, given that
the anti-message is classified as a CSan#, and given that the invalidated activity entered into service at
logical time Tog=t. This pdf is conditioned on a particular value of T, = ¢, and the expression therefore

needs to be unconditioned, We do this in the usual way by integrating over all values of T, = ¢ times the

probability of T, =¢. Recalling that the timestamp of the "complete_service” message is a conditional

191

exponential, conditioned on being within the aggressive window, we give the unconditioned expression

below.

A
, AN e M
pdf (y 1 CS_Anti) = ! o g (A.19)

This is a complex integral with no closed form solution of which we are aware. We leave it in integral

form and note that it must be solved numerically.

Recall that an anti-message can also be produced under the following circumstances. The server is
busy at Jogical time T, the activity receiving service completes at logical time Ty (within the aggressive
window), there is no activity to enter into service immediately, there exists an activity with timestamp
X =x t X > Tcy that is placed into service at logical time x, this activity completes within the aggressive
window, stays in the system upon its completién and is invalidated by the receipt of an arrival message.
We classify an anti-message produced under this set of circumstances a Banti, As shown, the probability
of producing an anti-message which we classify as a Banti is

P (Baniiy=p P(C) P(Act2) P{C_2nd) P (invalidate2) p:. {A.20)
Now consider the timestamp distribution of a Bant anti-message.

The invalidated activity entered into service at logical time X | Ty <X < A, and completed ser-

vice at logical time Z = X + £. By definition, the anti-message sent to cancel the "pre-sent” completion

message will have this same timestamp distribution. The pdf of Z is

. Ae M
pdf (z | Banti,X=x)= ———— (A21)
[4

Note that this pdf is conditioned on X = x. In order to uncondition we integrate over all values of X=x
times the probability of X=x. This is complicated by the fact that X is conditioned on being between

Tes =t and A, and Trg is a conditional exponential, conditioned on being within the aggressive window.

‘We uncondition this expression below.

A4
he N he ™™ Ae ™M

dj | B Anti) = dx dr. A22

pdf o/ 1 B_Anti) Mg-u_g-m Mg | (A.22)

This complicated integral has no closed form solation of which we are aware.

192

Recall that an anti-message can also be produced when the invalidated activity entered into service
at logical time ¢, where ¢ is the minimum timestamp among the N > 1 activities within the aggressive
window. As shown above, this occurs when the server is free as the LP begins to process aggressively,
there are no activities on the server gueue, there is an activity within the aggressive window that enters
into service at logical time ¢, the activity completes within the aggressive window, the activity stays in
the system upon its completion and the activity is invalidated by the receipt of an arrival message. We
classify an anti-message produced under these circumstances an Nanti. As we have shown, the probabil-
ity of generating an anti-message which we classify as an Nanii is

P (Nanti) = (1-p) P (Actw) P(S_2nd) P (invalidate3) p,. (A.23)
Note that the completion time of this activity placed into service aggressive, and therefore the timestamp

of the anti-message sent to cancel the "pre-sent” completion message, is D = ¢+ E. The pdfof D

A e
pdf (d | Nanti) = iwmﬂ d9 (A24)

Again, this is a complicated integral which must be solved numericaliy.

The final set of circumstances under which an anti-message can be produced is when the server is
idle as the LP begins to process aggressively, there are no activities on the server queue or in the aggres-
sive window, the LP receives an arrival message which it places into service, the activity completes
within the aggressive window, the activity remains in the system vpon its completion and the aciivity is
invalidated by the receipt of a second (or third) arrival message. We classify an anti-message produced
under these circumstances an Aanti. As shown, the probability of producing an anti-message under these
circomstances is

P (Aanti) = (1-p) (1 - P(Actw)) P (2nd) P (invalidate 4) p,. (A.25)
Recall our assumption that an arrival message and the "complete_service" message have the same times-
tamp distribution; conditional exponential, conditioned on being within the aggressive window. Thus the
timestamp of an anti-message produced under these conditions will have the same distribuion as an
anti-message produced when the invalidated activity entered into service at logical time T,. This implies

that an anti-message we classify as an Aanti has the same timestamp distribution as an anti-message we

193

classify as a CSanii.

We have now discussed the timestamp distribution of each of the four classes of anti-messages.
Note that all of the anti-messages discussed thus far are first generation anti-messages. That is, these
anti-messages are produced as a result of an activity being invalidated by the receipt of an arrival mes-
sage (rather than by the receipt of an anti-message). As can be seen, the pdf of a first generation anti-
message is conditioned on the class to which the anti-message belongs. Let P (Anti) be the probability
that an anti-message is produced. As noted, the probability of an anti-message is the probability that an
LP produces a CSanti, plus the probability that it produces a Banti, plus the probability it produces an
Nanti plus the proi}ability it produces an Agnsi. The probability that an anti-message belongs to a particu-
lar class, and thus the probability that the anti-message has the timestamp distribution of that particular
class, is the proportional probability of that class of anti-messages to the total probability of an ant-

message. Let S be the timestamp of a first generation anti-message, We give the pdf of § below.

A
e e g™ P (CSanti)+P {(Aanti)
pdf (s) = i i T P Gnt) + (A.26)
'}} he e M Ae ™™ dx dt P (Banti)
A e R A S P (Anti)
A
Ae ™™ P (Nanti)
[£ @) do P(Ant)

Given the pdf of a first generation anti-message, we can compate the probability of producing a
2nd generation anti-message. A second generation anti-message is produced when an activity enters into
service aggressively, completes within the aggressive window, stays in the system upon its completion
and the activity is invalidated by the receipt of a first generation anti-message. Thus all of the evenis
necessary to produce a first generation anti-message must occur, except that the activity placed into ser-
vice aggressively is invalidated by the receipt of a first generation anti-message rather than by an arrival

message. Consider the final equation for the probability of producing a first generation anti-message.

P (Antiy = pP{(C) P (Act 1) P (2nd) P (invalidateA) p,

+p P(CYP(Act2) P(C 2nd) P (invalidareB) p,

104

+(1-p) P (Actw) P(S_2nd) P (invalidateC) p,

+ (I~p) (1 ~ P (Actw)) P (2nd) P GnvalidateD) p
We need to replace the events invalidateA through invalidate_D with new events which represent the

probability that the activity placed into service aggressively is invalidated by a first generation anti-

message.

Consider the first term in the above equation. This term represents the ﬁ)robability of producing a
first generation anti-message given that the activity enters into service aggressively at logical time Ti;.
We need to compute the probability that a first generation anti-message invalidates such an activity.
Define invalA as the event that a first generation anti-message has a timestamp less than logical time 7.
Let AM be the random variable associated with the timestamp of a first generation anti-message. Recall
the probability this anti-message has a timestamp distribution Y =Tgg+§€

(P(CSanti) + P (Aant))/P (Anti). Also we have shown that random variable AM is Z=X +§ where

X1 T,y <X <A with probability %%1. Finally, random variable AM is D = 6+ E, where ¢ is the

F (Nanti)
FP(Anti) ~

minimum timestamp among N 2 1 activities within the aggressive window, with probability

To compute the probability of event invalA, we compute the probability that AM is less than T,
given each of the three timestamp distributions for AM. This is unconditioned by mulliplying the proba-
bility of an invalidation given a particular timestamp distribution of AM, times the probability that AM

has that timestamp distribution. Thus three separate calculations are required. We note that this computa-

tion is performed in a manner analogous to other such computations given in previous sections.

The probability that a first generation anti-message invalidates an activity given that the activity
enters into service at logical time X | T, <X < A is computed in a similar manner. We define event
invalB as the event that a first generation anti-message invalidates such an activity. We define invalC as
the event that a first generation anti-message invalidates an activity that enters into service at logical time

¢. Again we do not elaborate on the techniques to compute these probabilities.

Given the probabilities for evenis invalA, invalB and invalC, we give the final expression for the

probability of producing a second generation anti-message below.

195

P (Antiq) = P(Anti,) p PAC) P (Act1) P (2nd) P{invald) p, (A27)

+P{Anti)) p P(CYP(Act2) P(C_2nd) P (invalB) p,

+ P{Anti)) (1-p) P (Actw) P(S_2nd) F (invalC) p,

+ P{Anti) (1-p) (1 - P (Actw)) P (2nd) P (invald) p,
The difficull question is: what ig the timestamp distribution of a second generation anti-message?
Does this distribution change from generation {0 generation? Note that the three different types of density
functions will not change from generation to generation. That is, the timestamp of an Nk generation
anti-message will be either ¥ = T, + & (conditioned on being within the aggressive window), Z=X +& (
where T,, < X < A and again conditioned on being within the aggressive window), or D = ¢+ & where ¢
is the minimum timestamp of all activities within the aggressive window (and ¢ + & < A), This will not
change because an activity can only enter into service aggressively at logical time T, logical time X or

logical time ¢,

What can change is the probability that the timestamp of an anti-message will be a particular one of

the three density functions. As shown above, the probability that a first generation anti-message has a pdf

P (CSanti) + P (Agnti)
P (Antd) - The

that is a conditional exponential, conditioned on being between T, and 4 is

question is, what is the probability that the pdf of a second generation has this same timestamp distribu-

P (CSamtd) + P {Aanti)
P (Anti)

tion? If this probability is (and the probabilities associated with the other density

functions also remain the same), then we can develop a recurrence relation to compute the probability of
an Nth generation anti-message. If this proportional prohability changes from generation o generation,

ther a separate computation must be performed for each generation anti-message.
Because we cannot answer this question, we propose the following approximation.

Recall that an activity can enter into service aggressively at logical time T, logical time
X1 T, <X <A, orlogical time ¢, where ¢ is the minimum among the N = 1 activities within the aggres-
sive window. As we have discussed, the timestamp of an anti-message produced as a result of the invali-

dation of this activity will be the sum of the logical time the activity entered into service and £. The

smaller the expected value of the timestamp of the anti-message, the more likely it will be that the anti-

196

message will invalidate another activity (and therefore the more likely it is to propagate the error through

the system).

For this reason we assume the timestamp of the anti-message is D = ¢ + &. Note this represents the

worst case assumption regarding the logical time of the activity placed into service aggressively.

Define TSInvalA as the probability that D is less than T,;. Again we do not elaborate on the compu-
tation of this probability. PDefine TSIavalB as the probability that D is less than X | T, <X < A. Define
TSinvalC as the probability that D is less than ¢. Given these probabilities, and the approximation for the
timestamp distribution of an anti-message, we can define a recurrence relation to predict the probability

of an Ntk generation anti-message.

F (Antin) =P (Antiy_ 1y p PXC)Y P(Act 1) P (2nd) P (TSInvalA) py (A.28)
+ P (Antiy_y) p P{CYP (Act2) P(C_2nd) P (TSInvalB) p,
+ P (Antiy) (1-p) P (Aceow) P(S_2nd) P (TSInvalC) py
+ P (Antiy_1) (1-p) {E — P (Actw)} P (2nd) P (TSInvalA) p,
Now we have shown how to calculate the probability of an Nt generation anti-message. In
Chapter 5 we gave our predicted and observed probabilities of a first generation anti-message. Also, we
gave some predicted and observed probabilities of a second generation anti-message. This concludes our

discussion of the probability of producing an anti-message in an open system.

