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ABSTRACT

Extant peepbole optimizers can perform many optimizations that are han-
dled by higher-level optimizers. This paper describes a retargetable instruc-
tion reorganizer that performs targeting and evaluation order determination
by applying a well known algorithm for optimal code generation for expres-
sions to object code. The reorganizer fits well into the framework of an
existing peephole optimizer. By rearranging computations and instructions, it
minimizes the number of registers and temporaries required to compile
expressions. For some machines, this can reduce both the size and execution
speed of programs. By generalizing its operation, the reorganizer can also be
used to reorder instructions to avoid delays in pipelined machines. For one
pipelined machine, it has provided a 5 to 10 percent improvement in the
execution speed of benchmark programs.
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A Retargetable Instruction Reorganizer

1. Introduction

Normally execution ordering, the determination of the “optimal” sequence of instructions
to evaluate an arithmetic expression, is performed during code generation
[Aho77b,Seth70,Stoc73]. In most cases, “optimal’ means the code sequence with the fewest
instructions and/or the minimum number of storage references. In an ideal situation, it has
been proved that these algorithms gemerate optimal code in time linear to the size of the
expression. Unfortunately most present-day machines are far removed from the ideal
assumed by these algorithms. Nevertheless, these algorithms can be applied in practice with
good results. Johnson provides an excellent discussion of the application of this theory in a
real compiler [John78]. Here the compiler attempts to produce a worst case estimate of the
resources (e.g. registers or temporaries) required to emit code for each subtree of the expres-
sion. These estimates are often referred to as Sethi-Ullman numbers. Based on these esti-
mates, an evaluation order is produced. As Johnson notes, the notion of determining the
resources required to generate code for a subtree breaks down for aimost all practical
machines. Consequently, it is often necessary 1o use heuristics to provide estimates about
the resources required to evaluate an expression. Thus, while the algorithm itself is
machine-independent, its efficacy depends on the machine-dependent portion used to produce
the estimates.

This paper describes a retargetable instruction reorganizer, called Order, that implements
two optimizations, targeting [Leve79,Wulf75] and evaluation order determination. Targeting
makes use of the commutativity of many arithmetic and logical operators 1o avoid unneces-
sary loads and storest. Order has been integrated into PO, an existing peephole optimizer
[Davi80,Davi84al. In a mannper similar to this optimizer, Order operates on object code
instead of the conventional expression tree. Through this and by applying the straightfor-
ward evaluation order algorithm of Sethi and Ullman [Seth70], it is able to handle machine
features that complicate conventional implementations of evaluation order algorithms. Con-

sequently, for a given expression tree Order generates the optimal evaluation order.

By rearranging computations and instructions, Order can reduce the number of instruc-
tions and registers required to compile expressions. For some machines, this can reduce
both the size and execution speed of programs. By generalizing its operation, it can also be
used to reorder instructions to avoid delays in pipelined machines. For one such machine,
the execution speed of a set of benchmark programs was reduced substantially.

t™Many evaluation order algorithms handle targeting, but it is actually a separale optimization. The tech-
nigue presented here freats it separately from evaluation order opiimization.



2. Motivation

Emerging peephole optimizers have subsumed many of the code generation tasks conven-
tionally performed at a higher level [Davi84a,Davi84b, Fras82,Gieg83]. A major motivation
for performing as many optimizations as possible on object code is that this often provides
some relief from phase ordering problems caused by interdependence of the various phases
of a compiler. For example, in most compilers common subexpressions are eliminated in
early phases that operate on a machine-independent representation of the program. They do
so to simplify their implementation and to remain machine-independent. During the code
generation phase when the intermediate code is translated to machine code, it is possible
that new common subexpressions will be introduced. By performing common subexpression
elimination on object code, all common subexpressions are detected and the interdependence
between an early and later phase of compilation is removed. A similar situation exists
when register assignment js performed early in the compilation process as opposed to later.
Removing such interdependencies usually results in the generation of better code.

A second advantage to operating on object code is that many optimizations reguire some
knowledge of the target machine even when they are applied to a machine-independent
representation. Targeting and evaluation order determination are two optimizations in this
class. In the case of evaluation order determination, the algorithm is applied to expression
trees, yet knowledge of the target machine is necessary 10 estimate the resources required to
generate code for the expression trees. Typically such optimizations are performed at a
higher level by isolating the machine-dependent information in separate modules. 'The
amount of target machine information that these modules can contain is necessarily limited.
This lack of information can limit the power of the optimization. When this type of
optimization is performed on object code, however, the complete knowledge of the target
machine allows the full power of the optimization to be realized.

Accordingly, Order was designed with the following goals in mind.

1. It should fit nicely into the PO model of compilation. In particular, it should

operate on register transfers in a manner similar to the other phases of PO.
2. 1t shouid use the theory provided by the Sethi-Ullman algorithm [Seth70]

3. It should be easily retargeted for a new machine. Retargeting should require no

more than a days effort.

4. It should provide good improvements in performance at litile or no cost.

3. PO

The PO optimizer is made up of three distinct phases called Cacher, Combiner, and
Assigner. Bach phase operates on register transfer lists (RTLs) which describe -an
instruction’s effect. Any RTL is machine specific, but the form of the RTL is machine
independent. Briefly, Cacher performs common subexpression elimination, allocates registers,



does a limited type of flow analysis, and identifies dead variables. Combiner advances over
Cacher’'s output seeking adjacent instructions that can be replaced with singletons. Once
optimization is complete, Assigner does register assignment and translates the RTLs to
assembly language. Other documents offer a more complete treatment of Cacher and
Assigner [Davi84bl, and PO [Davi84a].

4. Order

Order is integrated into the Combiner phase of PO. It performs targeting while Com-
biner operates, and evaluation order determination after Combiner has completed its optimi-
zation.

While Combiner is usually described as operating on a linear ordering of RTLs, it actu-
ally processes a tree that was created by the flow analysis of Cacher. Thege trees are
referred to as R-trees because the nodes are the records that contain the RTLs and the
dead-variable list. Below is an example of a R-tree for a simple register machine for the
expression:

og=f(ac+b) ¥ {¢c »d+exf)

m{a] = r[11; («7[1D

r[1] = 1] ¢ r[2}; (r[2])

rf1] = r[11F m[b]; ri2] = 2} + r[3]; (r[3D)
r[1] = m[el; r{2] = ri2] = mid]; t[3] = r[3] *» mif]};
riz] = mie]}; r[3] = mfe];

The registers (e.g. r[2]) in parentheses denote the dead variables.

The R-tree for an expression is very similar to the expression trees used to perform con-
ventional evaluation order determination. Indeed, the simple algorithm involving a bottom-
to-top tree walk for finding the optimal evaluation order can be easily applied to R-trees.
There is one important difference. This algorithm requires that each node be labeled with
the cost to compute it. Usually the cost associated with a subtree is either the number of
registers required to evalvate it, or the number of instructions it confains. By processing
R-trees it is now possible to determine the exact cost of evaluating a subtree. The labeling
algorithm can handle machine idiosyncrasies such as requiring multiplication and division to
be performed in even/odd register pairs, exotic addressing modes, and different register
classes. There is no need for heuristics or estimation functions.
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Order implements both targeting and evaluation order determination by computing the
cost of evaluating an expression’s R-tree. For targeting the cost is computed by performing
a trial optimization to determine whether a child instruction can be combined with its
parent. The cost of a node is the number of children that can combine with it. Deter-
mining whether one instruction can combine with another is a relatively expensive operation.
Fortunately to achieve targeting this cost need only be computed for subtrees where the
root contains a commutative operation. For evaluation order determination, the cost is the
number of registers required to evaluate the subtrees. In a later section, it is shown that
by changing the criterion for optimality that it is possible to have Order find code
sequences that are good for pipelined machines.

4.1 Targeting

Targeting or renaming [Scha76] is an optimization that is useful on one-address and
two-address general register architectures. It makes use of the commutativity of arithmetic
and logical operators to avoid unnecessary loads and stores. It is also useful on three-
address machines, like the VAX-11/780, where cheaper two-address insiructions variants are
also available. For a true three-address machine, like many of the CDC Cyber architec-
tures, targeting is less useful.

Consider the following simple expression:

pt = x + {z - s8)

The R-tree for this expression on the PDP-11 with the cost of each node computed is:

mfpt} = r[13}; (r[13]).Cost{®)

r[13] = r[13} + rf11]; (r{11]).Cost(®)

r[13] = r[12]; (rT12]).Cost(1) r{11] = rf11] -~ F[158]; {r[15]).Cost(1)
r[12] = m{x]; rit1] = r[t4]; (r[14]).Cost(1) rf158] = mi{s};
r{14] = m[z];

The code generator assumes an infinite supply of registers. Assigner maps references to
nonexistent pseudo-registers (like r{13]) onto the machine's real registers. This is a common
technique for simplifying code generation [Chai81]. In addition, all values were formed in
new registers so that each value was available during common subexpression elimination
[Davi84b]. Any unnecessary register moves will be removed by Combiner/Assigner.

For the above example, when no targeting is performed, Combiner/Assigner produces the
following code:



mov X, 2

mov z,r3
sub s,r3
add rd,r2
mov r2,pt

This sequence has five instructions and uses two registers. The optimal sequence has
four instructions and uses one register.

Order achieves targeting in the following way. It locates instructions that perform com-
mutative operations that have two descendants. This identifies subtrees that are eligible for
targeting. It then produces a revised subtree where the instruction copying the value from
the left subtree is inserted in the right subtree rewriting it so that it copies the value pro-
duced by the original right subtree. It then rewrites the commutative instruction so that
the source operand is taken from the left subiree. The costs of the original and revised
subtrees are computed and compared. If the original subtree has a higher cost it is
retained, otherwise it is replaced by the revised subtree.}

This operation is similar to the “flipping” operation performed by the Sethi-Ullman algo-
rithm. Order must perform targeting early so that Combiner’s ability to choose the best
addressing modes and instructions can be applied to the transformed code.

In the above example, the instruction that performs the addition is a candidate for tar-
geting. The revised subtree has a cost of one so Order transforms the R-tree to:

mipt] = r[13]; (r[13]).Cost(@)}

r[13] = r[13] 4+ r[32]; (r[12]}.Cost(1)

r[12] = d]x]; r{13] = r17]; (r{11]).Cost(8)

r{11] = r[11] - r[15]; (r[158]).Cost{1)
r[11] = r[14]; (r[14])}.Cost(1)} t[15] = mis];

rf14} = m[z];

Combiner/Assigner reduces this to:

mov P o |
sub 8,11
add x,Tr1
mov r1,pt

which is the optimal four instruction sequence that uses one register.

+A higher cost implies fewer instructions in the resulting code.



For a three-address machine like the VAX-11, the code generator always emits three-
address code to avoid destroying any values. For these machines, Order rewrites the com-
mutative instruction so that the operand with the higher cost is first. Later phases of
optimization will transform the imstruction to the cheaper two-address variant if possible.

4.2 Evaluation Qrder Determination

After Combiner has processed the R-trees, Order computes the number of registers needed
to evaluate each node. By computing the number of registers at this point in the compila-
tion process, Order is able to determine the exact number of registers required for each

subiree.

The algorithm for computing the number of registers required to evaluate a node of a

R-tree is:
struct node }
char =rtf; /% register tronsfer list =/
char =deads; /* dead voriable tist %/
struct node »descendents[MAXDESCEND]; /% pointers to descendents =/
int cost; /* cost to compute node x/

b :
int cost(n)
struct node #n;

int rusage{), i, max{};

n—>cost = rusage(n);

for {i = @; n->descendents[i] I= NULL; i++) /* evaelucte subtrees if any »/
n->eost = max{n->cost, cost{n—->descendents[i]));

return{n-»cost);

§

rusage computes, for a given RTL and dead-variable list, the exact number of registers used
by the node. It is necessary to process the dead-variable list as well as the RTL because
some instructions change registers not explicitly appearing in the RTL. The code generator
places such registers on the dead-variable list.

To minimize register usage, Order outputs the subtrees whose register usage is the highest
first. Consider the expression

a=(a+b) « {c xd+exf)

The R-tree produced by Combiner for the VAX-11/780 is:

mio} = r[28] » r{33); (rf26],r[33]) Cost(2)

r[26} = m[a] + mIbl; Cost(1) r{33} = r[33] + T[4e]);: (r[4e]) Cost(2)

r[33] = m{c] » mid]; Cost(1)

r{40] = mle] = m[f]; Cost(1)



The straightforward postorder walk of the R-tree yields the following code:

addi3d b,a,r2
mubld d,c,rd
mulld f,e,r4
addiZz  r4,r3
muild r3,r2,0
whick uses three registers. By processing the subirees with the highest register usage first,

the following code is obtained:

mull3 d,c,r2
mull3 f,e,r3
addi2 r3,r2

add!3 b,o,r3
mutid r2,r3,a

which is the optimal code that uses two registers. !

Conventional compilers perform evaluation order early because they must do so to gen-
erate intermediate code. Without knowledge of the machine, evaluation order determination
must rely on heuristics to determine the cost of evaluating the subtrees. The problem is
further compounded as code generation and optimization may make substantial transforma-
tions to the code. By performing evaluation order determination on object code after code

generation and optimization these problems are avoided.

4.3 Common Subexpressions

Cacher, the first phase of PO, can be directed to eliminate common subexpressions from
the object code. It is well known that optimal code generation in the presence of common
subexpressions is a difficult problem [Aho77a.Brun76]. Aho, Johnson, and Ullman [Aho77a]
present several approaches to this problem and analyze their worst-case behavior. The
approach used by Order was chosen not so much for the quality of the code generated
(although it seems to do reasonably well), but because it was easy to integrate into Order.

The approach, discussed by Waite [Wait76] and mentioned by Abo, Johnson and Ullman
[Aho77al, is to convert the DAG representing the computation to a forest of R-trees that
can then be processed in the proper order by the previous algorithm. Because information
about sharing has been lost, it is not possible to guarantee optimal code.

5. Instruction Scheduling

By generalizing its operation, Order can also be used to reorganize code to avoid delays
in pipelined machines, a technigue sometimes called instruction scheduling. Rymarczyk
[Ryma82] describes and classifies possible sources of pipeline delays. For a pipelined
machine, Order evaluates the subtrees of a R-tree node to defermine which would delay the
evaluation of the node the longest. It outputs this subtree first, which has the effect of
moving the code for that subtree away from the instruction it delays.

By only rearranging the order of evaluation of the descendents of a node, Order remains
simple, yet it may miss opportunities for avoiding delays. A more thorough technique for



optimizing pipelined code is described by Hennessy and Gross [Henn83]. We are investigat-
ing incorporating a modified version of their algorithm in Order. Nonetheless, Order’s sim-~
ple algorithm is quite effective. For the Prime 9950, a general-register machine with a
five-stage pipeline, Order reduced the execution speed of a C [Kern78] benchmark program
that calls a character string to integer conversion routine 30000 times from 7.9 seconds to
7.4 seconds — a 6.7 percent improvement in execution speed. For a matrix multiplication
program, the improvement was 10 percent.

6. Implementation

Order is written in C and is integrated into the Combiner phase of PO. PO runs under
most implementations of UNIX. The machine-independent portion of Order is approximately
300 lines of code. It uses a negligible amount of processing time. Order is retargeted by
supplying a new cost function. For conventional machines, this requires specifying the
number of registers available and writing patterns that identify the registers. For pipelined
machines, the cost function is more difficult to write. It must identify and classify poten-
tial sources of conflicts between instructions. The pipeline delay cost function for the
Prime 9950 is 35 lines of code.

7. Performance

Order can significantly reduce the size of the object code. For a machine like the PDP-
11, with only 5 allocable registers, reductions come from two sources: fewer register spills
and fewer register-to-register moves. Order evaluation determination reduces the number of
spills, while targeting eliminates unnecessary register-to-register moves. For one program on
the PDP-11, Order reduced the number of register spills from 5 to 1. When used to com-
pile a large body of C and Y [Hans81] test programs it reduced the number of lines of
code produced by two to six percent.

Even for machines with a large register set, where register spills are rare, Order can still
provide savings. Consider the standard calling convention on the VAX-11 [Digi81]. Regis-
ters RO and R1 are considered scratch registers. A called procedure may use R2 through
R11 provided it saves and restores them. These stores and loads can be a significant por-
tion of the call/return overhead [Lund75). By producing the oplimal evaluation order, most
expressions can be handled with just two registers — RO and R1. This means that no
registers must be saved. For one highly recursive program run on the VAX, this allowed
Order to reduced the execution speed by 5.3 percent. When run on a large set of C and Y
test programs, Order reduced the code size by two to three percent.

The above statistics on improvements underestimate Order’s effectiveness. A wversion of
Order was configured to reorder the code to mistarget operands and to maximize the register
usage. When the same set of test programs were compiled, the code produced was 15 to
20 percent larger than the optimized code for both the VAX and the PDP-11. This shows
that there are many opportunities for targeting and evaluation order determination, but the



naive code generalors used by the C and Y compilers do a reasonably good job of selecting
the correct code to emit.

8. Discussion

Conventional code generators perform evaluation order determination and targeting early,
before code generation. The conventional wisdom is that this simplifies implementation and
avoids machine dependence. Unfortunately, these optimizations reguire knowledge of the
target machine to operate. The limited knowledge of the target machine during the early
phases of compilation can limit the effectiveness of the optimization. Order shows that by
applying these optimizations to object code, where knowledge of the machine is complete,
that more thorough optimization is possible at a cost equivalent to operating on higher-level
representations. By performing these optimizations later, phase ordering problems encoun-
tered by many “early” optimizers may be avoided. By generalizing its operation. Order can
perform a limited form of instruction scheduling for pipelined machines. Work in progress
is adapting a more thorough algorithm for these machines. This is an important area of

research as many recent architectures are employing pipelining to improve performance.
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