
Path-Based Target Prediction for File System Prefetching

Brian S. White Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, VA 22903�

bsw9d,skadron � @cs.virginia.edu

�������
	�����

Prefetching is a well-known technique for mitigating the von
Neumann bottleneck. In its most rudimentary form, prefetch-
ing simplifies to sequential lookahead. Unfortunately, large
classes of applications exhibit file access patterns that are not
amenable to sequential prefetching.

More general purpose approaches often use models to de-
velop an appropriate prefetching strategy. Such models tend
to be large, thus preventing a kernel implementation which
would lead to user transparency and more efficient execu-
tion. This work applies the target cache approach of path-
based branch target prediction to file system prefetching to
combat these deficiencies. The feasibility and worth of such
a design are evaluated against a number of parallel applica-
tions popular in the scientific community.

��� � �
	����������� � �

Prefetching is a well-known technique for mitigating the von
Neumann bottleneck. In its most rudimentary form, prefetch-
ing simplifies to sequential lookahead. Since most files tend
to be accessed sequentially and in their entirety [1], this min-
imalist technique performs admirably in the common case.

Unfortunately, large classes of applications exhibit file
access patterns that are not amenable to sequential prefetch-
ing. In particular, applications from the database and scien-
tific communities often perform non-sequential, though reg-
ular, file access [17, 22]. escat [6] is an example of an
application utilizing strided access patterns and will be ex-
amined below in some detail. Such behavior is character-
istic of data sets which are partitioned amongst processors
so that the partitions may be processed independently of one
another, as in stencil algorithms [11].

A great deal of research has already addressed this I/O
bottleneck. The mismatch between the traditional Unix-like
I/O interface and the access patterns of parallel applications
have lead to a re-evaluation of file system interfaces [10, 15,
16]. These interfaces present a higher level of abstraction
than the traditional interface, thus facilitating the recognition
of access patterns and allowing effective prefetching.

Unfortunately, the above approaches require code be re-
written to utilize the specialized interfaces. Such a require-
ment leads to portability concerns and additional burden for
the application programmer. To address these issues, we
may turn to automatic, transparent prefetching. Such tech-
niques are completely transparent to the user and are embed-
ded completely within the file system.

The latency disparity between processing and memory
(and disk) access is evident at every level of the memory
hierarchy. At the instruction level, the architect must be
wary of branches which may destroy locality and lead to
instruction cache misses (thus resulting in access to slower
memory). Further, the processor often can not determine the
branch target for several stages after instruction fetch. Dur-
ing this interim, instructions may be fetched along a partic-
ular path (likely the follow-through path). When the branch
target is later determined, subsequent instructions may have
to be flushed, as they are not on the program’s control flow
path.

There is an analogy between branches and file system
requests. Waiting to determine the branch target until the
last possible cycle may equate to a penalty in terms of wasted
cycles while instructions are flushed. Similarly, demand I/O
requests require that the application stall until the I/O has
completed.

To avoid these penalties, computer architects have em-
ployed branch prediction and speculative execution. A branch
predictor is accessed before the branch target is calculated.
Instructions are then speculatively executed beginning at the
predicted address. If the prediction is incorrect, the specu-
lated instructions are later rolled back. However, if the pre-
diction is correct, the processor has gained a few cycles of
useful work (between the branch predictor access and the
branch target calculation).

Branch predictors spanning a range of complexities have
been proposed. Predictors for simple branches may be im-
plemented as caches, addressed by branch address, and yield-
ing ’Taken’ or ’Not Taken’ responses. Clearly, this simple
binary choice does not map well to block prefetching. At
any given point in a stream of I/O request, any block may
be accessed. Indirect branches, such as those resulting from



function pointer dereferencing, may exhibit such a range of
targets. Predictors for these type of branches are often orga-
nized as target caches, addressed by both the branch address
and some history of the last n branches. Instead of the binary
response of more simple predictors, target caches store the
actual target address of the branch.

This work applies the path-based indirect branch predic-
tion, described above, to prefetching, in the hopes of pre-
venting unnecessary blocking disk accesses. Instead of stor-
ing branch target addresses, the cache stores disk block ad-
dresses. Further, it is referenced by some representation of
the last n disk request addresses. In this manner, the predic-
tor automatically builds a model of the file access. Having
established a model, the predictor approximates following
a trace of accesses on that particular file. Such a predictor,
implemented within the file system, maintains the desirable
property of user transparency.

Section 2 highlights related work in the areas of prefetch-
ing and branch prediction. This section provides necessary
background knowledge on branch prediction and its poten-
tial significance to prefetching. Section 3 presents the de-
sign of the path-based prefetch engine, which is evaluated
through simulation in Section 4. Finally, Section 5 con-
cludes.

������� � � � ��� ��	
	
��� �� 	 ����� ������ ���
An optimal prefetching scheme has knowledge of all future
disk accesses. Unfortunately, acquiring such a trace a priori
is not possible. Nevertheless, applications may be able to
provide hints regarding future accesses at runtime. For ex-
ample, an application which reads a file in a strided fashion
may disclose this knowledge to a file system in order that it
make intelligent prefetching decisions. This concept forms
the basis of Patterson’s Transparent Informed Prefetching
(TIP) [18].

Inaccurate prefetching may actually hurt system perfor-
mance, since unneeded data may evict useful blocks from
the cache. To this end, TIP provides a unified approach to
caching and prefetching as advocated in [2]. Essentially, an
application is instrumented with disclosures to the file sys-
tem. The file system then evaluates the prefetching hint by
considering the accuracy of past hints, the cost of ejecting
blocks from the cache, and the opportunity cost of perform-
ing I/O [4].

Initial efforts required that the application be annotated
with disclosures. This places a burden on the programmer
and also requires source code availability. Automatic hint
generation via optimizing compilers would alleviate the for-
mer restriction [19].

A recent approach overcomes both obstacles by instru-
menting binaries [4]. Chang augments existing single-threaded
applications with a speculating thread, acting as a compan-
ion to the original application thread. The speculating thread

utilizes idle cycles, caused by the original thread’s stalling
for I/O, to speculatively execute past the blocking I/O. Upon
encountering subsequent I/O, the speculating thread issues
disclosure hints via the TIP mechanism. Some overhead is
required to ensure that the two threads remained synchro-
nized. Further, on a heavily loaded system, the low prior-
ity speculating thread may have little opportunity to execute.
Future work will apply this technique to multi-threaded ap-
plications.

Other related work consists of online generation of ac-
cess models. Vitter et al have applied data compression to
prefetching, and proven its optimality in restricted cases [7,
23]. This work characterizes a sequence of page addresses
as a stream of characters. The parse tree constructed from
the sequence is used to prefetch pages and is represented
by a probabilistic Finite State Machine or Markov source
[23]. Given a cache size of k, this approach prefetches the k
pages having the highest-probability edge assignments from
the current node. This amount of prefetching (and its im-
plications on the data cache) is alarming. It is unclear how
such an obtrusive mechanism would thrive in the presence
of multiple I/O threads, preceding at different rates. Each
page request updates the tree and resets the current node to
the root, where it is positioned by traversing the parse tree
given the sequence substring.

Data structure size is a concern with this approach. The
authors suggest using a 1st-order Markov predictor on a page
sequence representing the last n accesses [7]. Such a pre-
dictor creates a parse tree based on the last n accesses, but
considers only the most recent character in prefetching. The
price to pay for a more realistic, bounded size implementa-
tion is a simpler (and likely less effective) approach.

Kroeger and Long have also employed the data compres-
sion approach to prefetching, albeit at a higher level [13].
Each event in their sequence represents a file open call. They
perform whole-file caching and prefetch once the transition
from a current node reaches a threshold value.

Following in the use of probabilistic models, Madhyastha
calculates, via hidden Markov models, the probability distri-
bution function of accesses, given an observed sequence of
accesses [14]. The sequence is characterized at the granule
of a cache block.

Kotz proposes a two-level dynamic predictor which rec-
ognizes simple patterns [12]. Local predictors attempt to
classify patterns on a per-thread basis, while global predic-
tors examine the global reference history resulting from the
merger of local traces. For example, application threads may
access a file in a strided manner, allowing the file system
to prefetch at regular intervals. However, the agglomera-
tion of such requests may represent sequential access. The
local predictor assumes that all accesses are sequential and
prefetches according, unless it detects a strided access.



��� � � � � � 	 � ���� 	�� � ��  	 � � � ���� � �
Unconditional indirect branches have a potential for causing
serious performance degradation in microprocessors. Un-
like direct branches, a compiler or processor must determine
not whether the branch will be taken, but what it’s target
will be. This latter point is trivial for direct branches, as
they can have only one destination (other than the follow-
through). Traditional branch prediction selects one of the
two addresses based on knowledge of the current branch ad-
dress and possibly local or global history.

Unfortunately, the target of an indirect branch can not be
resolved via a simple binary decision. Instead, a target cache
is employed [5]. Such a structure records a speculative target
given (for example) a current branch address and a branch
history. Chang, Hao, and Patt describe two means of ad-
dressing the cache: branch history and path history [5]. The
branch history approach combines the branch address with
global pattern history of the preceding conditional branches.
Path history instead uses the target addresses of the last n
branches.

Hash conflicts in target caches are more likely to be in-
correct than in simpler BTBs, since they store actual target
addresses. To prevent interference, target cache entries may
be tagged (e.g. with the branch address). References to a
hash entry are only valid if the query has a matching tag [5].

The information intended to be encapsulated by the in-
dex, a branch address and global history, is significantly larger
than the index itself. [5, 8] propose intelligent hashing func-
tions which attempt to retain the largest amount of informa-
tion possible.

To avoid overly aggressive training, the target cache en-
tries generally utilize a 2-bit hysteresis counter [8]. This
counter is updated when the status of the prediction has been
determined.

�� � � ����� � � � �  	 ����� ������ ��� � ���

In examining the path-based prefetching approaches of the
previous section, the community’s concern with the poten-
tial size of the models is evident. Deriving a prefetch en-
gine from a target cache has the pleasant side effect of in-
troducing compactness and efficiency into the design. As a
primary goal, this work hopes to leverage the frugal imple-
mentation of a hardware-based target cache to provide an un-
obtrusive footprint capable of being wired in (kernel) mem-
ory. Further, we strive for a user-transparent mechanism that
prefetches effectively across a wide application domain.

As in the hardware approach, prefetching revolves around
the central target cache data structure, which is organized as
a collection of hash queues. Target cache entries are selected
from a free list or LRU list before being added to a hash
queue. Each entry has a target, a saturating (2-bit) counter, a
tag field, and hash queue maintenance pointers (i.e. next and
previous fields) and flags (i.e. valid and free). Unlike

the hardware target cache, we need not resort to an associa-
tive cache to combat hash conflicts. Instead, the target cache
supports fixed-depth hash chaining. This was done with the
realization that a software-based implementation provides
fewer execution time and complexity constraints, but also
in an effort to avoid arbitrary-length traversals of kernel data
structures.

For each open file, the kernel maintains a file structure
on a per-process basis. This structure has been augmented
for the purposes of implementing the path-based predictor.
Namely, each file structure contains a path history ’regis-
ter’, a prefetch window, and pointers within these structures.
Both windows wrap-around and are of fixed size (i.e. data
which have not been processed are not overwritten). Of par-
ticular importance is the lastn pointer (where n is the num-
ber of entries hashed to access the target cache), which ref-
erences the start of an n-length sequence in the path history
register. This pointer is considered invalid if the path history
register currently holds less than n elements. The path his-
tory register is twice as long as the number of entries needed
to access the target cache (i.e. 2n). In this way, the file
system maintains the last n non-speculative disk accesses
(referenced by start), followed by the last n speculative
disk accesses (represented by lastn). These pointers are
updated as appropriate on non-speculative and prefetching
disk reads. In using the path history register to index the tar-
get cache, we use the most recent n entries. In many cases,
these will correspond to speculative reads. While prefetch-
ing may be incorrect, entries are never added to the target
cache until they have been verified correct.

The prefetch engine speculatively updates the path his-
tory register and lastn pointers on each prefetch. On each
non-speculative read access, the file system compares the de-
manded block address against the head of the prefetch win-
dow. If there is a match, the pointers into the prefetch win-
dow are updated. Otherwise, the predictor has prefetched
a block not (immediately) needed. The prefetch window is
truncated and the path history register is ’rolled back’. That
is, lastn is reset to start. This action may seem overly
conservative. That is, a policy of penalizing the prefetch en-
gine for failing to predict the correct next address may be too
pessimistic. For example, if the prefetched block is needed
within a short interval, the target cache has likely made a
sound decision.

Having updated the prefetch window, and before updat-
ing the path history register, the file system addresses the
target cache. At this point, it has determined the validity of
the last prefetch. If the prediction was correct and the entry
exists in the cache, the corresponding target cache entry’s
saturating counter is incremented. If the entry does not ex-
ist, it is created. However, if the prediction was incorrect,
the target cache entry is decremented, and may be removed
from the cache if its saturating counter has reached zero.

At this point, the file system requests the demanded disk
block, updates the path history register, and invokes the prefetch



engine. The prefetch routine executes until it has exhausted
the number of empty entries in the prefetch window or it
can no longer intelligently predict a next block address. At
each iteration, the routine accesses the target cache using the
(speculatively updated) path history register. If the target
cache yields a valid target (i.e. a non-NULL entry whose
saturating counter has reached its median value), that target
is read asynchronously.

� ����� � 	 � � ��� ��� ����� � ������� � � �	� � � � ��� � � � ���

The path-based predictor was evaluated against a baseline
file system via simulation. In an attempt to verify the de-
sign, a diverse class of I/O-bound applications was selected.
The duration of their execution and the size of the data sets
would have presented a challenge for anything but a simula-
tion. Also, the number of parameters explored and number
still to be explored suggest a trace-driven evaluation.

The next subsection details the selected application traces.
Having developed an appreciation for their file access char-
acteristics, we will examine their effect on tuning the pre-
dictor. Finally, we will evaluate the predictor against the
baseline file system.

� � � �
��� � �  � ��� � �� 	��� � �
The following application traces were collected from the Uni-
versity of Illinois Pablo project [20] and the University of
Maryland [21]. The original traces represented parallel ap-
plications executing on numerous application nodes. In all
cases, a particular node was isolated and studied. In some
cases, one node’s I/O activity was focused predominantly
around one file. In order to concentrate on the particular ac-
cess pattern of interest, ’noise’ disk activity was elided.

The resultant traces represent a large class of access pat-
terns and applications. We describe them in the terminol-
ogy of [22] as single-scan, strided-scan, multi-scan, triangle-
scan, and oscillating-scan. These patterns are depicted in
Figure 1.

� � � � �
sar

The Synthetic Aperture Radar (sar) technique uses aircraft-
or satellite-mounted radar to bounce microwave signals off
the ground to produce image data [20]. The application
was originally traced on a 256-node Intel Paragon, using the
M UNIX iomode (i.e. each node has its own file pointer) of
the PFS file system [20].

The nodes are organized into groups determined by the
number of bands to be processed and the number of channels
within the band. As is typical of parallel applications, one
node reads initialization information and doles it out to other
nodes via asynchronous communication.

A particular node within a group, the collector node, is
responsible for reading a correction vector and transmitting
this data to other members of the group. Polarization data is

dealt out among the nodes in a group via the readers. Finally,
the collector node writes output data to a file [20].

Despite its characterization as a single-scan algorithm
[22], sar does not read the file in a strictly sequential man-
ner.

� � � � �
escat

escat is a parallel implementation of the Schwinger Mul-
tichannel Election Scattering method [20]. The particular
trace examined corresponds to trace pSMCbp-A from the
Pablo web site, executing on a 256-node Paragon. In this
version of the code, node 0 reads the data and broadcasts it
to subsequent nodes. The data is partitioned among nodes,
with each node accessing its particular sub-set via the PFS
(shared file pointer) M ASYNC mode. During the next phase,
all nodes read via the (shared file pointer) M RECORD mode
and subsequently forward their data to node 0, where it is
written [20]. This application reads data in a strided fashion.

� � � � �
hartree

The Hartree-Fock Code [20] is actually composed of three
separate programs, only one of which is I/O-intensive. This
program phase, pscf reads integrals and solves the corre-
sponding equations. In so doing, it performs multiple itera-
tions over the same file in a sequential fashion.

� � � � �
lu

lu performs LU decomposition on an out-of-core 8192 x
8192 double precision matrix using synchronousread()/write()
requests [21]. As it iteratively sweeps the matrix, it performs
a triangle scan on the file.

� � � � �
titan

titan is a parallel scientific database for remote-sensing
data. The application trace represents a series of queries run
against the database. As is evident from the plot, the applica-
tion exhibits the most randomized behavior of any examined
trace.

� � � � � � � � �
� � � �  � 	��	� � � � 	 � � ����� � ��� � ��� � �
� � ��� �����  � � � ��� �������  	 � � � ���� � �
As described thus far, the path-based predictor was com-
pletely ineffectual.

Two primary methods of encapsulating global history were
considered. The first approach stores the branch target ad-
dress of the last n accesses. sar and escat never reuse a
target cache entry. Keeping in mind that a target cache en-
try must be verified correct twice before it will be used in
prefetching, we would expect these two applications to gain
nothing from the path-based predictor. Indeed, all applica-
tions missed on nearly every data cache access.



0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 5 10 15 20 25 30

F
ile

 O
ffs

et

Request Number

(a) single-scan(sar)

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

0 5 10 15 20 25

F
ile

 O
ffs

et

Request Number

(b) strided-scan(escat)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 50 100 150 200 250 300 350 400

F
ile

 O
ffs

et

Request Number

(c) multi-scan(hartree)

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 1000 2000 3000 4000 5000 6000 7000 8000

F
ile

 O
ffs

et

Request Number

(d) triangle-scan(lu)

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

0 200 400 600 800 1000

F
ile

 O
ffs

et

Request Number

(e) oscillating-scan(titan)

Figure 1: Application Traces



The second approach seeks to abstract away superficial
differences within a file access sequence (e.g. disk block ad-
dresses) to uncover important similarities (e.g. a strided off-
set). Under this scheme, the offsets (or deltas) between con-
tiguous blocks are stored in the path history register, instead
of actual addresses. This was done in the hopes that the path
history register would act as a template, automatically recog-
nizing access patterns. For example, the path history register
����������� � � ����� would likely be a good indicator for the se-
quence �	����
������� � ��� or the sequence ��������������������� � ��� .
In this manner, it is possible to conserve target cache en-
tries by consolidating the sequences ������
������� � ���

and
��������������������� � ���

and a myriad of others into the one se-
quence ����������� � � ����� .

Unfortunately, the potential now exists for a great deal of
aliasing. To understand why, consider even the non-sequential
file patterns above contain a good deal of sequential access.
That is, the data points in Figure 1 represent calls to read()
(or some parallel read operation). However, as these appli-
cations access large chunks of data, individual reads tend to
be excessively large and span many disk blocks (sized 1024
in the simulation).

So, the sequential pattern occurs very frequently. If we
hash only against this sequence, the number of cache colli-
sions is intolerable. If we also hash against the current block
(branch) address, we revert to the situation of many distinct
cache entries representing the same semantic information.

There are two major problems brought to light above.
First, for realistic target cache sizes, we will quickly exhaust
all available resources by encoding redundant information.
Second, the target cache has a steep learning curve. Con-
sider a sequence of m sequential access, repeated for k it-
erations (somewhat analogous to hartree). If the current
block address (or some other uniquifier) is hashed with the
path history register, the target cache will not successfully
predict the obvious sequential read-ahead until the third iter-
ation through the loop (due to the hysteresis counter).

To overcome these obstacles, we turn to cascaded predic-
tors [9]. A cascaded predictor is a form of two-level predic-
tion, in which branch histories are first presented to a simple
first-stage predictor. Only when this predictor is incorrect or
fails to make a prediction, is the second-stage predictor in-
voked. Therefore, the presumably more valuable resources
of the second-stage predictor are only used when they are
absolutely required.

The first-stage predictor employed by the path-based pre-
dictor is simple indeed. This prediction routine simply looks
for a path history register representing a straight sequential
run. If it discovers such a run, it immediately predicts a se-
quential access. This prediction is not entered into the table;
there is no need as the first-stage predictor can easily recreate
the prediction. If the prediction later turns out to be incor-
rect, the corresponding path history register will be entered
into the target cache (since it will necessarily suggest a non-
sequential access).

Unlike the cascaded predictors of [9], the prefetch rou-
tine first accesses the target cache in making a prediction.
If the target cache has no valid target, the prediction routine
is invoked. Therefore, creating an entry for a sequential se-
quence whose target is non-sequential (as above), has the ef-
fect of blocking the first-stage predictor. Note, however, that
we explicitly avoid entering histories (and associated spec-
ulative targets) representing sequential runs into the target
cache (that is, sequential histories with a sequential target).

Performance improved markedly after making this sim-
ple change. It is assumed throughout the rest of the paper.

� � ��� � � � ��	 � ���
� ��� � � � � � 	 � � ��� ���� �
This subsection examines indexing into the target cache. As
mentioned above, the contents of the path history register
itself are of extreme importance. Having introduced the first-
level predictor, encoding the path history register with block
offsets rather than block addresses is clearly more attractive.
Further, this was borne out empirically.

However, as alluded to already, another value should likely
be hashed along with the path history register to avoid hash
collisions. Three candidates were examined: no additional
hashing (NONE in Figure 2), storing the target block ad-
dress corresponding to each offset in the path history register
and hashing against each of these in turn (ALL), or hashing
against only the most recent block address (CUR).

Since the hash function may interact with the path history
length in an unforeseen manner, the path length was varied
from 2 to 6. Further, for the time being, we do not want to
be constrained by a limited cache size. The target cache size
was set to a significantly large value so as to have no effect
on the simulation. The results are displayed in Figure 2.

All applications experienced the lowest number of cache
misses when using a path history register length of 3. This
is consistent with the literature [8].

For all applications save hartree, hashing against the
current block address yielded the best results. Subsequent
simulations assumed these two parameters.

� � ��� � � � 	 � � ��� ���� � � � � �
As stated, an important goal of this work is to minimize the
size of an prefetching implementation. To this end, the effect
of target cache size on cache misses was examined. 256-,
512-, 1024-, 2048-, and 4096-entry target caches were eval-
uated. There was a small increase in cache misses when us-
ing a 512-entry cache, and a similarly small increase when
using a 256-entry cache. A 1024-entry cache is assumed for
the rest of the experiments.

� � ��� � � � � � � � � � � � � � � ��� � � 	 � � ��� ���� �
To further reduce the possibility of cache collisions, we con-
sider using a tagged cache [5]. Once again, it appears that



NONE

ALL

CUR 2

3

4

5

6
20

25

30

35

40

45

Hash

Length

Misses

(a) sar

NONE

ALL

CUR 2

3

4

5

6
0

500

1000

1500

Hash

Length

Misses

(b) escat

NONE

ALL

CUR 2

3

4

5

6

4150

4160

4170

4180

4190

Hash
Length

Misses

(c) hartree

NONE

ALL

CUR 2

3

4

5

6130000

135000

140000

145000

150000

Hash

Length

Misses

(d) lu

NONE

ALL

CUR 2

3

4

5

6

2000

2500

3000

3500

4000

4500

Hash

Length

Misses

(e) titan

Figure 2: Varying Hash Function and Path History Length



varying this parameter in isolation would ignore its poten-
tial interaction with other parameters, namely the currently
posed method of avoiding collisions, hashing the current block
address (CUR). Therefore, the effects on cache misses were
studied while varying both of these parameters (Figure 3).
NONE refers to a tagless cache. OFFSET refers to tagging
the cache with the latest offset in the path history register.
ADDR refers to tagging the cache with the previously seen
block address.

The graphs for escat, lu, and titan have a surpris-
ingly similar structure and support both tagging the cache
and hashing with the latest block address. The sample space
for sar is so small that it is not worth considering. Further,
the differences in the plot of hartree are not as significant
as they appear. In fact, the data point selected by the first
three applications is only 30 cache misses from hartree’s
minimum value. Therefore, the cache is tagged with the cur-
rent block address and the path history register is hashed
against this same address.

� � ��� �  	 ����� ���� � � � ����� � � � �
Varying the prefetch window size from 2 to 6 had no effect
on the number of cache misses. This manifests one of the
simplicities of the simulation. The simulator always assumes
that there are sufficient I/O and data (cache block) resources
to prefetch. Therefore, the prefetch engine always remains
at least one access ahead of the blocking I/O calls (until an
invalid prefetch is detected). Therefore, there is no reason
that a prefetch window size any greater than one is necessary.

� � � � � � ��� � ����� � � � � � ��� � �
In order to evaluate the merits of the design of the path-based
predictor, a baseline file system simulator has been created
as a point of comparison. This simulator attempts to mimic
the Linux ext2 file system [3]. ext2 was selected because
its prefetching appears to be fairly representative of what we
would expect from a general-purpose file system. ext2 at-
tempts sequential read-ahead of a block when it determines
that recent accesses have been within a window of that block.

� � � ��� � � � ���
The comparison is presented in Table 1. For all five of the
applications surveyed, the path-based predictor performed
better. We would expect the path-based predictor to perform
significantly better on escat and sar since they exhibit
very regular, non-sequential access patterns. The path-based
predictor is able to recognize these patterns, while the base-
line file system is not. True to our goal, the path-based pre-
dictor performs well in the presence of a diverse set of file
access patterns. In fact, it performs better than the baseline
on hartree which exhibits mostly sequential access.

The results reported are in terms of (disk block) cache
misses. A cache miss was assigned only for synchronous

Trace Path-Based Predictor Baseline
sar 22 730
escat 570 1053

hartree 4172 4202
lu 140107 213170

titan 2092 7400

Table 1: Blocking I/O Cache Misses

I/O in which the requested disk block was not in the cache.
Asynchronous I/O (including the prefetching of both file sys-
tems) did not contribute to cache misses.

� � � �  � ���
� � � � � � � � � �
� 	 � � ��	
	

This work has shown the viability of using a small, path-
based predictor in prefetching file blocks. Key to maintain-
ing a minimal size is its use of offsets in the path history
register (over target addresses) and incorporation of the first-
level predictor. Further, a LRU replacement on the target
cache entries ensures that infrequently used predictors do not
pollute the cache.

This paper has shown through simulation the potential
merits of the path-based predictive approach. However, sev-
eral areas need to be addressed. In particular a more sophis-
ticated simulator is needed to evaluate the predictor. The
experiments enumerated above ignored the issue of block
cache size. In general, a unified VM/buffer cache approach
is required, as modern operating systems do not statically
enforce the size of the cache. More importantly, the knowl-
edge encapsulated in the target cache should be utilized in
making page replacement decisions as in [2, 18]. Further,
the prefetch engine should have a more sophisticated means
of throttling itself based on current I/O and processor load
and the potential cost of evicting a useful block. Such ef-
forts would be greatly aided by a realistic disk model.

The means of evaluating the trace runs were overly sim-
plistic. With a minimal effort it should be possible to deter-
mine a more meaningful metric than simply the number of
cache misses. As stated, this raw number is misleading since
the relative number of disk/memory addresses accessed by
the target cache or the baseline is unknown. Further, there
should be a penalty for accessing memory, or at least some
indication of it reflected in the simulation results. For exam-
ple, if one scheme has slightly fewer disk accesses, but many
more memory accesses, we might consider it inferior.

It would be curious to consider the interactions between
multiple processes and the target cache. For example, might
we consider having a per-process target cache? Should there
be a priority-based means of acquiring target cache entries
in the face of competition for them?

Finally, it would interesting to see how much the target
cache can be shrunk and still be of value.



NONE

ALL

CUR NONE

OFFSET

ADDR

14
15
16
17
18
19
20
21
22

Hash

Tag

Misses

(a) sar

NONE

ALL

CUR NONE

OFFSET

ADDR

100

200

300

400

500

600

700

800

Hash

Tag

Misses

(b) escat

NONE

ALL

CUR NONE

OFFSET

ADDR
4100

4150

4200

4250

4300

Hash

Tag

Misses

(c) hartree

NONE

ALL

CUR NONE

OFFSET

ADDR130000

135000

140000

145000

150000

Hash

Tag

Misses

(d) lu

NONE

ALL

CUR NONE

OFFSET

ADDR130000

135000

140000

145000

150000

Hash

Tag

Misses

(e) titan

Figure 3: Varying Hash Function and Tag



������� 	 ���  � �

[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer,
Ken W. Shirriff, and John K. Ousterhout. Measure-
ments of a distributed file system. In Proceedings of
the 13th ACM Symposium on Operating System Princi-
ples, pages 198–212, October 1991.

[2] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai
Li. A study of integrated prefetching and caching
strategies. In Proceedings of the 1995 ACM SIGMET-
RICS Conference on Measurement and Modeling of
Computer Systems, pages 188–196, Ottawa, Ontario,
Canada, 1995.

[3] Remy Card, Theodore Ts’o, and Stephen Tweedie.
Design and implementation of the second extended
filesystem. Linux Kernel Hacker’s Guide Discussion
Pages.

[4] Fay Chang and Garth A. Gibson. Automatic I/O gener-
ation through speculative execution. In Proceedings of
the 1999 Symposium on Operating Systems Design and
Implementation. USENIX Association, February 1999.

[5] Po-Yung Chang, Eric Hao, and Yale N. Patt. Target
prediction for indirect jumps. In ISCA ’97 Proceedings,
October 1997.

[6] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien,
and Daniel A. Reed. Input/output characteristics of
scalable parallel applications. In Proceedings of Super-
computing ’95, San Diego, CA, December 1995. IEEE
Computer Society Press.

[7] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott
Vitter. Practical prefetching via data compression. In
Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. ACM Press, 1993.

[8] Karel Driesen and Urs Holzle. Accurate indirect
branch prediction. In ISCA ’98 Proceedings, July 1998.

[9] Karel Driesen and Urs Holzle. The cascaded predictor:
Economical and adaptive branch target prediction. In
MICRO-31, Dallas, TX, December 1998.

[10] John F. Karpovich, Andrew S. Grimshaw, and James C.
French. Extensible file systems (ELFS): An object-
oriented approach to high performance file I/O. In Pro-
ceedings of the Ninth Annual Conference on Object-
Oriented Programming Systems, Languages, and Ap-
plications, pages 191–204, Portland, OR, October
1994. ACM Press.

[11] John F. Karpovich, Matthew Judd, W. Timothy Strayer,
and Andrew S. Grimshaw. A parallel object-oriented
framework for stencil algorithms. In Proceedings of the
Second IEEE International Symposium on High Per-
formance Distributed Computing, pages 34–41. IEEE
Computer Society Press, July 1993.

[12] David Kotz and Carla Schlatter Ellis. Practical
prefetching techniques for multiprocessor file sys-
tems. Journal of Distributed and Parallel Databases,
1(1):33–51, January 1993.

[13] Thomas M. Kroeger and Darrell D. E. Long. The case
for efficient file access pattern modeling. In Proceed-
ings of the 1996 USENIX Technical Conference, Jan-
uary 1996.

[14] Tara M. Madhyastha and Daniel A. Reed. Input/output
access pattern classification using hidden Markov mod-
els. In Proceedings of the Fifth Workshop on In-
put/Output in Parallel and Distributed Systems, pages
57–67, San Jose, CA, November 1997. ACM Press.

[15] MPI-2: Extensions to the message-passing interface.
The MPI Forum, July 1997.

[16] Nils Nieuwejaar and David Kotz. Low-level interfaces
for high-level parallel I/O. In Ravi Jain, John Werth,
and James C. Browne, editors, Input/Output in Parallel
and Distributed Computer Systems, volume 362 of The
Kluwer International Series in Engineering and Com-
puter Science, chapter 9, pages 205–223. Kluwer Aca-
demic Publishers, 1996.

[17] Nils Nieuwejaar, David Kotz, Apratim Purakayastha,
Carla Schlatter Ellis, and Michael Best. File-access
characteristics of parallel scientific workloads. IEEE
Transactions on Parallel and Distributed Systems,
7(10):1075–1089, October 1996.

[18] R. Hugo Patterson, Garth A. Gibson, Eka Ginting,
Daniel Stodolsky, and Jim Zelenka. Informed prefetch-
ing and caching. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pages
79–95, Copper Mountain, CO, December 1995. ACM
Press.

[19] R. Hugo Patterson, Garth A. Gibson, and M. Satya-
narayanan. A status report on research in transparent
informed prefetching. ACM Operating Systems Re-
view, 27(2):21–34, April 1993.

[20] Daniel Reed. Pablo project experimental performance
data. www-pablo.cs.uiuc.edu/Data/analyses.htm.

[21] Mustafa Uysal, Anurag Acharya, and Joel Saltz. Mary-
land applications for measurement and benchmarking
of i/o on parallel computers.
www.cs.umd.edu/projects/hpsl/mambo/index.html.

[22] Mustafa Uysal, Anurag Acharya, and Joel Saltz. Re-
quirements of i/o systems for parallel machines: An
application-driven study. Technical Report CS-TR-
3802, University of Maryland, College Park, May
1997.



[23] Jeffrey Scott Vitter and P. Krishnan. Optimal prefetch-
ing via data compression. In Foundations of Computer
Science, pages 121–130, 1991.


