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Abstract

A real-time database system has timing constraints associated with transactions and the
database. To ensure that such a system completes as many transactions as possible without violat-
ing their timing constraints, its scheduling strategy should be dynamic and use information about
the timing constraints associated with transactions and the database. Ideally, to enhance the pred-
ictability of the system; such a scheduling strategy should be used in all situations where there is
resource contention. This paper describes an intelligent dynamic scheduling strategy for schedul-
ing transactions in real-time database systems. The scheduling strategy uses timing information
about transactions and the database to enhance the system’s ability to meet transaction deadlines.
The performance of the scheduling strategy is tested by using it in a simulated pulse detection

system.
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1. Introduction

1.1. What are Real-time Database Systems?

Real-time database Sysiems arc database systems that support real-time computing. Real-
time computing is that type of computing where the correciness of the system’s response depends
not only on the logical result of the computation, but also on the time at which the results are pro-
duced [Stan88A]. The timing constraint on the system’s response is called deadline. Traditional
real-time systems have concentrated on systems which have hard deadlines. 1f a system misses a
hard deadline, the consequences can be disastrous. On the other hand, if the system misses a soft
deadline, there may still be some value for computing the response of the system. Real-time sys-
tems are assuming an increasingly important role in our society. Examples of current real-time
computing systems are command and control sysiems, aircraft avionics, robotics, network

management, and program trading.

Most of the complex real-time computing applications need to access large amount of data.
Thus, we need database systems which are cognizant of the requirements of real-time computing,
ie. real-time database systems. Transactions in a real-time database systems are required to do
operations on the database, like read, write, insert and delete, subject to timing constraints. An
example of a real-time database system is a pulse detection system. A pulse detection system is
used to track objects using radars. The information about objects in reality is maintained in a
database of emitter files. Typically, a pulse detection system COnSists of simultaneously active
transactions, with different timing constraints and resource requirements, which read and update

the database of emitter files.

1.2. Comparison with Conventional Real-time Systems and Database Systems

A real-time database system has similarities as well as differences with conventional real-

time systems and database systems.



The following are the similarities between real-time database systems and conventional
database systems. First, both systems process transactions which access data items according 10
the consistency constraints of the database. Second, both systems have ansactions with com-

plex and unpredictable data requirements.

The following are the differences between real-time database Sysiems and conventional
database systems. First, transactions in conventional database SyStems have no timing con-
straints. The goal of conventional database systems is to reduce the average response time of the
transactions being processed rather than trying to satisfy the timing constraint of individual tran-
sactions. Second, the consistency constraints that exist in conventional database sysiems are

strict serializability constraints which are not always needed in real-time database systems.

The similarity between real-time database systems and conventional real-time systems is

that both systems process entities (tasks and transactions) which have timing constraints.

The following are the differences between real-ime database Systems and conventional
real-time systems. First, tasks in conventional real-time systems have hard deadlines whereas
transactions in real-time database systems can have soft deadlines. Second, data in conventional
real-time systems normally do not have consistency constraints. Third, tasks in a conventional

real-time system have simple and predictable data of resource requirernents.

1.3, Validity Constraints

Deadlines are timing constraints associated with transactions. There exist another kind of
timing constraints which are associated with transactions and data objects in the database. In a
database, there may be some data objects which get old or out-of-date if they are not updated
within a certain period of time. To quantify this notion of age we associate with each data object
a degree of validity which decreases with time. The validity curve associated with each data
object is a plot of the degree of validity of the data object with respect to the time elapsed after

the object was last modified. Fig. 1 shows an example validity curve for data objects.
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Fig. 1. Validity curve

If w is the time of last modification of a data object and t is the current time, we can calcu-
1ate the validity of the data object at time t from its validity curve. Now, a transaction may require
all the data objects it reads to have a minimum degree of validity. This constraint could be either
hard or soft, like deadlines. Scheduling decisions could be made more intelligent by incorporating

this validity information about transactions and data objects they read.

1.4. Scheduling Problem in Real-Time Database Systems

Scheduling theory is used in widely different areas like general computer systems, opera-
tions research, real-time systems, database systems, and finally, real-time database systems. The

common aspects about scheduling in all the above disciplines are:
. there is a scarce resource

e there is more than one entity wishing to use the resource.



e the scheduling decision is choosing the entity 10 which the resource should be granted next.

This is the most general and abstract description of the scheduling problem. The scheduling
problem is made more specific 1o the application depending on the characteristics of the resource,
characteristics of the entities using the resource and the way the scheduling decision is made.
The resource could be preemptible of non-preemptible. The entity to be scheduled could be a
task or a transaction. The scheduling decision could be made with the aim of optimizing some

performance metric with regard to ceriain resource and/or timing constraints.

In operations research scheduling problems, there is a fixed system having completely
specified and static service characteristics. The goal is to find optimal static schedules which

minimize the response time for a given task set [Stan88AL

In database systems, & scheduler accepts database operations from transactions and
schedules them appropriately for the data manager [Bern87]. In conventional database Systems,
the scheduler is entrusted with the task of enforcing serializability constraints of the database. In
this case, the resoufct is a data item, the entity to be scheduled is a database operation and the

scheduling decision is made according to the consistency constraints of the database.

In normal operating Systems, there are tasks waiting for resources like the CPU or the /O
processor. The scheduling decision can be made according to well known scheduling algorithms

like priority based scheduling or round robin scheduling.

In real-time systems, there exist tasks contending for scarce resources. But, unlike the
above disciplines, the entities to be scheduled (tasks) have timing constraints (deadlines). There is

generally no incentive to minimize the response time other than meeting deadlines.

In real-time database Syst€ms, transactions which have timing constraints contend for
gearce resources. But, the scheduling strategies devised for conventional database systems OF
real-time systems cannot be applied 1o real-time database systems because of the differences that

exist between them (see section 1.2). In real-time database systems, it is necessary to take into




account the timing constraints associated with the transactions as well as the consistency con-

straints associated with the database while making scheduling decisions.

1.5. Static versus Dynamic Scheduling

It is possible to statically guarantee real-time constraints by pre-calculating all possible
schedules of transactions off-line. There are two reasons why this approach is infeasible
[Stan88B]. First, the task of finding all possible schedules of transactions is NP hard. Therefore,
the task becomes computationally intractable when there are a large number of simultaneously
active transactions. Second, the demands on a real-time database system can change frequently.
For example, aperiodic transactions, by their very nature, can be activated at unpredictable times.
Therefore, a dynamic scheduling strategy is needed to make the system more flexible. Also, to
make "intelligent” scheduling decisions, the scheduling strategy should use as much timing infor-

mation as possible about transactions and the data objects they access.

A scheduler in database systems accepts database operations from (ransactions and
schedules them appropriately for the data manager [Bern87]. In a distributed system, each site has
its own scheduler which can receive database operations from transaction managers at different
sites. In conventional database systems, the scheduler is entrusted with the task of enforcing the
serializability constraints. In real- time database systems, it is also necessary to take into account
the timing constraints associated with the transactions and the database while making scheduling

decisions.

However, to guarantee real-time constraints, it may be insufficient to use the extra informa-
tion about transactions only while scheduling database operations. This is because transactions
interact with the operating system and the 1/O subsystem in extremely unpredictable ways. For
example, we have no control over the way the scheduling decisions are made for scarce resources
at the operating system level. Therefore, to improve the predictability of real-time database sys-

tems, i.e., to enhance the guarantee of meeting'real-time constraints, we should use the additional



information about transactions to make scheduling decisions at all places where more than one
transactions try to use (or access) a scarce resource. This scarce resource could be the CPU, a data

object, or the communications subsystem.

2. The Scheduling Algorithm

In this section, we describe a dynamic scheduling strategy for transactions in real-time data-
base systems. The scheduling strategy uscs timing and validity information about transactions
and data objects to calculate dynamic priorities of transactions. These priorities are then used to

make scheduling decisions at all places where transactions contend for scarce resources.

2.1. Information required for intelligent scheduling

This section discusses the nature of information about wransactions required by the schedul-

ing strategy and a way to represent it.
A transaction can be represented as a wple (SP, RS, WS, A, D,E, MV). The elements of the
tuple are described below.
(1) System priority (SP):
This is the static component of the dynamic prionity associated with a transaction. It is a
measure of the value 10 the system of completing the transaction within its timing con-
straints. For example, transactions dealing with emergency situations should have a higher
priority than routine transactions.
(2) Read set RS
This is the set of data objects which the transaction reads.
(3) Write set (WS)

"This is the set of data objects which the transaction writes.



{4) Arrival time (A):
This is the time at which the transaction arrives in the system,
{5) Deadline (DY
This is the time before which the transaction has to finish its execution. The transaction

specifies whether the deadline is hard or soft.

(6) Runtime estimate (E):
This is the estimate of the processing time required by a transaction. This includes the time

required for CPU as well as I/O operations.

(7 Minimum Validity(V ., ):
This is the minimum degree of validity required of all objects read by the transaction. The

transaction specifies whether this validity constraint is hard or soft.

The above information about the transaction is available to the system before the transac-
tion is started and remains constant throughout the transaction execution. Since the scheduling
strategy is dynamic, it needs information about the transaction which varies with time. The infor-

mation which varies with time is described below.

(8) Read set validity(RSV):
This is the degree of validity of data objects in the transaction’s read set, The degree of vali-
dity of a data object can be calculated from its validity curve. The validity curve of a data
object defines a function of the degree of validity of the data object with respect to the time
elapsed after the data object was last modified. Therefore, if we know the time the object
was last modified, we can calculate the degree of validity of the data object at the current

time from the validity curve.
(9) Processing time(P):
This is the processing time already received by a transaction. This includes the time

required for CPU as well as I/O operations.



(10) Current time(C):

This is the time at which the scheduling decision is made.
2.2. Scheduling design issues

Before implementing any scheduling strategy, it is important 10 consider the overbead it
requires. Obviously, a complicated scheduling strategy requires more time. This factor can be
crucial in deciding whether it is of any practical benefit 1o use the extra information about tran-

sactions and the database in the scheduling strategy.

For instance, if the database is disk-resident and the transactions are 1/O intensive, the time
required for /O operations would be large compared to the time required for doing CPU opera-
tions. In that case, it would not make a big difference whether or not we use a complicated
scheduling policy at the CPU level. The bottiencck in this case would be the data objects and it
would be imperative 10 schedule the database operations in an intelligent way. But if the database
is memory resident and the transactions are CPU intensive then it would become necessary 1o use
the extra information about transactions in the scheduling decision at the CPU level. Given below
is a scenario which illustrates a situation where an intelligent scheduling strategy at the CpU

level would be helpful.

Assume that transactions execute CPU and /O instructions alternately. Let the time
required for one session of CPU computation be 10 time units and the time required for one |118)
operation be 2 time units (if there is no blocking). Let the transactions to be scheduled (7 and
T,) have the characteristics given below. This situation can arise if both Ty and T2 wait for some
other transaction to release a data object. The transaction releases the data object at time 5. Thus,

the scheduling decision has 10 be made at time 5.

Transaction Arrival ime | Estimate Deadline (Hard) Operations

T, 0 12 30 read(1)
T, 5 12 20 read(1)




According to an elementary FCFS scheduling strategy. T, is scheduled first and it com-
pletes at time 12. T, starts at time 10, but since it requires 12 time units to complete, it misses its

deadline at time 20, (As shown inn Fig. 2.1)

If the system is intelligent enough t© follow the elaboraie scheduling strategy t0 be dis-
cussed in Section 4, T, would be scheduled first. (According to the least slack method of assign-
ing priorities, T, has a higher priority than T,. because the slack of T5 is less than the slack of

T4.) Inthat case both transactions would meet their deadlines as shown in Fig. 2.2.

An issue involved in designing a scheduling strategy is whether or not to allow preemption.
The scheduling decision at the CPU level normally allows preemption. However, if we allow
preemption at the data object level, we may have to abort the preempted transaction for maintain-
ing consistency of the database. The general problem descriptions for the two cases without hav-

ing a particular resource type in mind, are a8 the following:

Case 1. No preemption.

There are more than one transactions requesting a resource and we have 10 decide the tran-

T1(/0)
T1(CPU) T2(CPU)
5 15 17 20
Tl T2 misses
completes its deadline

Fig. 2.1 FCFS Scheduling



T2(1/0) T1({/O)
T2ACPU) T1(CPU)
15 17 25 27
T2 T1
completes completes

Fig. 2.2 Intelligent Scheduling

saction which should be granied the resource. Once a transaction gets the resource it runs

till it finishes using the resource.

Case 2. Allow preemption.
There is a transaction currently holding a resource and there is a transaciion requesting the

same resource. We have t0 decide whether or not to preempt the {ransaction holding the

resource and grant the resource to the transaction requesting it.

When preemption is not allowed, the scheduling decision has to be made whenever a tran-
saction relinquishes a resource of when a transaction requests a resource which is not being used.
When preemption is allowed the scheduling decision has to be made whenever a transaction

either requests or relinquishes a resource.

2.3. Real-time Database Scheduler

The scheduling strategy for transactions in real-time database systems can be decomposed

into three sub-parts [Abbo88], [Abbo89]:

10



(1) Determining eligibility
(2) Assigning dynamic priorities
(3) Making the final scheduling decision of granting the resource.

In this section we discuss each of these sub-parts in detail,

2.3.1. Determining eligibility

Before making a scheduling decision we have 10 decide whether the transactions involved
are eligible for scheduling i.e. whether it is of any use to the system to start processing those tran-

sactions. If a transaction is ineligible for scheduling we abort it immediately.

We assume that, if a transaction misses a hard deadline, it is ineligible for scheduling and
should be aborted. If a transaction misses a soft deadline, it is still eligible for scheduling. We

also check whether it is possible for the transaction to finish before its deadline:

(deadline - current time ) = (Estimate - Processing time received)
ie. [O-T)z2E-P

If it is not possible, and the deadline in question is hard, we consider the transaction ineligible for

scheduling. However, if the deadline is soft, the transaction remains eligible for scheduling,

The steps taken in incorporating validity constraints are similar to those taken for deadlines.
If a transaction misses a hard validity constraint then it is ineligible for scheduling and should be
aborted. If the validity constraint missed is soft, then we continue executing the transaction at a
different priority, We also check, for each data itern read by the transaction, whether its degree of

validity is greater than the minimum validity level expected by the transaction:

For all data objects d read by the transaction, V(T ) > V pin
where, V,4(T) is the degree of validity of object d at time T

If that is not the case, and the validity constraint of the transaction is hard, we consider the

transaction ineligible for scheduling. However, if the validity constraint is soft, the transaction

11



remains eligible for scheduling,

2.3.2. Assigning dynamic priorities

The dynamic priority of a transaction is a number calculated by the scheduler while making
the scheduling decision. It is a measure of the importance, to the over-all goals of the system, of
scheduling that transaction before others at that point in time [Stra89]. Since this measure may
change with time, it has to be calculated dynamically every time two transactions are compared

during the scheduling decision making process.
Dynamic priority (DP) is a weighted sum of the following factors:
(1) System priority (SP): It is the static component of dynamic priority.
(2) Slack with respect to deadline (SDL): It is the amount of time the transaction can be

delayed and still meet its deadline. It is calculated as follows:

Slack = Deadline - Current time - (Estimate - Processing time)
SDL=D-T-(E-P)

(3) Slack with respect to minimum validity constraints (SV): It is the amount of time the tran-

saction can be delayed and still be completed without violating its validity constraints.

SV =Min { t 1 For all data objects d read by the transaction, V(T +t)
> Vmin }

where, V(T + t) is the degree of validity of object d at time (T + t),

assuming no updates between time T and (T + 1).

Dynamic Priority (DP) is calculated as follows:

DP:EDPI +DP2+DP3

where,

DP{ =W, *5P
DP,:=W, * SDL
DP4 = W3 * 8V

12



The factors involved in determining the dynamic priority of a transaction have constraints
closely related to the characteristics of real- time transactions. First, W, > 0, since if SP
increases, DP should increase. Also, if SDL > 0 then Wy < 0, since if SDL decreases then DP
should increase. If SDL < 0, then the transaction has already missed its deadline. Note that since
the transaction is stili eligible for scheduling, the deadline missed must have been soft. At this
point, there are two options available to us, We could reason as follows: Since the transaction has
missed its deadline (soft), it should be finished as soon as possible, and hence its priority must be
increased. In that case, W, < 0. However, we might reason that since the transaction has already
missed its deadline, its priority should be reduced so that it does not interfere with other transac-
tions in the system which are nearing their deadlines. In that case, W, > 0. Similar discussion

applies to W5 and SV.

The relative values of W, W, W4 depend on the high level goals of the system. For exam-
ple, some systems may aim at minimizing the number of transactions that miss their deadline, in
which case W, would not be very high. Some systems might require that absolutely none of the

higher priority transactions be aborted, in which case W would very high.

Given below is a scenario which illustrates that a scheduling strategy at the CPU level tak-
ing validity constraints into account does prevent unnecessary aborts of transactions. Assume that
transactions use the CPU and do I/O operations alternately. Let the time required for one session
of CPU computation be 10 time units and the time required for one I/O operation be 2 time units

(if there is no blocking). Let the transactions o be scheduled (T'; and T'5) have the characteristics

given below.
Transaction | Arrival | Estimate | Deadline | Minimum Validity | Operations
time (Hard) (Hard)
T, 0 12 30 100% read(1)
T, 0 i2 25 50% read(1)

13



Let the validity curve for object 1 be as shown in Fig. 2.3, and the time it was last modified
be 0. Let the weights W, and W4 for calculating dynamic priorities be -1. This implies that, in
the formula for calculating dynamic priorities, the slacks with respect to deadline and validity

constraints have the same weight.
If validity constraints are not considered:

In this case, DP := DP, + DP;. The slack of T; with respect to deadline is 18. The

slack of T'; with respect to deadline is 13. Therefore,

DP(T1)=-18 and DP5(T) = -13.
ie. DPz(Tz) > DPg(T;).

Assuming equal system priorities, DP(T';) > DP(T,), implying that T, would be scheduled first
The execution would proceed as shown in Fig. 2.4, T, would finish its execution at time 12. Then
Ty would start. But, at time 20 the validity of object 1 would be 50%. This would violate the vali-

dity constraint of 7'y, which would have to be aborted.

Validity i

100%

50%

10 20 30 Time elapsed

Fig. 2.3 Validity Curve
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T2(1/0)

T2(CPU) TICPU)
T2 T1 violates its
completes validity constraint

Fig. 2.4 Validity constraints ignored

If validity constraints are considered:

In this case, DP := DP| + DP, + DP3. The slack of Ty with respect to validity constraints

is 10. The stack of T'; with respect to validity constraints is 20. Therefore,

DPg(Tl) = -10 and DPg(Tg) = -20.
ie. DPz(Tl) + DP:;(TI) = -28 and DP2(T2) + DPg(Tz) =-33
ie. DP2(T1)+DP3(T1)>DPz(Tz)-i—DP:;(Tz).

Assuming equal system priorities, DP(T';) > DP(T{), implying that T; would be scheduled first.
The execution would proceed as shown in Fig. 2.5. At time 10 the validity of object 1 would be
100%, satisfying Ty’s validity constraints. Thus T'; would finish its execution at time 12. Then
T, would start. At ime 20, the validity of object 1 would be 50%, satisfying T»'s validity con-

straints, Thus 7', would finish its execution at time 22.

Thus, incorporating validity constraints in the scheduling strategy does prevent transactions

from being aborted unnecessarily.
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T1(/O) T20/0)

T1(CPU) T2(CPU)
0 10 12 20 22
T1 T2
completes completes

Fig. 2.5 Validity constraints considered

2.3.3. Making the final scheduling decision
The way the final scheduling decision is made depends on whether preemption is allowed or
not. In the following discussion we assume that the transactions considered have already passed
the eligibility test. Let us consider the scheduling algorithms for the two cases:
Case 1. No preemption.
There are more than one transactions requesting a resource and we have t0 decide the tran-
saction which should be granted the resource. In this case we grant the resource to the tran-
saction with the highest dynamic priority.
Case 2. Allow preemption.
There is a transaction currently holding a resource and there is a transaction requesting the
same resource. We have 10 decide whether to preempt the transaction holding the resource
and grant the resource to the transaction requesting it.
Let T, and T, be the two transactions requesting the resource. Let P(T,) and P(T,) be
dynamic priorities of the two transactions. Let P(Ty if preempted) be the priority of T, were it to

be preempted by T,. The algorithm is as follows:

16



IF P(T,) > MAX(P(T,) , P(T}, if preempted) ) THEN
IF RemainingTime(7},) > Slack(T,) THEN
Preempt T;
END;
END;
where RemainingTime(7),) = Runtime estimate
- Processing time received by T,

2.3.4. Handling Periodic Transactions

There are many applications in real-time database systems which have periodic transac-
tions. For example, a pulse detection system used in radar tracking needs to periodically read
pulse data from antennas, process them, and then display them on an operator console [Hale89].
Periodic transactions are restarted after an interval of time equal to their period. If an execution of
a periodic transaction does not complete before the end of its period, it is aborted and a new
instance of the same transaction is restarted. From the scheduler’s viewpoint, periodic transac-

tions can be modelled as transactions having hard deadlines equal to their periods.

If a data object is updated by a periodic transaction with period (T), its validity curve can be
similar to the one shown in Fig. 2.6. The form of the validity curve implies that the validity of the
data object remains 100% during an interval T after the object has been updated. Henceforth, it
reduces by a fixed amount v every T time units, This makes the task of calculating the degree of

validity of a data object easy. If t is the time elapsed since the data object was last modified,

Degree of validity = 100 - (t/T) * v
where, "/" signifies integer division.

This behavior of the degree of validity of a data object is similar to the concept of normalized age
of data objects [Song89]. For periodic transactions, the basic scheduling strategy for determining
eligibility, assigning priorities and making the final decision remains the same as for aperiodic

transactions.
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Fig. 2.6 Example Validity curve

3. Simulation Study

3.1. Need for a Real-Life Application

The research on real-time transactions scheduling is still in its infancy. There exists no for-
mal theoretical framework to analyze the performance of the existing scheduling algorithms. For
this reason, experimentation is a necessity to compare the performance of different scheduling

algorithms.

Until now, none of the algorithms proposed in previous studies have been evaluated in real
systems. [Abbo88] and [Abbo89] present experimental results pased on simulation, whereas
{Huan89] presents an integrated approach to study real-time transaction processing on a testbed
system. In these studies semantically meaningless transactions are randomly generated with ran-
dom system priorities, resource requirements, and timing constraints. The disadvantage of this
approach is that it does not give the researcher a true feel for real-life problems. Also, for any

scheduling strategy to be used in industry, it has to be supported by an extensive round of

18



experimentation with a real-life application.

We feel that in the area of real-time systems, there is a pressing need for a canonical prob-
lem which can be used to test different strategies for solving problems like scheduling or fault
tolerance. An analogy can be drawn to the dining philosophers problem in the area of interpro-
cess communication. For these reasons, we chose to simulate a pulse detection system, a real-

life, real-time database system application, to evaluate the proposed scheduling algorithm.

3.2. What is a Pulse Detection System?

A pulse detection system is an example of a real-time database system [Hale89]. It is used
to detect and track extemnal objects by means of pulses (radar or sonar) received from them. The
pulse detection system maintains information about each object in reality in a database of emitter
files. It contains a number of simultaneously active transactions with different system priorities,

timing constraints, and resource requirements.
Examples of periodic transactions are:
(1) Transactions which collect pulse data from the radar.

(2) Transactions which evaluate the pulse data received and perform the necessary operations

in the database of emitter files.

(3) Transactions which remove emitter files which have not been updated for a certain interval

of time,

(4) Transactions which monitor the operator’s console for operator commands.
Examples of aperiodic transactions are:

(1) Transactions which shoot missiles at the enemy objects.

(2) Transactions which display information about the enemy objects.

Now, it is possible for some of these transactions to require the same resource at the same

time, This is when the question of intelligent scheduling of transactions becomes extremely
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imporiant.

The simulation system we have implemented runs on a SUN Workstation (preferrably SUN

3/75 with a color monitor). It is based on the scenario of a battleship surrounded by airborne

enemy objects like aircrafts or missiles. It consists of two windows: the reality window, and the

s console window (see Fig. 3.1).
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Fig, 3.1, Simulation Screen
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The reality window consists of a stationary battleship at its center and the surrounding
enemy objects. Each object has a position and velocity associated with it. An object is imple-
mented as a process which calculates the new position of the object and displays it in the reality
window. The reality window is managed by two modules: Object and Reality. The
module Object is responsible for creating objects in reality, continuously updating their posi-
tions and detecting collisions. The module Reality is responsible for creating the reality win-
dow. It has a procedure called GetPulseData which simulates the operation of a radar by

getting new pulse data of an object in reality.

The bperator’s console window displays the operator’s view of reality as maintained by the
pulse detection system. It is supposed t© display the most current positions of enemy objects in
reality. The operator’s console window is managed by the modules: Detect and Emitter-
File. The module EmitterFile maintains an emitter file to store information correspond-

ing to each encmy object in reality.

The Detect module contains three periodic and two aperiodic transactions. Each transac-
tion is implemented as a process. The following are the periodic transactions with a brief

description of what they do.

(1) Track:lt calls Reality: GetPulseData to get a new pulse data of an object in real-
ity. It scans all the emitter files to find an emitter file which correlates with the pulse data
received. If it finds such an emitter file, it updates it; else it creates a new emitter file with

that pulse data.

(2) Clean:lt periodically scans the emitter files and deletes emitter files which haven't been
updated for a predenermined amount of time assuming that the object which they represents

have been destroyed.

(3) Operator 1nteraction: This transaction accepts operator commands. For example,

an operator may query the database to find more information about an emitter file, or he
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may start a transaction to shoot an enemy object.
The operator interaction transaction, in turn, can start two aperiodic transactions, which are:

(1) Display TInformation: This transaction displays information about the object chosen

by the operator.

(2) Shoot object: This transaction shoots a missile at the object chosen by the operator.

3.3. The Simulat 1 on Module

Since this is a simulation of the original system, it is very important that the experimenter
has control over the relative speeds of the transactions being executed and the amount of time a
transaction needs 10 use a resource. This is done by using the gimulation module. The

gimulation module is a general purpose module which contains the following procedures:

PROCEDURE Hold {delay : TONGINT} ;
(* This procedure is executed DY processes whose execution
is to be suspended by ndelay" units of time. *)}

PROCEDURE Open (VAR © ! Resource; attr * ARRAY OF CHAR}:
(* This procedure 45 used to create & resource with a name
stored in attr *

PROCEDURE Close (VAR r 3 Resource)
(* This procedure is used to delete & resource. A resource
should not be deleted until its statistics are printed. *)

PROCEDURE HoldR (VAR T * resource; delay LONGINT) ;

(* This procedure ig executed bY processes which desire tO

uge resource vyt for "delay" anits of time. If more than
one processes desire to use the same resource at the same
time, their requests are serialized according to certain
scheduling strategy.*)

PROCEDURE SetSchedStrat(schedStrat . CARDINAL):
{* This procedure can be called any time during the simulation
ro set the scheduling strategy to be followed. *})

PROCEDURE setPreemption (preemption . BOOLERN):;

(* This procedure can be called any time during the gimulation
to decide whether preemption 15 allowed. *)
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A process calls Hold to simulate the passage of time when it executes some actions. It
calls HoldR when it uses some shared resource. If twO OF MOTe Processes want to use a resource
at the same time, & decision has to be made in the Simulation asto which process should be
granted the resource. This decision is made considering the attributes agsociated with the dif-

ferent processes according to some scheduling strategy.

Currently each process contending for a shared resource has the following attributes: (1)
System priority; (2) Arrival time; (3) Deadline; (4) Run-time estimate; (3) Processing time it has

received; and (6) Minimum validity of the data it reads.

The simulation system allows the researcher 10 choose the scheduling srrategy followed,
with or without preemption, and examine its effects on the puise detection systern. Currently the
following strategies, with or without preemption, are supported: (1) First Come First Served; (2)
System Priority; (3) Earliest Deadline First; (4) Least Slack First; and (5) A variant of the
scheduling strategy presented in the previous chapter, which will be henceforth referred to as the
Combination strategy. The Combination Strategy uses the system priority (SP) and the slack with

respect to deadline (SDL) while making its scheduling decisions.

Our intention is 1o show that the performance of the pulse detection system can be enhanced
by the use of intelligent scheduling algorithms. The performance of a scheduling strategy can be
judged by two ways: (1) by the visual behavior of the simulated pulse detection system; or (2) by
the information about successful completion of transactions displayed each time the scheduling

strategy is changed.

3.4. Simulation Assumptions
The following are the assumptions made about the simulations.

() The timing parameters of transactions like the run-time estimate or deadline are arbitrary
and do not correspond 1o any realistic system. This is done because data about real systems

is of a highly classified nature.
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(2) The scheduling overhead is ignored. This assumption is supported by [Huan89].

(3) The consistency of the database is maintained using exclusive locks which are non-
preemptible. A more efficient concurrency protocol would be the priority ceiling protocol

using shared locks [Sha88].

(4) All transactions have hard timing and validity constraints. When a periodic transaction or
an instance of a periodic transaction is started, the run-time estimate and the deadline

parameters of the transaction are set,

(5} A transaction cannot use more than one resource at the same time.

3.5. Simulation Results

To make the differences in the performance of the different scheduling strategies obvious
two periodic dummy transactions were added to the system. This is justified, since, real-time sys-
tems do have certain background tasks which are not directly connected to the real-time applica-

tion. The following are the dummy transactions and their characteristics:
(1) Dummyl: Low system priority, Tight deadline.
(2) Dummy?2: High system priority, Loose deadline.
The simulation results can be grouped into three cases:
(1) Case 1: Dummyl, but not Dummy?2, is activated.
(2) Case 2: Dummy2, but not Dummy1, is activated.
(3) Case 3: Both Dummy! and Dummy?2 are activated.

To quantitatively evaluate the results of a particular scheduling strategy, we calculate its

figure of merit as follows;

figure of merit = p) (% success W System Priority)
Transactiontypes
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where

(No. of successful completions)

% success =

{No. of instances started)

The system priorities of the different transaction types is shown in the following table.

Transaction Tvpe

System Priority |

Track

Clean

User Interaction

Shoot

Display Information

Dummyvl

Dummy2

b KO Had [Ud ) e 8D

The simulation results based on the above performance metric are summarized in the fol-
lowing tables. The entries in the table are either quantitative (figures of merit) or qualitative

(good or bad). The qualitative assessment is done by taking into account the visual behavior of

the system.

3.5.1. When Preemption is Allowed

Quantitative Assessment:

|_Scheduling Strategy | Case1 | Case 2 Case 3
FCFS 300 500 511

System Priority 1159 504 500

| Earliest Deadline First 1056 1220 528
Least Slack 305 1036 306
Combination 1114 1350 1194

Cualitative Assessment:

.Scheduling Strategy | Case 1 i Cased | Case3

FCFS bad bad bad

System Priority good bad bad

Earliest Deadline First bad good bad

- Least Slack bad good bad
Combination good good good
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We observe that the FCFS strategy performs poorly in all the three cases. This is because
the FCFS strategy does not possess the requisite intelligence to prevent the dummy transactions

from using the resources. This causes the more important transactions to miss their deadline.

In Case 1, the dummy transaction activated has low priority but a tight deadline, The
scheduling strategy based on system priority can filter out the dummy transaction. But the earliest
deadline first and least slack first strategies do process the dummy transaction, thus causing the

system to behave poorly.

In Case 2, the dummy transaction activated has high priority but a loose deadline. The ear-
liest deadline first and least slack first strategies can filter out the dummy transaction. But, the
scheduling strategy based on system priority does process the dummy transaction, thus causing

the system to behave poorly.

In Case 3, dummy transactions of both kinds are activated. The Combination strategy works
well since it uses information about system priority as well as information about the timing con-

straints while making its scheduling decision.

Thus, we observe that adding intelligence to the scheduling strategy does improve the sys-

tem performance.

3.5.2. When Preemption is Not Allowed

Quantitative Assessment;
_Scheduling Strategy | Casel [ Case2 | Case3
FCFS 400 1200 608
System Priority 400 600 600
Earliest Deadline First 400 600 600
Least Slack 400 600 600
Combination 400 600 600

Qualitative Assessment:
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|.scheduling Strategy Case 1 Case 2 . Case 3
FCES bad bad bad
System Priority bad bad bad
Earliest Deadline First bad bad bad
Least Slack bad bad bad
Combination bad bad bad

As seen above, in general, scheduling strategies perform poorly when preemption is not
allowed. From the output of the simulation runs it is observed that almost all of the track transac-
tions miss their deadlines, implying that the operator’s console is empty most of the time. Due to
this, the clean transactions trivially complete, since they have no emitter files to clean, But, it is
almost impossible to start any transactions to shoot or display information about objects. Thus,

the entire purpose of the pulse detection system is defeated.

4. Conclusion

Real-time database systems have timing and validity constraints associated with transac-
tions. To ensure that such a system completes as many transactions as possible without violating
their timing and validity constraints, its scheduling strategy should have the following charac-
teristics. First and foremost, the scheduling strategy should be dynamic. Second, it should use
the timing and validity information associated with transactions and the database. Third, the
scheduling strategy should be used at all places where there is resource contention. Fourth,

preemption should be allowed wherever possible.

In this project, we described a dynamic scheduling strategy for transactions in real-time
database systems. The scheduling strategy uses timing and validity information about transac-
tions and data objects 1o calculate dynamic priorities of transactions. These priorities are then
used to make scheduling decisions at all places where transactions contend for scarce resources.
The extra information used by the scheduler enables it to schedule transactions intelligently so

that the system completes as many critical transactions as possible.
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For any scheduling strategy to be used in industry, it has to be supported by an extensive
round of experimentation with a real-life application. The simulation study conducted in this
project used a pulse detection system as a real-life, real-time database application. The simula-
tion resulis obtained showed that scheduling strategies for real-time database transactions can be
made more intelligent by making use of extra information about transactions such as their system

priority, resource requirements and timing constraints.
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