Provably Good Moat Routing

Joseph L. Ganley

Cadence Design Systems, Inc., 2615 John Milton Drive, Oak Hill, Virginia 20171

James P. Cohoon

Department of Computer Science, University of Virginia, Charlottesville, Virginia
22903

Abstract

Moat routing is the routing of nets between the input/output pads and the core
circuit. In this paper, it is proved that moat routing is NP-complete under the rout-
ing model in which there are no vertical conflicts and doglegs are disallowed (i.e.,
every net is routed within a single track). This contrasts with the fact that channel
routing is efficiently solvable under these restrictions. The paper then presents an
approximation algorithm for moat routing that computes moat routing solutions
that are guaranteed to use at most three times the optimal number of tracks. Em-
pirical results are presented indicating that for a number of industrial benchmarks,
the algorithm produces solutions that are near optimal and that use significantly
fewer tracks than previous moat routing strategies.

Keywords: Approximation algorithms, computational complexity, moat routing.

1 Introduction

The final stage in detailed routing is typically to route the connections between
the input/output pads and the core circuit. The area between the core and
the pads is called the moat, and this routing task is consequently called moat
routing.

A moat routing instance consists of a number of nets whose pins lie on either
or both of the inside perimeter of the padframe and the outside perimeter of
the core circuit area. The moat between the pads and the core is divided into a
number of concentric tracks, similar to a channel routing instance except that
each track forms a circle rather than a line segment. A set of pads, a circuit
core, and the moat between them are illustrated in Figure 1.

Preprint submitted to Elsevier Science 23 July 1998

Fig. 1. A moat routing instance.

In this paper we assume the use of a routing model in which doglegs are not
allowed, i.e., every net is routed within a single track. Furthermore, we assume
that there are no vertical constraints (as Wang [13] points out, the pins on the
pads are typically spaced sufficiently far apart that any vertical constraints
can be eliminated). We henceforth refer to this model simply as the restricted
routing model.

As in previous works [10,13], we use a two-layer model in which the tracks lie
in one layer and the radial connections between the core or pad pins and the
tracks lie in the other layer.

The remainder of this paper is organized as follows. Section 2 describes some
concepts regarding intersection graphs and channel routing algorithms. In Sec-
tion 3, it is proved that under the restricted routing model, moat routing is
NP-complete (whereas the restricted routing model renders channel routing
efficiently solvable). Section 4 describes a technique for determining a lower
bound on the number of tracks required for a given moat routing instance.
Section 5 then describes an approximation algorithm that computes a moat
routing that uses at most three times the optimal number of tracks. In Sec-
tion 6, empirical evidence is provided indicating that for a number of industrial
benchmarks, the approximation algorithm performs well with respect to lower
bounds and previous moat routing strategies. Finally, Section 7 concludes with
some ongoing work.

2 Terminology

The graph K -colorability problem is defined as follows: given a graph, is it
possible to assign a color to each vertex such that at most K colors are used

and such that the endpoints of every edge are colored differently?

An interval graph is a graph in which the vertices correspond to intervals on a
line and in which there is an edge between every pair of vertices whose intervals
intersect !. Under the restricted routing model, the channel routing problem
corresponds directly to the problem of coloring an interval graph. Each interval
corresponds to a net, and its endpoints are the minimum and maximum =z
coordinates of the pins in the net (assuming without loss of generality that
the channel is horizontal). A K-coloring of this interval graph corresponds
directly to a channel routing solution using K tracks, and vice versa. Each
color corresponds to a track, and since no pair of intervals of the same color
intersect, all intervals of like color can be routed within a single track. The
K-coloring problem can be efficiently solved in an interval graph, and thus a
channel routing solution that is optimal within the restricted routing model
can be efficiently computed.

One classic algorithm that does so is the left-edge algorithm of Hashimoto
and Stevens [8]. The left-edge algorithm proceeds as follows: sort the intervals
according to the = coordinates of their left endpoints. Then process the nets
in this sorted order, inserting intervals into tracks in a greedy fashion: each
interval is inserted into the first track in which it fits, or if it fits in none of
the current tracks, then it is inserted into a new track.

The density of a channel routing instance is the maximum number of inter-
vals that intersect any vertical line, i.e., the size of a maximum clique in the
corresponding interval graph. Clearly the density of an instance is a lower
bound on the number of tracks required to route the instance. In fact, interval
graphs are perfect graphs, meaning that the maximum clique size is equal to
the minimum number of colors required to color the graph. Thus, the optimal
number of tracks is precisely equal to the density, and the left-edge algorithm
computes an optimal channel routing solution under the restricted routing
model.

A circular arc graph is similar to an interval graph except that the vertices
correspond to arcs on a circle rather than intervals on a line. Unlike interval
graphs, circular arc graphs are not perfect, meaning that the minimum number
of colors required to color a circular arc graph is not necessarily equal to its
density (though density is still clearly a lower bound). One might suspect
that moat routing is analogous to coloring a circular arc graph in the same
manner that channel routing is analogous to coloring an interval graph. In
the next section, we prove that a moat routing algorithm can indeed be used
to solve the K-colorability problem in a circular arc graph. Unfortunately,
since circular arc graph coloring is NP-complete [5], this reduction implies

L All graph-theoretical concepts discussed here are described in Golumbic [6].

that moat routing under the restricted routing model is NP-complete as well.
This contrasts with the fact that channel routing is efficiently solvable.

3 Computational Complexity

In this section, we prove that a moat routing algorithm can be used to solve the
K-coloring problem in a circular arc graph. Since coloring a circular arc graph
is NP-complete [5] and there is a polynomial-time reduction from circular arc
graph coloring to moat routing, the moat routing problem is NP-complete as
well.

Theorem 1 Moat routing is NP-complete under the restricted routing model.

Proof. Inclusion in NP is obvious. NP-completeness is shown by a reduction
from circular arc graph coloring.

An instance of the coloring problem for circular arc graphs is a circular arc
graph GG and an integer K. The question is whether G can be colored using K
or fewer colors.

Assume without loss of generality that the endpoints of the arcs that com-
prise GG are all distinct [7]. Sort the endpoints of the n arcs in clockwise order,
and call them py, ps, ..., p2,. We now build a moat routing instance that mir-
rors the structure of (.

All pins in the moat routing instance lie on the perimeter of the core. They are
arranged in 2n groups, each of which contains at most n pins. The groups are
arranged around the core perimeter in the same order as the corresponding
points on the circle. Let #;; denote the ;'™ pin in the i group of pins. A
net R; is built for each arc a; = (pr,pr) in G, in which the pins are
for all pr, < ¢ < pr (index arithmetic is performed modulo 2n, i.e., a < b
is understood to imply that « is counterclockwise of b). This construction is
illustrated in Figure 2.

We claim that a K-track moat routing solution to the construction described
above exists if and only if G is colorable using K colors.

(=) If G is colorable using K colors, then a K-track solution exists for the
moat routing instance constructed as described above. For each set of
arcs given the same color, route the corresponding nets within a single
track clockwise from pz, to pr. Such a routing is valid since no two arcs
with the same color intersect.

Fig. 2. (a) A 3-colorable circular arc graph and (b) a corresponding 3-track moat
routing instance.

(<) If a K-track solution exists for the moat routing instance constructed
as described above, then GG is colorable using K colors. The routing for
each net is an entire track minus the section between two adjacent pins.
If the missing section lies between pins ¢;; and ¢;41 ; such that p; <
l;; < tiy1,; < pr, then the net must intersect the routing of every
other net, and thus it is routed within its own distinct track. Thus,
any net whose routing does not correspond to the circular arc from
which it was constructed can be rerouted so that it does correspond
to its circular arc without increasing the number of colors required.
Therefore, we can transform any K-track moat routing solution into a
K-track solution in which the routing of each net corresponds directly
with the circular arc from which it was constructed. Each arc is then
given a color corresponding to the track in which its corresponding net
is routed, and the resulting coloring is a valid K-coloring of G.

This transformation is performed in O(n?) time. Since the circular arc graph
coloring problem is NP-complete [5] and is reducible in polynomial time to
the moat routing problem, the moat routing problem is NP-complete. 0O

4 Lower bounds

Due to the circular nature of the moat, many ideas from the channel rout-
ing literature cannot be applied directly. In a (horizontal) channel, a routing
algorithm must assign a track to each net, but the horizontal span of the rout-
ing is determined by the instance, i.e. there is only one possible horizontal
span for each net. For moat routing, the circular moat creates a possibility of

many different routing paths, independent of the assignment of nets to tracks.
Specifically, a net with m pins can be routed in m different ways within the
same track, each corresponding to a complete track with the span between
two adjacent pins removed.

Since nets in a moat routing instance can be routed in multiple ways, the
notion of density as it applies to channel routing cannot be directly general-
ized to moat routing. However, we derive a slightly different lower bound by
considering pairs of points around the moat. Consider a pair of lines, each
of which extends from the core circuit area perpendicular to its border. Each
such pair separates the moat into two channels.

Find a pair of such lines such that the number of nets with pins in both
channels is maximum. We say that these nets are cut by the pair of lines,
and denote the maximum number of cut nets as N. Every routing of a cut
net must intersect at least one of the lines, so the minimum number of tracks
required for the moat routing is at least [N/2].

5 An Approximation Algorithm

Further exploration of the ideas in the previous section leads to an approxi-
mation algorithm for the moat routing problem. (This is a modified version of
the algorithm presented by the authors in [4].) As in Section 4, find a pair of
lines that cuts a maximum number of nets. These lines divide the moat into
a pair of channels; call them the left and right channels. If a net has pins in
both of these channels, then we say it is cut; otherwise it is uncut.

Choose an arbitrary cut, and let N denote the set of cut nets. Now route every
uncut net within the channel that contains its pins (using, for example, the
left-edge algorithm [8]), and route the cut nets arbitrarily. Let k& denote the
number of tracks in an optimal moat routing, and let X be the set of uncut
nets for which the optimal routing is not within the cut channel that contains
its pins. The moat width incurred by the uncut nets is thus at most k& + | X|,
and obviously the moat width incurred by the cut nets is at most |NV].

For a lower bound, note that every net in X, since it is not routed within its
cut channel, must cross both lines in the cut in an optimal moat routing, and
thus contributes 1 to the lower bound. Each net in N must cross at least one
of the lines in the cut, and thus the nets in N contribute [|N|/2] to the lower
bound.

Using these upper and lower bounds, we determine that the worst-case ratio
of the moat width produced by this approximation algorithm to the optimal

moat width is

E+|X|+|N X|+|N
XN, XN
¢ XT+TIVI72]

That is, this approximation algorithm produces a solution whose moat width
is at most 3 times optimal.

If there are n nets, then this algorithm requires O(nlogn) time.

Though an arbitrary routing of the cut nets is sufficient to satisty the approxi-
mation bound, in practice one would like to compute a good routing. We turn
once again to circular arc graphs to devise an effective heuristic for routing
the cut nets.

Construct a circular arc graph ' as follows: For each net R;, denote the
pins in R; as to,t1,...,1r,-1, in clockwise order. For each R;, add to G the
arcs [L(j+1)ymod|ri|> 1;] for all 0 < j < |R;|. Note that each arc includes all the
pins in R;. Note also that if |R;| > 2, then the arcs constructed from R; are all
pairwise intersecting. If the n nets contain a total of m pins, then (G contains m
arcs.

Now find a mazimum independent set (MIS) in (. There are m arcs in G, so
if the arc endpoints are sorted (requiring O(mlogm) time) then an MIS can
be computed in O(m) time [9]. Since all intervals in a net with 3 or more pins
are pairwise intersecting, the MIS cannot contain more than one arc from a
net R; unless |R;| = 2. If it contains both arcs from a net R; with |R;| = 2,
then the size of the MIS is 2. In this case, if the arc endpoints are sorted,
then an MIS that does not contain two arcs from the same net can be found
in O(n) time. This is dominated by the general case, so an MIS that does not
contain 2 arcs from the same net is computed in O(mlogm) time.

Once the MIS has been computed, route each net for which there is an arc
in the MIS according to that arc. Remove all arcs that were constructed from
nets thus routed, and repeat the process until no arcs remain. We call this
heuristic the iterated mazimum independent set (IMIS) heuristic. Since sorting
requires O(mlogm) time, each pass requires O(m) time, and at most O(n)
passes are performed, the IMIS heuristic runs in O(mlogm + nm) time.

In order to better use the space among the uncut nets, we have implemented
the algorithm as follows: G contains at least one arc for every net. For a cut
net, (G contains the arcs corresponding to every possible routing path, as de-
scribed above. For an uncut net, G contains only the single arc corresponding
to its routing within the left or right channel.

Using the IMIS heuristic to route the nets in the approximation algorithm
increases the time complexity of the approximation algorithm to O(nlogn +

Lower | Approximation Left Edge

Name Nets® | Pins® | Bound | Tracks | Time | Tracks | Time
biomed 40 138 13 14 0.02 16 0.01
fract 9 33 2 2 0.01 2 0.01
industryl 237 | 1086 50 58 0.51 69 0.09
industryla | 112 688 35 40 0.17 45 0.02
industry2 36 530 10 10 0.05 10 0.01
industry3 89 466 40 68 0.26 70 0.01
primaryl 71 211 9 10 0.02 11 0.01
primary?2 80 298 11 13 0.04 15 0.01
struct 30 97 8 9 0.01 9 0.01

Table 1. Experimental results.

mlogm 4+ nm) = O(mlogm + nm).

6 Experimental Results

We have implemented our approximation algorithm in order to compare its
performance in practice with the lower bounds described in Section 4 and with
the performance of previous moat routing strategies.

For the latter comparison, we implemented an algorithm using a strategy
similar to that of Wang [13]. The main idea in Wang’s algorithm is to choose
the shortest routing path for each net, and then to assign these routing paths
to tracks using the left-edge algorithm.

The circuits we use are the SIGDA standard-cell benchmark suite [11]. The
moat routing instances are determined by performing placement and global
routing using TimberWolf version 6.0 [12].

The results of these tests are summarized in Table 1. As these results indicate,
the approximation algorithm produces moat routing solutions that are nearly
optimal and that in most cases use substantially fewer tracks than the left-edge
strategy. In fact, for these benchmarks, the approximation algorithm produces
solutions that use an average of 6.5% fewer tracks than the left-edge algorithm.

The improved moat routing solutions computed by our approximation algo-

3 Statistics are for the moat routing instance, not the entire circuit.

rithm come at the expense of a slight increase in running time compared to
the left-edge algorithm. However, the algorithm is still quite fast, especially
relative to the time required for the entire placement and routing process.

Figure 3 shows a moat routing of the benchmark instance primary2, computed
using our approximation algorithm.

'F’"I”I‘E%E? [[[EEE

TLHHE

> B -

L

=

=
|

! Tl

N HI
J "
I
J —"

Fig. 3. A moat routing of the benchmark primary2, computed by the approximation
algorithm. For illustrative purposes, the width of the moat is exaggerated relative
to the size of the circuit core.

7 Current Work

Though we have shown that our approximation algorithm quickly produces
near-optimal solutions for a number of industrial benchmarks, we are currently
working on several modifications to improve its effectiveness further.

We have used the two-layer restricted routing model in which doglegs are
disallowed, i.e. every net is routed in one track. Further reductions in track
usage may result from allowing doglegs and supporting routing models with
more than two layers.

An instance is pad bound if the moat routing can be accomplished within the
smallest possible padframe. Otherwise, the instance is core bound. These two

types of instance are illustrated in Figure 4.

HNRRRNRREND

1

HNRRRNAREND
(a) (b)

Fig. 4. (a) A pad-bound instance and (b) a core-bound instance.

High-quality moat routing of pad-bound instances is often less important than
for core-bound instances, since the moat width is determined by the size of the
padframe rather than by the moat routing itself. However, often an instance
is pad-bound in one direction but not in the other (for example, the primary2
instance is pad-bound horizontally but not vertically, as can be seen in Fig-
ure 3). In such instances, more nets should be routed in the portions of the
moat whose width is determined by the padframe, so that fewer nets need be
routed in the portions that are not pad-bound, thus reducing the total circuit
area.

More generally, we are working on modifying our algorithm to allow the use
of an uneven number of tracks on the four sides of the moat.

Finally, we are examining special cases of the moat routing problem. Of partic-
ular interest is the special case in which every net contains two pins. We have
been unable to modify the NP-completeness proof of Section 3 to cover this
case, and we are working toward either doing so or devising a polynomial-time
algorithm for moat routing of two-pin nets. We note that a similar problem,
minimum-congestion routing in a cycle, is polynomial-time solvable for two-
pin nets [1] but NP-complete for nets with more than two pins [4].

Acknowledgments

The authors were partially supported by National Science Foundation grants
MIP-9107717 and CCR-9224789, and JLG was partially supported by a Vir-
ginia Space Grant Fellowship. Their support is greatly appreciated. In addi-
tion, we are grateful to the anonymous referees for many helpful suggestions,
in particular for pointing out reference [9], which greatly improved the running
time of our algorithm.

A previous version of this paper appeared in Proceedings of the Sizth Great
Lakes Symposium on VLSI [3].

10

References

[1] A. Frank, T. Nishizeki, N. Saito, H. Suzuki, and E. Tardos. Algorithms for
routing around a rectangle. Discrete Applied Mathematics, 40:363-378, 1992.

[2] J. L. Ganley. Geometric Interconnection and Placement Algorithms. PhD
thesis, Department of Computer Science, University of Virginia, Charlottesville,
Virginia, 1995.

[3] J. L. Ganley and J. P. Cohoon. A provably good moat routing algorithm. In
Proceedings of the Sizth Great Lakes Symposium on VLSI, pages 86-91, 1996.

[4] J. L. Ganley and J. P. Cohoon. Minimum-congestion hypergraph embedding
in a cycle. IEFE Transactions on Computers, 46:600-602, 1997.

[6] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The
complexity of coloring circular arcs and chords. SIAM Journal on Algebraic
and Discrete Methods, 1:216-227, 1980.

[6] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, New York, 1980.

[7] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algorithms for interval
graphs and circular arc graphs. Networks, 12:459-467, 1982.

[8] A. Hashimoto and J. Stevens. Wire routing by optimizing channel assignment
within large apertures. In Proceedings of the Fighth Design Automation
Conference, pages 155-163, 1971.

[9] W.-L. Hsu and K.-H. Tsai. Linear time algorithms on circular-arc graphs.
Information Processing Letters, 410:123-129, 1991.

[10] R. K. McGehee. A practical moat router. In Proceedings of the Twenty-fourth
Design Automation Conference, pages 216-222, 1987.

[11] B. T. Preas. Benchmarks for cell-based layout systems. In Proceedings of the
Twenty-fourth Design Automation Conference, pages 319-320, 1987.

[12] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement and
routing package. IFEF Journal of Solid-State Circuits, 20:510-522, 1985.

[13] D. C. Wang. Pad placement and ring routing for custom chip layout. In
Proceedings of the Twenty-seventh Design Automation Conference, pages 193—
199, 1990.

11

Biographies

Joseph L. Ganley received his Ph.D. in Computer Science in 1995 from
the University of Virginia. Since then, he has been a member of the re-
search and development staff at Cadence Design Systems, working on software
and technology for custom IC physical design. He is the author or co-author
of over 25 papers on VLSI physical design automation and graph and ge-
ometric algorithms. He is a member of ACM, SIGACT, SIGDA, and Tau
Beta Pi. He can be reached at ganleyQcadence.com, and his web page is at
http://ganley.home.ml.org/.

James P. Cohoon received his B.S. in Mathematics from Ramapo College,
M.S. in Computer Science from Pennsylvania State University, and Ph.D. in
Computer Science from the University of Minnesota in 1982. He is a former
member of AT&T Bell Laboratories and is currently an Associate Professor
with the Department of Computer Science at the University of Virginia in
Charlottesville, Virginia. His professional interests include VLSI design au-
tomation algorithms, computational geometry, probabilistic search, and com-
puter science education. He is the author of more than 60 papers in these
fields. He is a member of the ACM Publications and SIG Boards and is past
chair of SIGDA. He has served on the programming committees for such con-
ferences as DAC, ICCAD, and ICCD, and was co-organizer of the first ACM
Design Automation Workshop in Russia. His honors include a Fulbright Fel-
lowship, his department’s Best Teaching Award, and SIGDA’s Leadership and
Outstanding Service awards. He can be reached at cohoon@virginia.edu. His
web page is at http://www.cs.virginia.edu/cohoon/.

12

